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The coupling between electrons and phonons is at the heart of many 

fundamental phenomena in physics. In nature, this coupling is generally 

predetermined for both, molecules and solids. Tremendous advances have been 

made in controlling electrons and phonons in engineered nanosystems, yet, control 

over the coupling between these degrees of freedom is still widely lacking. Here, we 

use a new generation of carbon nanotube devices with movable ultra-clean single 

and double quantum dots embedded in a mechanical resonator to demonstrate the 

tailoring of the interactions between electronic and mechanical degrees of freedom 

on the nanoscale. Exploiting this tunable coupling, we directly image the spatial 

structure of phonon modes and probe their parity in real space. Most interestingly, 

we demonstrate selective coupling between individual mechanical modes and 

internal electronic degrees of freedom. Our results open new vistas for engineering 

bulk quantum phenomena in a controlled nanoscale setting and offer important new 

tools for entangling the electronic and mechanical degrees of freedom at the 

quantum level.  
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Some of the most well-known phenomena in molecular and solid state physics 

result from the coupling between electrons and phonons. The resistivity of metals, 

ferroelectricity, Peierls and Jahn-Teller instabilities as well as BCS superconductivity are 

different facets of this coupling. In solids, electron-phonon coupling is dictated by the 

lattice structure and the ensuing electronic bands, leaving little room for tunability. Over 

the last decades, tremendous advances have been made in the ability to engineer materials 

on the nanoscale. On the electronic side, artificial atoms – quantum dots – were created, 

providing extensive control over their electronic spectrum (1) which allowed the 

exploration of a wide variety of phenomena inaccessible in bulk solids. On the 

mechanical side, a growing variety of engineered systems (2, 3) enabled the study of 

mechanical phenomena on the nanoscale and brought experiments closer towards 

controlling the quantum state of mechanical resonators (4–7), as well as their coupling to 

single spins (8, 9), qubits (5, 10) and photons (11). These remarkable advances contrast 

with the still-limited control over the coupling between the electronic and mechanical 

subsystems, whose tailoring would provide a remarkable toolbox for nano-electro-

mechanical systems in the classical and quantum regimes. 

Carbon nanotubes (NT) constitute a particularly promising system for tailoring 

the electron-phonon coupling. Their pristine lattice recently enabled the realization of 

extremely clean electronic systems (12–14), albeit still limited in length and complexity. 

Moreover, their one-dimensional nature, light mass, and large stiffness enabled the 

creation of tunable mechanical resonators (15, 16) with high Q-factors (17, 18). Recent 

pioneering works (19, 20) coupled a NT resonator to a single quantum dot, demonstrating 

that the mechanical frequency can be strongly affected by a single carrier and that the 

correlated motion of electrons and vibrations can lead to mechanical frequency softening 

(21).  

In this work, we explore a new generation of suspended carbon nanotube devices 

with wide-ranging local control, allowing the formation and manipulation of single and 

double quantum dots embedded into the mechanical oscillator. We use this 

unprecedented level of control to shape the interaction between electrons and phonons in 

real space. The device (Fig. 1A) is created using the nano-assembly technology we 
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recently developed (22). It consists of a small band-gap NT suspended between two 

metallic contacts, 125nm above five electrically independent gates. Above the metallic 

contacts the NT is hole-doped due to the contacts’ workfunction. The suspended part, on 

the other hand, can be locally doped with either electrons or holes by applying 

independent DC voltages to the gates,     to    . A negative voltage on all gates dopes 

the entire NT with holes, effectively creating a continuous ‘wire’ whose conductance is 

only weakly gate-dependent. However, when a positive voltage is applied to one of the 

gates while keeping negative voltages on the others, the NT segment above this gate is 

doped by electrons, forming a pair of p-n junctions that confine a quantum dot above this 

gate (22) (Fig. 1B). As we will show, not only does this dot act as a detector of the local 

mechanical motion through its charge sensitivity, but more importantly, it provides 

controlled local coupling between the electronic and mechanical systems, which forms 

the fundamental building block for this work. 

The mechanical vibrations are measured via a standard mixing technique (15). A 

radiofrequency signal with frequency   is applied to an off-center gate (gate 4) and a 

weaker “probe” signal with frequency      is applied to the source electrode (Fig. 1B). 

The former actuates the mechanical motion and mixes down with the latter via the 

dependence of the current on source-drain and gate voltages,            , to produce a 

low-frequency (  ) current signal measured at the drain. When    is swept through a 

mechanical resonance, the NT vibration is enhanced, producing a sharp peak in the out-

of-phase quadrature of the mixing signal,   , as well as in the derivative of its in-phase 

quadrature with respect to  ,        (Fig. 1C, more details in supplementary S1). In 

this work we use these peaks interchangeably to trace out the mechanical resonance. 

Figures 1D and 1E show the measured gate dependence of the first two 

mechanical modes of the NT resonator. The motion is detected via a quantum dot formed 

on the resonator at a position of large movement (above gate 3 for the 1
st
 mode and above 

gate 4 for the 2
nd

 mode, see illustrations). The bottom panels show the measured    (colormap) as a function of the voltage on the gate beneath the dot and of the drive 

frequency,  , while the top panels show the simultaneously measured conductance. For 
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both modes the mixing signal is visible whenever the dot is conducting and, being 

proportional to the derivative of the conductance with respect to gate voltage, it is 

negative on one side of the Coulomb peak (blue), positive on the other (red), and zero at 

the peak (white). Similar to previous experiments, we observe that for both modes, the 

resonance frequencies increase with gate voltage due to the tensioning of the resonator 

(15), that charging by a single electron causes a discrete frequency jump (19, 20) and that 

the coupling between the electronic and mechanical degrees of freedom causes a sharp 

softening dip of the resonance frequency concomitant with the Coulomb peak (19, 20). 

This dynamical coupling will be used here to control the interactions between the 

mechanical and electronic degrees of freedom.  

The first step in exploiting this coupling to tailor the interaction between electrons 

and phonons is to explore its underlying dynamics. Fundamentally, this coupling results 

from correlated mechanical and electronic motions: Due to NT vibrations, electrons are 

pumped between the leads and the quantum dot and their attraction to a biased gate 

causes a softening of the mechanical restoring force (21). This process involves an 

interesting competition between the vibrational frequency and the electronic tunneling 

rates, which we study here using a tunable-barrier quantum dot, formed in the resonator 

over the three central gates and populated with holes (Fig. 2A). The quantum dot can be 

tuned across the entire range from a closed quantum dot to the open Fabry-Perot-like 

regime, with individual control over the left and right tunneling rates,    and   , by the 

side gates (1 and 5). We calibrate these rates using transport measurements (Fig. 2B, 

details in supplementary S2) and measure their independent effect on the mechanical 

softening. Starting with the symmetric case,      , we observe that the softening of the 

1
st
 mechanical mode,    , drops with progressive pinching-off of the barriers (Fig. 2C I-

III). Plotting the extracted     vs. the total tunneling rate,      , (Fig. 2D) we observe 

that the drop commences when the total tunneling rate becomes comparable to the 

vibrational frequency,     . This drop reflects the inability of electrons to follow the 

mechanical motion and is reproduced by a theoretical calculation (dashed line, details 

supplementary S6). Interestingly, even when only one barrier is open (            
the softening assumes the maximal value (Fig. 2C IV). This demonstrates that contrary to 
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transport, for which the two barriers add in series, the softening is controlled by the two 

rates added in parallel, reflecting that the relevant electrons can enter from either lead. 

Measurements at very large tunneling rates (Supplementary S3) show a similar reduction 

of    , this time due to gradual disappearance of the Coulomb blockade phenomenon 

(23). In between these two drops, there is a wide range of tunneling rates for which the 

softening remains practically constant (Fig. 2D and Supp. Fig. S4). In this regime 

electrons enter sufficiently fast to establish electrostatic equilibrium at all times but not so 

fast as to broaden the Coulomb blockade peaks beyond their thermal broadening. The 

different regimes of the coupling dynamics, demonstrated above, will be utilized below to 

explore the different facets of this coupling.   

A key feature that allows us to tailor the coupling between electrons and phonons 

is the control over the real-space confinement of the electrons. With five gates we can 

localize a quantum dot at five different locations along the tube, and explore how its 

position affects the coupling. To eliminate spurious position-dependence effects, we 

ensure that all the parameters that are relevant for softening are similar for dots formed at 

the different locations. Specifically, all dots have the same number of electrons, similar 

charging energies and similar gate couplings (supplementary S4), and their tunneling 

rates are chosen well within the range where they do not affect the softening, as explained 

above. Interestingly however, when measuring the softening of the 1
st
 phonon mode with 

dots at the five locations (Figs. 3A-E, illustration in each panel) we observe that it 

depends strongly on position: It is weak near the contacts and increases continuously 

until reaching a maximum at the center of the resonator. Figures 3F-J show similar 

measurements for the 2
nd

 mechanical mode. Again we observe strong position 

dependence, however, in contrast to the 1
st
 mode the softening is practically zero at the 

center, and has its maxima above gates 2 and 4. Plotting the extracted softening for both 

modes,     and    , as a function of the spatial position of the quantum dot (Figs. 3K and 

3L) we find that they nicely follow the spatial displacement profile of the corresponding 

phonon modes (plotted as lines). The coupling thus provides a direct imaging of the 

shapes of the phononic modes in real space. 

We can understand why the spatial dependence of the coupling follows the shapes 

of the phononic modes from a simple physical picture of the electrostatic forces. In 
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supplementary S8 we calculate the local force acting on the NT resonator due to single-

electron charging of a localized quantum dot. We show that this force can be viewed as 

being due to an effective “electronic spring” with a negative spring constant, “attached” 

at the position of the dot (illustrated in Fig 3K). The spring constant does not depend on 

the position of the dot along the tube, but the shift in the frequency of the combined 

system does: If the spring is connected at a node of the phononic mode it has no effect on 

its dynamics, whereas if it is connected at a location of large vibrational amplitude, it has 

a strong effect. Indeed, perturbation theory shows (Supplementary S8) that the frequency 

shift is proportional to the amplitude squared of the bare phonon mode at the location of 

the local spring, in agreement with our observation. Beyond providing direct imaging of 

the phonon modes, shown in (24), the above measurements demonstrate that by moving 

the quantum dot in real space it is possible to turn on and off its coupling to selected 

phonon modes, thereby creating controllable coupling between these degrees of freedom. 

Is it possible to tailor the coupling between electrons and phonons without 

moving the electronic confinement potential? To achieve this we increase the spatial 

complexity of the electronic system and form, for the first time in a NT resonator, a 

double quantum dot. The added degrees of freedom allow us to generate specific 

couplings between individual electronic and phononic modes, with some similarities to 

the coupling with photons reported recently (25, 26). The double dot is formed above 

gates 2 and 4, which also act as the corresponding plunger gates, and its left, right and 

center tunnel barriers are controlled by the remaining three gates. The measured double-

dot conductance as a function of the left and right plunger gate voltages (Fig. 4A) shows 

an extremely clean charge stability diagram, down to the single-electron limit. For the 

experiment we zoom onto a symmetric charge transition vertex (Fig. 4B) and study the 

two complementary facets of the electron-phonon coupling. We start by exploring the 

effects of the phonons on the electrons, through which we demonstrate the mode 

selectivity of this coupling. We then demonstrate the complementary effect of internal 

double-dot electronic modes on the phonons.  

The coupling effects on the electrons are imprinted in the magnitude and sign of 

the mixing signal, as opposed to the frequency shift discussed so far. The former is 



7 

 

isolated in Fig. 4C which plots the mixing signal   , measured for the 1
st
 mechanical 

mode over the same voltage range as in Fig. 4B, but with the frequency shifts integrated 

out (see caption). A similar measurement for the 2
nd

 mechanical mode is shown in Fig. 

4D. Curiously, we see that the patterns of negative and positive mechanical mixing signal 

(blue/red) are substantially different for these two modes. This difference reveals the 

distinct way that different phononic modes act on the electrons: In the 1
st
 mode, the two 

dots are moving in phase, getting closer and further away together from the plunger gates 

(inset, Fig. 4C). In the 2
nd

 mode, the dots move out-of-phase, with one approaching while 

the other receding from the gates (inset, Fig. 4D). This different mechanical motion 

translates into different electrical gating: For equal DC voltages on the plunger gates, the 

1
st
 mode gates the double dot along the common-mode voltage direction (vector   in Fig. 

4B) whereas the 2
nd

 mode gates it along the detuning direction (vector   in Fig. 4B). Each 

phonon mode can thus be mapped onto an effective “gating vector” in voltage space, and 

correspondingly, its mixing signal should be the derivative of the conductance along the 

direction of this vector. By taking the numerical derivative of the conductance in Fig. 4B 

along the   and   directions (Figs. 4E and 4F) we indeed observe excellent agreement 

with the measured mixing signals of the 1
st
 and 2

nd
 modes, respectively. The above 

measurement demonstrates two important aspects: First, it shows that it is possible to use 

the electrons to directly probe the real-space parity of the phonons. But furthermore, it 

demonstrates that each phonon mode has a characteristic action on the electrons, captured 

by its “gating vector”, providing a powerful tool for tailoring selective coupling between 

these degrees of freedom. 

So far we have demonstrated various aspects of tailored coupling, but this coupling 

was to random electrons tunneling in and out from the leads. If one can couple, however, 

the phonons to internal electrons in an isolated system, one can imagine realizing clean 

systems decoupled from random electronic degrees of freedom. To study this possibility 

we isolate the double-dot from the leads by symmetrically pinching-off its side barriers 

while maintaining a large internal tunneling rate,         (      . Fig. 4G shows the 

softening of the 1
st
 and 2

nd
 modes measured in this regime along their effective gating 

directions (  and   respectively) and plotted as a function of a normalized tunneling rate 
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to the leads,                . As the double dot is disconnected from the leads by 

lowering  , we observe a clear quenching of the 1
st
 mode softening, in complete analogy 

with the observation for the single dot case (Fig. 2). Remarkably, however, the 

detachment from the leads leaves the softening of the 2
nd

 mode essentially unaffected. 

This intriguing observation can be understood by realizing that a double dot has an 

internal electronic degree of freedom, involving the transfer of charge between the dots, 

which provides the correlated electron flow that induces the softening (illustration, Fig. 

4G). This degree of freedom does not couple to the common-mode gating of the 1
st
 mode 

but directly couples to the detuning gating of the 2
nd

 mode and thus softens only the 

latter, an effect that is nicely captured theoretically (Supplementary S9). The above 

measurements thus clearly show that it possible to couple phonons to internal electronic 

degrees of freedom and that this coupling is selective. 

The demonstration of tailored coupling between internal electronic and phononic 

degrees of freedom opens a wide range of new possibilities. One example pertains to the 

coupling of phonons to solid-state qubits, which use the singlet and triplet states of two 

electrons in a double quantum dot as their basis (27, 28). Due to the Pauli blockade, an 

electron can shift between the dots only in the singlet state but not in the triplet state, and 

thus the 2
nd

 phonon frequency will dynamically couple only to the former. This selective 

coupling thus provides a tantalizing new route for transferring quantum entanglement 

from the electronic to the mechanical subsystems, or even between distant qubits in a 

multi-site lattice via a phonon “bus” (29, 30). Generalizing the physics demonstrated here 

in double-dots to multi-site lattices that are now well within reach (22) would enable an 

even broader class of experiments that explore bulk electron-phonon phenomena, such as 

ferroelectricity, Peierls and Jahn-Teller instabilities, or superconductivity, in an 

engineered nanoscale setting. Analogous to the richness of quantum dot physics, made 

possible by the extensive control over their electronic properties, the ability to tailor the 

dynamics, spatial structure and selectivity of the coupling between electrons and 

phonons, demonstrated here, will enable studying these phenomena in new regimes 

unattainable in bulk systems, opening new frontiers for fundamental experiments in  

condensed matter physics. 
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Fig. 1: A carbon nanotube mechanical resonator coupled to localized ultra-clean 

quantum dots. (A) Scanning electron micrograph of a device similar to the one 

measured, scale bar 100nm. (B) Measurement layout: DC gate voltages,     to    , 

locally dope the NT with electrons (red) or holes (blue). Mechanical motion is actuated 

by an RF signal on gate 4 (frequency  ) and is detected as a low frequency signal      in 

the drain by down-mixing with a weak probe signal of frequency      applied at the 

source. (C) Various mixing signal components measured as a function of the drive 

frequency,  : In-phase quadrature,    (blue), out-of-phase quadrature,    (green), and 

the derivative        (purple). (D) Top: Conductance,  , of a dot above gate 3 as a 

function of    . Bottom: Corresponding mixing signal,    (colormap), measured for the 

1
st
 mechanical mode, as a function of     and  . Dashed gray line is a fit to a theory 

including only the static electron-phonon coupling, capturing the frequency step across a 

Coulomb blockade peak. Dashed black line includes also the dynamical coupling 

(supplementary S1). Their difference at the center of the Coulomb peak,    , gives the 

dynamic frequency softening. (E) Similar measurement for the 2
nd

 mechanical mode with 

a dot above gate 4. All measurements in this paper are done at an electron temperature of        as determined from the Coulomb peaks in the conductance. 

Fig. 2: Dependence of dynamical electro-mechanical coupling on the electron 

tunneling rate. (A) Schematics: A quantum dot of holes is created above gates 2-4. Its 

left and right barriers tunneling rates,    and   , are controlled by     and    . (B) 

Measurement of the peak conductance at the Coulomb blockade transition from 5 to 6 

holes,       (colormap), as a function of     and    , from which    and    are 

independently extracted (see supplementary S2 for details). (C) Mixing signal of the 1
st
 

mode,        (colormap), measured as a function of     and   for symmetric tunneling 

rates,       (subpanels I-III), and for asymmetric rates,       (subpanel IV). (D) 

Extracted softening,    , as a function of the total tunneling rate,        . The 

dashed line is a fit to the theory in Supplementary S6. Dotted vertical line marks the 

angular frequency of the mechanical mode,     . 
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Fig. 3: Spatial dependence of the electro-mechanical coupling, and a direct imaging 

of the phonon modes. (A)-(E) Mixing signals of the 1
st
 phonon mode,        

(colormap), measured with quantum dots formed above each of the five gates (see 

illustrations). Vertical bars are        . The softening shows a clear dependence on the 

quantum-dot position. (F)-(J) Similar measurements for the 2
nd

 mode, yielding a different 

position dependence. (K) and (L) The softening of the 1
st
 and 2

nd
 modes,     and    , 

extracted from panels (A)-(J) and plotted as a function of the positions of the quantum 

dots, taken from the lithographic positions of the gates. Lines: Calculated amplitude 

squared of the corresponding phonon mode vs. position in the beam (solid) and string 

(dashed) limits (Supplementary S4). Inset to panel (K): Effective mechanical model: The 

force exerted on the NT by electrons flowing through a localized dot is equivalent to a 

spring with a negative spring constant attached at the dot’s position. 

Fig. 4: Tailored selective coupling between phonon modes and internal electronic 

degrees of freedom in a double quantum dot. (A) Conductance,   (colormap), of a 

double-dot defined above gates 2 and 4 measured as a function     and    . The number 

of electrons in both dots are labeled by      . (B) Zoom-in on the       to       
transition. Common mode and detuning gating directions are labeled   and  . (C) 1

st
 

mode mixing,    (colormap), measured over the same voltage window as in panel B. (D) 

Same for the 2
nd

 mode. In both cases we subtract the electronic mixing signal measured 

away from the mechanical resonance and integrate over a small frequency window to 

project out the frequency shifts due to softening (Supplementary S1). Insets: mapping the 

mechanical motion onto effective electrical gating (see text) (E) and (F) Numerical 

derivatives of the conductance in panel B along the   and   directions, respectively, 

showing good agreement with the measured mechanical mixing (panels C and D). (G) 

Coupling to an internal electronic mode in a double dot. As a function of the normalized 

tunneling rate to the leads,                       , we plot the measured softening 

of the 1
st
 and 2

nd
 modes, normalized by their asymptotic value at large  ,           . The 

central barrier is kept fixed with        . Dashed line: Fit to the single-dot theory as in 

Fig. 2, capturing the 1
st
 mode softening roll-off, but not the  -independent softening of 

the 2
nd

 mode. Top insets sketch the relevant electron tunneling mechanisms for connected 
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(right) and isolated (left) double-dots. Measurements in this panel are done around the 

(6,7) to (7,6) hole vertex (Supplementary S5). 

 











Supplementary Materials 

Real-Space Tailoring of the Electron-Phonon Coupling  

in Ultra-Clean Nanotube Mechanical Resonators  

A. Benyamini*
1
, A. Hamo*

1
, S. Viola Kusminskiy

2
, F. von Oppen

2
 and S. Ilani

1 

 

 Identifying the mechanical resonance in the two quadratures of the mixing S1.

signal 

 Determining the tunneling rates from conductance measurements S2.

 The fate of softening at large tunneling rates: the open quantum dot regime. S3.

 Comparison of the position-dependent softening and vibration mode profiles S4.

 Details of the mechanical softening for a double dot S5.

 Theory: Rate dependence of softening S6.

 Theory: Generalization to multiple gates S7.

 Theory: Spatial dependence of the softening S8.

 Theory: Softening with a double-dot S9.

 

 Identifying the mechanical resonance in the two quadratures of the mixing S1.

signal  

In this section we explain in more detail the mixing scheme used to measure the 

mechanical resonances, describe the measured quantities, and explain how the resonance 

frequency is determined from these measurements. 

The NT motion is actuated using an oscillating potential of frequency   applied to a 

gate,               . This potential generates an electrostatic force that drives the NT 

motion, and its application to an off-center rather than a center gate allows actuating also 

high-lying mechanical modes, independent of them being symmetric or anti-symmetric in 

real space.  

The mechanical motion is detected via measurements of the current through the NT,   
(1–6). The latter depends on the “control charge” induced on the NT by a gate,         

(          are the gate capacitance and potential with respect to the NT), a dependence 

which is especially strong in the Coulomb blockade regime. The effect of an oscillating 

gate potential on    (and consequently on  ) has two independent contributions:                . The first term is of pure electronic origin, coming from direct 

electrostatic gating. The second term has a mechanical origin: A NT oscillation with an 

amplitude    causes an oscillating gate capacitance           z, which leads to an 

oscillatory    .  Since the current depends on the capacitance only through the control 

charge, one can map the effect of the mechanical motion into an effective “mechanical 
gating”:                   z. When   is far from a mechanical resonance, the mechanical 



motion is small and the electronic contribution dominates. Near a resonance    is 

enhanced significantly and the mechanical term becomes dominant. 

The above effects produce oscillations of the NT current at a frequency  , which is 

typically too high (~100MHz) to be detected directly due to the RC time constant at the 

output of the NT. To detect this signal we therefore downmix it, via a non-linearity in the 

NT transport, with a weak “probe” signal on the source contact,        [         ], 
to produce a low frequency signal (       ) at the drain:                        . In 

the formula above the gate oscillations could be either due to the electronic gating or the 

effective mechanical gating. In this gate-source mixing scheme the mixing signal is thus 

proportional to 
                (  is the conductance).  

Figure S1 shows the mixing signal measured across a Coulomb blockade peak in a 

quantum dot formed above gate 4, plotted as a function of the DC voltage on this gate,    , and the drive frequency,  . Panel A shows the in-phase quadrature of this signal,   , 

panel B shows the out-of-phase quadrature,   , and panel C shows the numerical 

derivative of    with respect to  . In the    panel we subtracted the electronic 

contribution measured ~2MHz away from the mechanical resonance. The top insets show 

the simultaneously-measured quasi-DC conductance, exhibiting a Coulomb peak that 

corresponds to a transition from zero to one electron occupation in the dot. 

Notably,    flips sign (red to blue) both as a function of frequency and as a function 

of gate voltage. The sign flip as a function of frequency occurs at the mechanical 

resonance frequency and results from the mechanical motion switching from being in-

phase with the electrical actuation below this frequency, to being out-of-phase with it 

above this frequency. This sharp phase rotation at resonance also leads to a finite signal 

in the out-of-phase quadrature,   , peaking at the resonance frequency (Fig. S1b). A 

similar peak is also obtained in the derivative 
       (Fig. S1c). In the main text we use the 

sharp peaks in either of the last two quantities as a clear signature for the resonance 

frequency.  

The sign flip as a function of gate voltage occurs very close to the peak in the 

conductance. This flip reflects the fact that our gate-source mixing scheme probes 

predominantly a specific non-linear term in the NT transport, the transconductance,       , which changes sign at the Coulomb peak. The effect is also clearly visible in the 

out-of-phase quadrature,   , (Fig. S1b), which is negative (blue) on one side of the 

Coulomb peak, and positive (red) on the other side of the peak.  

The dashed line in all panels is a fit for the following theoretical expression, derived in 

section S6: 

                                          (S1) 

where    (     )    ,        ,    is the dot’s self-capacitance,    is the Boltzmann 

constant,    is the position in voltage of the Coulomb peak,   is the temperature, and    



is the derivative of the Fermi function. The first term gives the ‘classical’ frequency of 

the NT resonator due to its flexural rigidity and mechanical tension induced by the gate 

voltage. The second term gives the static frequency shift leading to the step increase due 

to one electron addition, and the last term describes the softening due to dynamic 

coupling at the charge transition. For the static term we assumed         . In figure 1 

and 4G of the main text, this formula is generalized to the case of multiple charge 

transitions, which are well separated in a single dot and are slightly overlapping in a 

double dot when going along the common voltage direction. 

In figure 4 of the main text we measure    as a function of two gate voltages,     and    , and exploit the fact that it is proportional to the gate derivative of the conductance,       , to determine the effective ‘mechanical gating’ direction of the 1
st
 and 2

nd
 

mechanical modes. We note that as a function of the gate voltages the resonance 

frequency is also changing, mostly due to the softening, as is shown for example in Fig. 

S1b. To eliminate this effect in figure 4 and display only the magnitude of    we 

integrate this quantity over a small frequency window around the mechanical resonance, 

thus capturing the integrated strength of the peak irrespective of its frequency shifts.  

 

Figure S1: Different mixing quantities measured around a Coulomb blockade transition. (A) Top 

inset: The conductance,  , of a quantum dot localized above gate 4, measured as a function of the voltage 

on gate 4,    , exhibiting a Coulomb blockade peak that corresponds to the transition from zero to one 

electron occupation in the dot. Main panel: The in-phase quadrature of the mixing signal,    (colormap), 

measured as a function of the same     sweep and the drive frequency,  . (B) The out-of-phase mixing 

quadrature,   , measured over the same window in     and  . (C) The numerical derivaive of    with 

respect to  , 
     .  For the ease of comparison we show the conductance trace as a top inset in all three 

panels. 

 

 Determining the tunneling rates from conductance measurements S2.

In this section we explain how the tunneling rates through the left and right barriers of 

a quantum dot,    and   , are determined independently from measurements of its gate-

dependent conductance. 



The electronic configuration for the measurement is shown in Fig. 2a of the main text: 

A large quantum dot is created over the three central gates (2 to 4) and is populated with 

holes. The two side gates (1 and 5) control the transparency of the right and left barriers 

and the central gate (3) is used as a plunger gate for adding holes to the dot. As a function 

of gate 3 the dot’s conductance exhibits Coulomb blockade oscillations, whose peak 

values reflect the tunneling rates through the barriers. In the single-electron-transistor 

regime (        ,      is the level spacing), applicable to our measurements, the 

conductance at a Coulomb blockade peak is independent of temperature and has a simple 

form (7):                       . This peak conductance gives the “series addition” of the 
two barriers but not their independent tunneling rates. 

To extract the two tunneling rates separately we use the gate dependence of      . For 

a given pair of side gate voltages,     and    , we scan the center gate voltage,    , 

through a Coulomb blockade peak and record the conductance at the peak. By repeating 

this procedure for different pairs of     and     we get the full two-dimensional 

dependence,               , which is plotted as a colormap in Fig 2b of the main text. 

To disentangle    and    out of the measured                 we exploit the fact that 

each barrier depends only on a specific linear combination of gate voltages: The left 

barrier depends mostly on the voltage of the gate beneath it,    , to a lesser extent on the 

central gate voltage,    , and almost negligibly on the right gate voltage,    . In fact, 

using an independent measurement with localized quantum dots (8) we can determine 

these couplings quantitatively. These coupling are given by the capacitances between the 

various gates and the NT segment above gate 1, where the barrier is formed (   ,    ,    ). The left barrier is thus affected only through the following combination of gate 

voltages:  

                                                   (S2) 

Similarly, the right barrier is affected by a different linear-combination of gate voltages: 

                                                    (S3) 

The above relations demonstrate that the two-dimensional dependence       (       ) is 

in fact simply described only by the one-dimensional functions        and       , and is 

equal to: 

                                        (S4) 

Figure S2 shows the fit of equations (S2)  (S4) to the measured      (       ). The 

dashed black lines corresponds to lines of constant    and constant   . The symmetry 

around the bottom-left to top-right diagonal visible in this figure reflects the symmetry of 

the barriers,      , along this line. Specifically, at the bottom-left corner these rates are 

related to the conductance through:                       . Along the line of 

constant    the tunneling rate of the right barrier remains constant         allowing us 



to extract from equations (S2) and (S4) the dependence of    on   :         [                 ]  
. Similarly, along the line of constant    we extract the voltage-

dependence of the right barrier,       . These two functions, together with equations 

(S2)  (S4), give the tunneling rates over the entire two-dimensional plane. 

The above analysis also gives a critical way to check the validity of the assumptions 

going into equations (S2)  (S4). To determine the rates we have used the measured 

conductance only along two lines (dashed black), but now using equations (S2)  (S4) we 

can predict the conductance over the entire (       ) two-dimensional plane and 

compare it with the measured conductance. This comparison is visible in figure S2 

overlaying the contours of constant conductance from the measured data (red) and the 

one calculated by equations (S2)  (S4) (blue). The two exhibit excellent agreement over 

the entire plane. The small remaining errors,           , are taken as the horizontal 

error-bars of the points in Fig 2D in the main text. 

 

Figure S2: Measured conductance vs. the prediction of equations (S2)  (S4). Red contours are the 

lines of constant conductance taken from the measured      (       ) in Fig. 2B. Blue contours are the 

line of constant conductance calculated from equations (S2)  (S4) (see text). The numbers show the 

conductance of each contour, represented as a tunneling rate in MHz. Dashed black lines are the trajectories 

along which the biasing of the left barrier,     or the biasing of the right barrier,   , are constant (see text).  

The conversion of   to  ’s requires one parameter,     , the level spacing in the dot. 

The latter is obtained from the relation:             , where    is the Fermi velocity,   

the electronic charge,   the Plank constant, and         is the length of the 3-gates 

dot, taken from the lithographic sizes of the gates.  

We note that the parameter      cancels out in the comparison between theory and 

experiment, since it appears in a similar manner in the conversion from   to   (equation 



(S4)) and in the theoretical expression for the  -dependence of the softening (equation 

(S20)). As a result we can derive an expression for the softening that is independent of 

the dot’s parameters (equation (S25)). In figure 2 of the main text we obtain a good fit to 

the measured softening using this expression with T=25K. Compared to the extracted 

electron temperature of T=16K we see that the quantitative predictions of the simple 

theory outlined here describes the measured softening reasonably well. 

 The fate of softening at large tunneling rates: the open quantum dot regime. S3.

In Fig. 2D of the main text we showed the dependence of the mechanical frequency 

softening,   , on the electron tunneling rate,  , for the regime of a closed quantum dot. 

In this section we present measurements in the opposite regime, of a very open quantum 

dot, occurring for large  ’s, which exceed the level spacing,       .  
The electronic configuration for this measurement (Fig S3a) is similar to that 

described in the previous section: A single dot is extended over gates 2-4. The center gate 

(gate 3) adds holes to the dot and the side gates (1 and 5) control the left and right 

barriers. Here, however, we ‘chain’ together gates 1, 3, and 5 such that their voltages 

change together with the following relation:                  . Due to this 

‘chaining’ the barriers of the dot are gradually opened concomitant with the gradual 

addition of holes. Plotting the conductance measured along such a gate voltage sweep 

(Fig. S3b, top inset) we see that the system evolves continuously from a closed quantum 

dot with well-developed Coulomb valleys (observed for few holes in the dot, right side), 

to an open quantum dot with weak conductance modulations (observed for a large 

number of holes, left side). The main panel of Fig. S3b shows the corresponding mixing 

signal,    (colormap), measured as a function of the same gate voltage sweep and the 

drive frequency. Interestingly we see that    is continuously reduced as the dot is 

gradually opened, in a nice correlation with the smearing of the Coulomb blockade 

oscillations. 

The quenching of    at large  ’s results from the smearing of the charge transitions in 

the open quantum dot. In an open dot,       , and the wavefunctions of electrons in 

the dot “leak” into the leads, reducing the abruptness of charge transitions as compared to 
the Coulomb blockade regime. Since    is directly proportional to how quickly the dot’s 
charge changes with gate voltage,        , it is gradually reduced to the classical-wire 

softening value as the dot approaches the completely open limit (9), in which charge 

enters continuously with gate voltage. For a completely open dot one thus remains with a 

frequency softening that corresponds to that of a classical metallic wire, which is much 

smaller than that observed in the Coulomb blockaded regime.  



 

Figure S3: Measurement of the mechanical softening in the open quantum dot regime. (A) Illustration 

of the energy bands and a schematic of the measurement configuration. A dot of holes is defined above 

gates 2-4. Together with the addition of holes to the dot with a voltage on the center gate,    , we also 

change the barrier voltages,     and    , such that with increasing number of holes the dot opens up 

gradually (see text). (B) Top panel: Conductance  , measured as a function of this gate voltage sweep. 

Bottom panel: Mixing signal,    (colormap), measured as a function of this gate voltage sweep and the 

drive frequency  . The dashed black line shows the theoretical fit (see section ‎S1). 

Figure S4 summarizes in a schematic plot the different regimes of softening as a 

function of the tunneling rate. Fundamentally, the softening is a product of two factors: 

An electrostatic factor, accounting for how abrupt the dot charge changes with gate 

voltage          , and a dynamical factor capturing how quick the electrons respond on 

the vibrational time scales. At zero temperature this product leads to a function that is 

peaked close to the resonance frequency. At a finite temperature, on the other hand, one 

obtains an intermediate regime in which the softening is independent of  . The 

characteristic dependence is shown in the figure for the case of       , applicable to 

our experiments. Noticeably, the softening is quenched both for small rates,      , 

because of slow electron dynamics, and for large rates,       , because of the smearing 

of the charge transitions.  In between (          ) the electrons are quick enough to 

respond, but not too quick to widen the Coulomb blockade peaks beyond their 

temperature-dominated width, yielding a  -independent softening regime. The high 

temperature in our experiments         is advantageous in this sense, yielding three 

order of magnitudes,                , over which the softening is  -

independent. In the main text we exploited this insensitivity to accurately test the 

dependence of the softening on other parameters, such as the spatial position (Fig 3). 



 

Figure S4: Schematic dependence of the magnitude of softening,   , on the electrons’ tunneling rate,  . Three regimes are indicated: For       the softening is quenched because of electron dynamics being 

too slow, for         (     is the level spacing) it is also quenched because of the smearing of the 

Coulomb blockade charge transitions. In between, there is a large range of  ’s (three orders of magnitude 

for our experiment) in which softening is independent of  . 

 

 Comparison of the position-dependent softening and vibration mode profiles S4.

In Fig. 3 we claim that the position dependence of the softening is predominantly 

due to the position dependence of the vibrational mode amplitude. Since the measured 

position dependence relies on quantum dots formed at different locations, we should 

make sure that their parameters do not change as a function of location to give spurious 

position dependence. In this section we discuss these quantitative aspects of the 

measurement and its comparison to the calculated profiles. Specifically we demonstrate 

that the variance in the relevant dot parameters is negligible, that the smearing introduced 

in the measured profile by the finite size of the dot is insignificant, and finally describe 

the details of the calculated mechanical mode profiles, to which we compared the 

measurements. 

 

I. Position dependence of the dot parameters that are relevant for softening 

Ideally, if exactly similar dots are created at different locations then their effect on the 

mechanics is to introduce a local ‘electronic’ spring that is independent of the dot’s 
position (section ‎S8). The frequency shift of the combined mechanical and electronic 

system, however, will depend on the position of this ‘electronic spring’ in direct 

proportionality to the amplitude squared of the displacement profile of the mechanical 

mode (section ‎S8). Spatial variability of the parameters of the dot or of its electrostatic 

environment, however, could introduce spurious position dependence. Examining the 

theoretical expression for the strength of the softening (equation (S29)) we can identify 

two factors that depend on the dot’s parameters: The first is a dynamical factor that 



depends on the tunneling barriers of the dot. In the previous section (‎S3) we discussed 

this effect in detail and showed that in our finite-temperature experiments there is a wide 

range of  ’s for which the softening is independent of  . In the measurements of Fig. 3 

we indeed chose the  ’s of all the dots to be well within this range. The second factor is 

due to the electrostatic environment, amounting to ( ∑          ) 
, where      is the derivative 

of the capacitive coupling between a gate   and a dot localized above gate    with respect 

to NT movement in the   direction, and    is the dot’s self capacitance. In fact, we can 

determine all these components with good accuracy:    is measured directly from the 

Coulomb blockade diamonds. The entire capacitance matrix,      is determined directly 

from gate-dependent transport measurements of localized dots (8). All the elements of 

this matrix agree quantitatively with finite element simulations of the device (8). Using 

these simulations we calculate also the  -dependence of all the capacitance elements,     . 

Combined with the gate voltages,   , these fully determine the softening prefactor. In Fig. 

3, in addition to using the same electronic transition in the dots formed at the various 

locations, we also made sure that their electrostatics, coming through the above prefactor 

is essentially identical. The effect of the remaining small deviations lead to insignificant 

changes, as is shown in Fig S5A. 

 

 

II. The effect of the finite size of the dot “detector” 

Another effect that may influence the measured position dependence is the finite 

size of the quantum dots, which effectively ‘smears’ the measured profile. The magnitude 

of this effect is estimated in Fig. S5B by convolving the expected profile (solid line) with 

a Gaussian whose width is equal to the size of the dot (dashed line shows the convoluted 

profile). Both curves are normalized to match the measured softening above the central 

gate. As is evident from the comparison, the effect of the smearing is insignificant. 

III. Details of the calculations of the vibrational mode profiles 

The profiles of the mechanical modes in a NT resonator are described by the following 

differential equation (10):  

                      (S5) 

Here   is the Young’s modulus of the NT,         is its moment of inertia,   is its 

diameter,   is the tension,   is its linear mass density,      is the displacement 

perpendicular its axis,   is the mode frequency, and the primes are derivative with 

respect to  , the coordinate along its axis. This equation has effectively two parameters 

which we determine by requiring that the first two eigenmodes match the measured 

resonance frequencies,          and          . The resulting parameters 

correspond well to realistic values of the physical parameters (         for the NT 

diameter,         is its suspended length,                 and           )  



For simplicity, we presented in figures 3K and 3L of the main text the profiles calculated 

in the string limit (      and the beam limit (    , which are the two extreme cases. 

Our device is closer to the latter, as can be seen, for example, from the fact that the ratio 

of its resonance frequencies           , is closer to that in the beam limit (            than to that in the string limit (        . As can be seen in figure 3 the 

differences between the profiles in the two limits is not significant and they both agree 

well with the measured position-dependent softening. 

 

Figure S5: Quantitative effects on the phonon mode shape imaging. (A) Effect of position dependence 

of the dot parameters. Red dots show the measured softening values at the five dot positions (similar to fig 

3 in the main text), black dots show the correction of these values for small variance in the dot parameters 

(see text). Solid line is the phonon profile calculated in the beam limit. (B) The effect of the finite size of 

the quantum dot “detector”. Red dots are the measured softening. Solid line is the profile in the beam limit. 

Dashed line is its convolution with a 150nm-wide gausian, representing an upper bound on the size of the 

quantum dots. Both graphs are normalized such that their peak matches the measurement above the central 

gate. 

 

 Details of the mechanical softening for a double dot S5.

In figure 4G of the main text we present the measured mechanical frequency softening 

in a double dot configuration as a function of the tunneling rate to the leads. The two dots 

are defined above gates 2 and 4, and gates 1,3 and 5 control the tunneling rates through 

the left, center and right barriers,   ,    and   . To determine    and    we work in a 

regime where the center barrier has a negligible effect on the conductance            

and the right and left barriers are symmetric,      . Then, similar to the procedure 

described in section ‎S2 we can determine the left and right tunneling rates from the 

conductance. We set the central barrier tunneling rate to be between             . 
Under these conditions the internal tunneling dynamics is fast enough to bring the 

internal tunneling electron to a steady state on the vibrational time scales, but not too fast 

as to smear its corresponding Coulomb blockade transition line. These considerations on 

the rate of the center barrier are similar to the ones we explained for the side barriers in 

figure S4.  

The important observation captured in Fig. 4G is that the softening of the 2
nd

 mode 

remains unchanged when the double-dot is isolated from the leads. To display this in 

more details we present in figure S6 the measurements of the 2
nd

 mode softening for the 



two extreme points in Fig 4G: The right inset plots the measured mixing signal,    

(colormap), as a function of the detuning and frequency, corresponding to the 

measurement with the largest tunneling to the leads,               . The left inset 

show the measurement corresponding to the smallest tunneling to the leads (smallest  ). 

Notably, the softening in the isolated case is as large as in the open case, demonstrating 

the coupling of the 2
nd

 phonon to the internal charge transfer mode in the double-dot. 

 

 

Figure S6: The softening of the 2
nd

 mechanical mode for a double dot isolated and connected to the 

leads. Main panel (reproduced from Fig. 4G in the main text): The measured softening vs. the normalized 

tunneling rate to the leads,               . Side inset: the measured mixing signal,   , corresponding 

to the point with the largest   (well connected to the leads) and to the point with the smallest   (well 

isolated from the leads). 

  

 Theory: Rate dependence of softening S6.

In this sectin, we derive the theoretical expressions for the mechanical softening of the 

vibrational modes of the NT due to the capacitive interaction with a single quantum dot. 

We focus on the single-electron-transistor limit,         , where   is the 

temperature,      is the level spacing in the dot, and         is the combined 

tunneling rate to the left and right leads.  

Following Refs. (3, 4), our starting point is the capacitive energy of a quantum dot 

capacitively coupled to source (S), drain (D), and gate (g) electrodes,  

                           (S6) 

Here,    denotes the charge of the quantum dot,          are the capacitances of the 

quantum dot to the source, drain, and gate electrodes,             is the total 

capacitance of the dot, and    is the applied gate voltage. Inserting this Hamiltonian into 

the Heisenberg equation of motion  ̇    [   ], where   denotes the momentum 

associated with the vibrational mode (with displacement variable  ) and using that the 

operator    of the quantum dot charge commutes with the mechanical mode operators, 



we can extract the force induced on the mechanical mode by the electronic subsystem. 

Since the gate capacitance depends on the mode displacement,  , we obtain
1
: 

              (       )   (S7) 

Here, we have defined the deviation from the classical gate-induced “control” charge,        , as         . Note that    jumps by the electron charge,  , across a 

Coulomb blockade peak and varies linearly with gate voltage between Coulomb blockade 

peaks. For a given gate voltage, the equilibrium displacement of the NT,       , is set by 

the balance of the electronic force and mechanical restoring force:                         . 

Near the Coulomb peak there are two fundametal shifts of the the base resonance 

frequecy,   : 

                         (S8) 

The first, static shift, corresponds to a step-like increase in the resonance frequency 

when going across the Coulomb peak (see, e.g. Fig. 1D).  When a single electron is added 

to the tube the force pulling it toward the gate increases, shifting the NT equilibrium 

position. If the mechanics of the NT is non linear (deviating from a simple Hooke’s law) 
this will result in a step-like stiffening of its resonance frequency. In this paper we do not 

focus on this term, which is anyhow absent in the linear regime, but focus on the 

dynamical frequency shift, which can be very large even in the perfectly linear regime. 

The dynamical frequency shift results from the correlated motion of the NT vibrations 

and the tunneling of electrons in and out of the dot. In the simplest limit (see Refs. (3, 4)), 

where the frequency of the nanotube resonance mode is small compared to the electronic 

tunneling rates, the quantum dot charge    can be computed for fixed nanotube 

displacement,         , yielding:  

 
                                  |          (slow phonon limit), (S9) 

where       is the elastic spring constant of the vibrational mode of the NT, and small 

terms proptional to  
       , (    ) 

 and     are neglected. 

In this section we will go beyond the slow-phonon limit by accounting for the finite 

rate of electron tunneling (compare Ref. (11)). 

To obtain the dependence of    on mode displacement, we start with the rate equations  

                                                 
1 In general,    and    may also depend on the mode displacement. We assume that this dependence is weak compared to that of 

the gate capacitance. 



 

                                         (S10) 

where    denotes the probability that there are   electrons in the dot. We assume that 

near the Coulomb blockade peak, only the states with   and     electrons on the 

quantum dot have a finite occupation probability so that          . The average 

charge on the quantum dot is given by                            . The 

quantities    and    denote the rates of tunneling into and out of the dot. As the dot’s 
electrostatics changes with the NT displacement  , these rates depend on time through  . 

Equations (S10) can be solved for arbitrary time-dependent rates and initial conditions        and         , yielding 

         ∫       (           ) [       ∫              ∫        (  (  )   (  ))]  (S11) 

The dependence of the tunneling rates on time is given parametrically through the NT 

displacement     . For small NT displacements, we can approximate   [    ]                     , with            and              . With this 

approximation, we have  

                                ∫              (               )   (S12) 

where we chose          and took the limit      . The tunneling rates and their 

derivatives are evaluated at the equilibrium position   . Using this solution to obtain the 

charge       of the quantum dot as function of time, we find  

                                  ∫              (               )   (S13) 

where we have used              , valid in the vicinity of the  Coulomb blockade 

peak, as well as Eq. (S12) and the definition of    in terms of   . In order to extract the 

frequency shift, we Fourier transform    to the frequency domain,  

                    |                                 |     (S14) 

and take the real part at the unperturbed frequency    of the vibrational mode The 

second term on the right-hand side is linear in      and thus causes a shift in the 

resonance frequency, 

 
                                                    |     (S15) 

We mention in passing that the imaginary part in Eq. (S14) describes the electron-

induced dissipation of the vibrational mode. 

Fermi’s Golden Rule provides explicit expressions for the tunneling rates,  



     ∑                     (S16) 

where         denotes the inverse temperature,              the partial widths of 

the dot levels due to tunnel coupling to the source (   ) or drain (   ) leads, with    

being the tunneling amplitudes and    the density of states, and                    [             ] denotes the electrostatic energy cost to add an 

electron to the quantum dot. With  

 
                    (S17) 

valid near the Coulomb blockade peak, we obtain the relations  

 
              [                         ]                                            (S18) 

Substituting Eq. (S18) as well as the definition of    into (S15), we obtain the frequency 

shift for arbitrary mode frequency  

 

                    (          ) |  [                    ]  
 [(                    )     ]    (S19) 

where        . Note that the frequency shift depends only on the sum of the 

tunneling rates, emphasizing that the electrons that contribute to the softening can arrive 

equally well from both  leads. 

At the Coulomb blockade peak     , simplifying equation (S19) to: 

 
                       (          )  (  (        )  (   ) )  

 (S20) 

 

To make the expression above more physically transparent we note that the 

classically induced charge on the NT, the “control charge”, has an electronic and 
mechanical contributions: 

                                 (S21) 

The mechanical component of the control charge results from the gate capacitance 

change due to NT movement, which is also induced by the gate voltage: 

                               (       )    , (S22) 



In the last equation we calculated 
       from a balance between a linear mechanical force 

and the classical electrostatic force,                  . Defining also the charging 

energy,        , and the leverarm factor,       , we can recast the dynamic coupling 

frequency shift in a simple form: 

 
                (              )  (      )  (  (        )  (   ) )  

 (S23) 

The first term is the electrostatic leverarm factor. The second term (              ) could be 

refered to as the “mechanical leverarm factor” – it describes the ratio between the charge 

induced on the tube due to its mechanical motion and to that induced by electrostatics.  

The third factor describes the Coulomb blockade enhancement of the rate of charge 

addition with gate voltage. In comparrison to a classical wire, where charge is 

continuously added with gate voltage, in the Coulomb blockade regime the charge enters 

only around the Coulomb peak. The rate of charge addition is therefore enhanced by the 

ratio of the peak spacing (charging energy) and the peak width (temperature, in the 

single-electron transistor limit), (      ). The last factor, (  (        )  (   ) )  
, captures 

the relative dynamics of the electrons and vibrations and is sensitive to the ratio of their 

frequencies. 

Equation (S23) includes one parameter of the dot, its level spacing     , which is not 

always measured directly. Interestingly, however, the conversion of the dot’s peak 

conductance to the tunneling rates also includes      in a way that leads to a perfect 

cancelation of this parameter. For symmetric barriers,      , the conductance at the 

Coulomb peak is  

                                . (S24) 

Substituting this in equation (S23), and defining the unitless conductance as                    , we get 

 
                 (              )  (      )  (  (                  ) )    (S25) 

where the roll-off at low tunneling rates is described in terms of the thermal occupation 

of the vibrational mode, 
      , and the unitless conductance,      . 

 



 Theory: Generalization to multiple gates S7.

In the previous section we assumed, for the simplicity of the derivation, that the 

quantum dot is coupled to a single gate. In this section we generalize this for a multi-

gated geometry and show that a similarly-simple expression holds.  

The generalization of equation (S6) to multiple gates, ignoring the ‘classical wire’ 
contributions gives: 

       (   ∑       )   (S26) 

Here     is the capacitive coupling between gate   and the NT segment above gate  , 
which we measure directly (8). The Hamiltonian assumes that a quantum dot is formed 

locally at the NT segment above gate   and its charge is   . 
In analogy to the previous section, we define the gates-induced “control charge” on the 

dot as     ∑       , the actual charge in the dot as    , their difference as           , the total capacitance of the dot as          ∑     , and an effective gate 

voltage given by               , where the primes correspond to a derivative with 

respect to  . With these relations the Hamiltonian becomes: 

       (       )  (S27) 

And the corresponding force and softening, in analogy to equations (S7) and (S20), are: 

            (         )  (S28) 

 
                       ( ∑          )  (  (        )  (   ) )  

 (S29) 

where small terms proptional to  
       , (    ) 

 and     were neglected. 

 

 Theory: Spatial dependence of the softening S8.

In this section we explain the connection between the spatial dependence of the 

softening and the profile of the vibrational mode along the NT axis. We show that the 

effect of a local quantum dot can be mapped onto an electronic ‘spring’, with a negative 
spring constant connected at the position of the dot (Fig S7). This spring leads to a 

softening that is proportional to the amplitude squared of the bare vibrational mode at its 

connection point. 

The electrostatic force acting on a quantum dot localized on the NT is given by 

equation (S7). This force depends on the height of the dot with respect to the gates,     , 
and thus can be mapped into an effective spring, connected at the position of the dot,   , 

perpendicular to the NT axis. The Hooke’s constant of this ‘electronic’ spring is:  



                  (S30) 

This electronic spring adds to the NT’s elastic forces, altering its resonance 

frequency. If the electrostatic environment of the dot and the tunneling rates of its 

barriers are independent of    (as is demonstrated experimentally in section ‎S4), the 

electronic spring constant,      , does not dependent on the dot’s position. but its effect 

on the frequency of the combined system does. If the spring is connected at a position 

where the bare vibration mode has a large amplitude its effect will be large, and if it is 

connected at a node it would have no effect.  

To derive the position dependence quantitatively, we assume that the electronic 

contribution is small and consider it perturbatively. In the absence of the perturbation the 

profile of any eigenmode of the beam,               (where Z is the overall 

amplitude and       is the unit-less mode shape), and its eigenfrequency,   , are given 

by equation (S5), which in an operator form reads:  

  ̂               , (S31) 

where  ̂                    and   is the coordinate along the NT. In the lowest order in 

the local electronic perturbation,             , the eigenmode remains the same, but 

the eigenfrequency changes to  , given by: 

 ( ̂              )                 (S32) 

Using equation (S31) we get: 

                                   (S33) 

Multiplying both sides by      , and using the fact that the bare mode is normalized over 

the length of the beam,    ∫             , we get after integration that: 

 
                        (S34) 

Defining        , we get that to the lowest order in the electronic perturbation the 

frequency shift is directly proportional to the amplitude squared of the bare mode at the 

position of the local dot: 

 
                         (S35) 



 

Figure S7: A equivalent mechanical model for spatial dependence of the softening. The effect of a 

local quantum dot at a position    along the NT is mapped to an effective ‘electronic spring’, with a 

negative spring constant, connected at this position perpendicular to the NT (see text). 

 

 Theory: Softening with a double-dot S9.

For double quantum dots, the electron-phonon coupling becomes much more sensitive to 

the spatial structure of the vibrational modes of the NT. This produces additional effects 

in the frequency shifts compared to the single-quantum-dot case. In this section, we focus 

on the interaction with the two lowest phonon modes although the theoretical 

considerations can in principle be readily extended to higher vibrational modes. The 

considerations of the present section form the basis of our analysis related to Fig. 4  of the 

main text. 

I. Electrostatic coupling 

The electrostatic energy of double quantum dots is given by (12)  

 

                             (         )(         )       (         )        (         )    (S36) 

 Here, we included the capacitive coupling      between left/right dot and 

source/drain lead, the capacitive couplings     and     to the left and right gate 

electrodes with gate voltages     and    , as well as the interdot capacitance    . The 

charges on the quantum dots are denoted by    and   , respectively. We also defined the 

shorthands                         and             . The source-drain bias is 

set to zero. For simplicity in the following we consider a symmetric configuration in 

which      , hence we set    as the capacitance to the leads. 

The electron-phonon coupling is due to the dependence of the gate capacitances     on the displacements of quantum dots      . When the quantum dots are placed 

symmetrically about the center of the NT, these displacements are characteristically 

different for the first and the second phonon mode: They are equal for the first phonon 

mode, but have opposite signs and the same magnitude for the second mode. 

Correspondingly, the variations of the gate capacitances with the effective mode 



displacement    away from the equilibrium displacement    can be approximated 

through  

 
                                                   (S37) 

 where the upper sign            ) refers to the first (second) vibrational mode. Thus, 

variations of    effectively modify the classical gate charges in the same way as changes 

in the gate voltages     and     along the directions indicated in Figs. 4E.   

II. Frequency-dependent softening 

We first consider the frequency shift for the case that there is no tunneling between the 

leads and the quantum dots while interdot tunneling is finite. In this situation, one expects 

that the first mode is barely affected by the electron-phonon coupling as the charges on 

the quantum dots will vary only very weakly with the corresponding phonon 

displacement. In particular, we do not expect any effect for symmetric gate voltages        . In contrast, one expects a much larger effect for the second phonon mode. 

Here, the asymmetric change in the gate capacitances with    causes a charge flow 

between the two quantum dot and hence a significant frequency shift. In this case, the 

charge flow and the frequency shift are expected to be largest for        . 

For vanishing tunnel coupling to the leads and for near symmetric gate voltages, 

the relevant charge configurations of the double quantum dot are         and        . Then, the rate equations describing the occupation probabilities of these two 

states take the form  

 

                                                               (S38) 

Here,        (      ) denotes the probability of the configuation         (       ).     (   ) is the tunneling rate of electrons from quantum dot 1 (2) to quantum dot 

2 (1), which depends parametrically on time through     . The rate equations are 

formally identical to those in Eq. (S10) for a single quantum dot and hence, we can write 

down its solution by analogy with Eq. (S12) through the identifications                       and              . Thus, we find for the average charges in the quantum dots 

in frequency space,  

 

[     ]                (            )                                 (S39) 

where we specified the in-phase charge response to the mechanical motion, which is 

responsible for the frequency shift. We also introduced the shorthand            . 



By analogy with the calculation for the single quantum dot, we obtain the 

frequency shifts of the first (          ) and second (          ) vibrational modes of 

the NT. We find  

 

                       (                       ) [    (     )   (       )              ]                       (                       )      ̅     ̅  (S40) 

with             ,  ̅           ,    (       ), and   ̅         . All 

quantities are evaluated at the equilibrium position   . The tunneling rates can be 

evaluated by Fermi’s Golden Rule. Within the constant-interaction model, one obtains  

                               (S41) 

in analogy with Eq. (S16). Here,    is the inter-dot transition rate and                            the electrostatic energy cost for an electron to tunnel from dot 2 

to dot 1, where           is the eigenenergy of the double-dot Hamiltonian (Eq. (S36)) 

for the charge state       .      can be evaluated to first order in the displacement  

 
           (     )   [     (     )]                (     )           ̅     ̅    (S42) 

for the first and second vibrational modes, respectively. The relevant quantities that enter 

Eq. (S40) are  

 
                  [                    ]                                   (S43) 

with            as given in Eq. (S42). Inserting Eqs. (S39), (S42) and (S43) into Eq. 

(S40) we obtain the final expressions for the frequency shifts            due to inter-dot 

tunneling. The expressions for the frequency-dependent shifts are lengthy and we will not 

reproduce them here. It is worth noting however that               and hence the shift 

vanishes along the       line, while            is finite, in agreement with Fig. 4G.  

 



 
Figure S8: Relative frequency shifts for double dot configuration for four charge states. (A) Frequeny 

shift for the first mode as a function of the voltages     and    . The inset shows the frequency shift along 

the dashed line. (B) Frequency shift for the second mode. The inset shows the frequency shift along the 

dashed line. For both calculations we used the parameters that correspond to our experiments:              ,           ,           ,      K,     and            . 

   This is most easily seen for the limit of small frequencies and     , in which the 

general expressions given in Eq. (S40) simplify considerably to  

 

            |             [     (       )     (        )]        [                      ]            |              [             (       )    (        )] 
 (S44) 

with  

 

                                (       )                                          (       )   (S45) 

where we have used  ̅          and                  . 
Softening including four charge states: In the previous section we considered the case 

of vanishing tunneling to the leads, for which the relevant physics is dominated by two 

charge states. Here we allow for finite tunneling to the leads and hence need to include all 

four possible charge states,        ,        ,      ,          . We study  

the adiabatic limit, for which the tunneling rates are bigger than the resonant frequency   . These considerations apply to the right hand side of Fig. 4G in the main text.  



We start by solving the rate equations in static equilibrium, for which the tunneling rates 

are time independent. These equations can be written, using Fermi’s Golden Rule for 

every possible tunneling event, as  

              [                             ]                                                             [                                                  ]                                                                                        [                                                  ]                                                                                                      
  

  (S46) 

where we have defined the weight  

                                   [                   ]     (S47) 

 The solution to the system of equations (S46) is independent of the transition rates as 

observed in Fig. 4G 

 of the main text. Explicitly,  

 

       [                                  ]            [                              ]          [                                ]          [                                ] 
 (S48) 

with  

 

    [                              ]   [                                ]   [                                  ]   [                                ]   (S49) 

 With Eq. (S46) we can calculate the average charge in each dot as a function of 

position, and therefore the (static) resonant frequency shift as in the previous sections, 

both for the first and second vibrational modes of the NT. The results of this procedure 

lead to the frequency shifts are plotted in Fig. S8.  
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