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real interest rates for the euro area implied by French index-
linked bonds with a smoothing spline methodology, which
is very effective in capturing the general shape of the real
term structure, while smoothing through idiosyncratic varia-
tions in the yields. A comparison shows that the chosen spline
outperforms other methodologies commonly used in the lit-
erature across several dimensions. The paper also estimates
a liquidity-adjusted nominal term structure to compute the
constant-maturity inflation compensation. This compensation
is compared with the surveyed inflation expectation in order
to obtain a measure of the inflation risk premium in the euro
area during the last decade.
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1. Introduction

In the last decade, government-issued inflation-indexed bonds have
become available in a number of euro-area countries and have pro-
vided a fundamentally new instrument attractive to both institu-
tional investors and households, especially for retirement saving.
A bond linked to an inflation index allows the computation of a
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real yield to maturity, which is not directly comparable with the
corresponding nominal yield to maturity since they differ as to matu-
rities, coupon rates, and cash flow structures. Thus, it is worth-
while estimating the real term structure implied by the index-linked
bonds, first, to obtain an estimate of the zero-coupon real inter-
est rate across the maturity spectrum and, second, to compare it
with the nominal term structure and derive the inflation compensa-
tion requested by market participants to hold index-linked bonds, a
proxy of their expectations of inflation.

The paper presents an estimate of the real term structure for
the euro area derived from the index-linked (IL) bonds issued by
the French Treasury, Obligations Assimilables au Trésor (OAT).1

The French Treasury has been issuing OATi’s, bonds indexed to
the domestic Consumer Price Index (CPI) since July 1998, and
OAT€i’s, bonds indexed to the euro-area Harmonized Index of Con-
sumer Prices excluding tobacco (HICP excluding tobacco, hence-
forth HICP) since July 2001. The progressive introduction of IL
bonds denominated in euros and with an indexation to the euro-area
HICP has made it possible to extract the inflation compensation,
also known as the break-even inflation rate (BEIR), requested by
investors to hold nominal bonds as the difference between the yield
on a nominal bond and the corresponding yield on a real bond.
This compensation consists, for the most part, of expected inflation
over the corresponding period but also of an inflation risk premium
component linked to the inflation uncertainty. Since the expected
inflation rate is a key variable for investment decisions and for deter-
mining the stance of monetary policy, the timeliness and the variety
of horizons—which are characteristics of the expectations based on
quoted bonds—are extremely desirable features for investors and
policymakers; by contrast, surveyed data of expected inflation rates
are released quarterly or semi-annually and for very few horizons.

The first part of the paper presents the term structure of the
real interest rates for the euro area implied by IL bonds indexed
to the euro-area HICP. The real term structure is estimated with a
smoothing B-spline, following a methodology initially proposed by
Fisher, Nychka, and Zervos (1995) for U.S. Treasuries and refined

1See the documentation available at the French Treasury website
(www.aft.gouv.fr) for further information.
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by Anderson and Sleath (2001) in the estimate of the nominal and
real term structure implied by UK gilts. A spline methodology with
a penalty factor is preferred to other popular methodologies, such
as the seminal model of Nelson and Siegel (1987), first because it is
more stable when the number of bonds is small and second because
it does not impose an asymptote on long-term forward rates, which
are the key ingredients to obtain long-term market expectations
for interest rates. Moreover, the smoothing B-spline methodology
outperforms the other models in pricing IL bonds across several
dimensions.

An important criterion for choosing a term structure model is the
purpose that the model itself serves. Clearly, there is no best model
for the term structure, as it depends on the application. If the aim is
to price off-the-run bonds, a general criterion should be minimization
of the pricing error. Conversely, when attempting to extract inter-
est rate expectations for monetary policy purposes, a smooth term
structure is desirable. However, term structure has manifold uses in
a central bank and more than one model should be welcomed. A
parsimonious model, such as the Nelson-Siegel model, seems appro-
priate for monetary policy and macroeconomic analysis, as it shapes
the term structure on the basis of a few identifiable parameters that
have a clear interpretation. A more flexible and stable approach,
such as that implied by methodologies backed by pure interest rate
models, can be useful for pricing purposes, even if no-arbitrage con-
siderations are clearly not taken into account. This paper uses a
smoothing B-spline which is extremely stable even when there are
very few coupon bonds available; although it gives results similar to
the Nelson-Siegel model, the benchmark of many central banks, on
average it outperforms the other methodologies in terms of in-sample
and out-of-sample pricing errors.

The second part of the paper presents estimates of the constant-
maturity inflation compensation (or BEIR) by subtracting the zero-
coupon real rate from the corresponding zero-coupon nominal rate.
The use of the constant-maturity BEIR presents two advantages
with respect to the BEIR computed as the difference between the
nominal and the real yield to maturity. First, over a long time hori-
zon, the difference between a specific nominal yield and a specific
real yield changes maturity as time passes and is not easily com-
parable with previous figures; the practice of substituting old bonds
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with the new issue is a palliative. Second, the BEIR computed as the
difference in yield to maturity depends heavily on the different dura-
tion of the bonds and their different cash flow structure, while that
computed as the difference between zero-coupon rates is insulated
from cash flows.

Real interest rates combined with the rate implied in the nominal
government bond yield provide a measure of inflation expectations,
as in real terms the payoff of a nominal bond should be close to
that of an IL bond over its entire life. These BEIRs are usually
taken as proxies for inflation expectations and provide a measure
of central bank credibility about targeting a specific inflation rate.
The primary objective of the European Central Bank (ECB) is to
maintain price stability within the euro area, defined as a rate of
inflation below, but close to, 2 percent over the medium run. One
forward-looking way to evaluate the success of monetary policy is to
look at expectations of inflation; in fact, if monetary policy is suc-
cessful at keeping expectations well anchored, then financial market
participants will tend to “look through” the cycles of inflation and
not change expectations about the rate of inflation over the longer
run. The low level of inflation and the unorthodox monetary policy
recorded over the past years has raised concerns about the possibility
that market participants were still seeing ECB policy as consistent
with longer-run price stability. Nonetheless, the results show that
inflation expectations have continued to remain well anchored to
the ECB target.

However, the comparison between nominal and real rates is
biased by the presence of risk premia due to liquidity and inflation
risks. The comparison is further biased by the presence of seasonal-
ity in the daily reference price index used to index the coupon and
the principal of the IL bond. The estimates take into account both
potential biases.

Results show that the spline methodology used in this paper is
very effective in capturing the general shape of the real term struc-
ture while smoothing through idiosyncratic variations in the yields of
IL bonds; in addition, the chosen methodology outperforms the com-
petitors in terms of both in-sample and out-of-sample pricing error.
Real interest rates tend to be fairly stable at longer horizons, and the
average ten-year real rate from 2002 to 2011 is close to 1.8 percent
even after correcting estimates for the seasonality of the euro-area
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daily reference price index. Furthermore, euro-area IL bonds have
low liquidity, especially in comparison with the corresponding nom-
inal bonds, possibly due to the fact that index-linked investors tend
to hold these bonds until maturity. Finally, an approximation of the
inflation risk premium is introduced by comparing the inflation com-
pensation implied by the nominal and real term structures and the
inflation expectations surveyed by Consensus Economics and by the
ECB Survey of Professional Forecasters. The burden of developing a
model for the term structure of inflation risk premia is left to future
work.

The paper is organized as follows. Models of term structure are
presented in section 2; section 3 presents the data. The results are
discussed in section 4. Section 5 documents the inflation compensa-
tion and the inflation risk premium dynamics. Section 6 concludes.

2. Models and Methodologies

Fundamental models of the term structure assume a time-
homogenous short rate process and require explicit market price of
risk specification; these models also assume cross-sectional restric-
tions among interest rates to rule out arbitrage opportunities. The
models of Vasicek (1977) and Cox, Ingersoll, and Ross (1985) belong
to this class of fundamental models. As these models cannot con-
verge to the observed market price, additional models that assume
an endogenous term structure were proposed. They price observed
zero-bond prices without errors by allowing time inhomogeneity in
the stochastic differential equation for the short rate. Examples of
these endogenous no-arbitrage models are Ho and Lee (1986) and
Hull and White (1990).

Another class of models, which has not been deduced from no-
arbitrage conditions, takes a more empirical approach by assuming a
parametric form of the spot rate, forward rate, or discount function.
The unknown parameters are estimated by minimizing the error
between theoretical and observed prices of a cross-section of coupon
bonds at a certain point in time. The method of Fama and Bliss
(1987) iteratively extracts the forward rates by extending the dis-
count function at each step. McCulloch (1971) proposes using splines
to fit the discount function of the segmented term structure. Several
different types of splines have been suggested as well as the use of
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penalty functions; for example, Vasicek and Fong (1982) estimate
the term structure with an exponential spline for the discount fac-
tor, while Fisher, Nychka, and Zervos (1995), Waggoner (1997), and
Anderson and Sleath (2001) use different spline methods but, in com-
mon, add a penalty term to increase the smoothness of the curve.
Nelson and Siegel (1987) propose a more parsimonious approach by
modeling the forward curve with an exponential-polynomial function
defined by four parameters; this methodology has been extended by
Svensson (1994). The last two approaches are not formulated in a
dynamic framework and are not consistent with arbitrage-free pric-
ing theory (Filipovic 1999). The first issue was addressed by Diebold
and Li (2006) while Christensen, Diebold, and Rudebusch (2011)
corrected the second disadvantage.

In general, given a set of current gross IL bond prices, P =
P c + A, where P c is the clean price and A the accrued interest,
the term structure is defined by the discount δ(τ ; θ), a function of
maturity τ defined by parameters θ. This function prices the n-th
IL bond such that

Pn =

Tmax∑

τ=τ1

δ(τ ; θ) · Cτ,n + εn = δ⊺Cn + εn, (1)

where τ1, τ2, . . . , Tmax are the time factors of the n-th bond’s cash
flow, Cn = [Cτ1,n, . . . , CTmax,n]⊺ is the n-th bond’s cash flow, and εn

is the bond’s pricing error. Equation (1) can also be written in terms
of the spot rate r(τ ; θ), as δ(τ ; θ) = exp(−r(τ ; θ)τ), or in terms of the
instantaneous forward rate f(τ ; θ), as δ(τ ; θ) = exp(−

∫ τ

0
f(u; θ)du).

A standard solution is given by the optimal set of parameters θ∗,
which solves

min
θ

N∑

n=1

1

wn

(
Pn − P̂n

)2

= min
θ

(P − P̂ )⊺W−1(P − P̂ ), (2)

where N is the number of bonds, P̂n = δ̂⊺Cn is the estimated price
of the n-th bond, wn is an associated weight, and the right term is
the problem in matrix notation; the ̂ on variables or parameters
indicates their estimates. Standard choices for W are the identity
matrix or a diagonal matrix whose elements are the bonds’ modified
durations, under the assumption that the volatility is decreasing in
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maturity; in this case the objective function (2) places an emphasis
on the fit of the prices of short-term bonds over long-term bonds.

2.1 Simple Functional Forms for the Discount Factor

Problem (2) can be solved by several methods. The simplest is to
assign a functional form to the discount factor, or to its equiva-
lent representations. For example, Li et al. (2001) use the seminal
approach of Vasicek and Fong (1982) and parametrize the discount
function as the sum of K exponential functions:

δ(τ ; α, k) =
K∑

k=1

βk exp(−αkτ) , (3)

where K is the arbitrary number of functions and α is a parame-
ter usually posited equal to the long-term interest rate. Under this
specification of the discount function, problem (2) can be written as

min
θ

(P − β⊺h(τ ; α, k)C)
⊺
W−1 (P − β⊺h(τ ; α, k)C) (4)

= min
θ

(P − β⊺X)
⊺
W−1 (P − β⊺X) ,

where h(τ ; α, k) = exp(−αkτ), X = h(τ ; α, k)C. The least-squares
estimate of β conditional on the value of α can be calculated directly
by the generalized least-squares regression equation

β̂(α) = (X⊺W−1X)−1X⊺W−1P.

The parameter α can be obtained by minimizing the sum of squares
P ⊺W−1P − β̂(α)X⊺W−1P , and the term structure of the discount

factor is given by δ̂(τ ; α, k) = β̂(α) · h(τ ; α, k).

2.2 Simple Functional Forms for the Instantaneous Forward

Rate

Nelson and Siegel (1987) model the instantaneous forward rate
with a parsimonious polynomial with four parameters, θNS =
[α1, β0, β1, β2]

⊺, specified as

f(τ ; θNS ) = β0 + β1 exp

(
−

τ

α1

)
+ β2

(
τ

α1

)
exp

(
−

τ

α1

)
. (5)
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Given that r(τ ; θ) = 1
τ

∫ τ

0
f(u; θNS )du, r(0) = β0 + β1 is the short-

term rate and limτ→∞ r(τ) = β0 is the long-term rate; α1 and β2

control for location, height, and hump of the curve. Having only four
parameters, the model is very simple and flexible; conversely, its sim-
plicity does not allow double humps to be shaped in the term struc-
ture. Moreover, it is not suitable for no-arbitrage modeling. Further,
this method models the forward-rate curve as well as the spot-rate
curve, but it is not suited to modeling the discount-rate curve. Svens-
son (1994) augments model (5) by adding the term β3(

τ
α2

) exp(− τ
α2)

with two new parameters, β3 and α2, which allow more flexibility
in the shape of the curve, in particular by allowing the existence of
double humps; however, this method performs very poorly when the
number of bonds is low. In fact, the double-hump case is very rare
in the real term structure, which is generally monotonic. The mon-
otonicity of the real term structure has motivated Evans (1998) to
reduce model (5) to a simpler instantaneous forward-rate equation,
namely f(τ ; θMO) = β0 + β1 exp(− τ

α1

). Parameters of the class of

models originating from (5) are found by minimizing equation (2),

where P̂ = exp(−
∫ τ

0
f(u; θ̂NS )du)⊺ · C, with standard non-linear

optimization algorithms.
The Nelson and Siegel (1987) approach is used by D’Amico,

Kim, and Wei (2008) and Gürkaynak, Sack, and Wright (2010) to
estimate the term structure implied by U.S. IL bonds (Treasury
Inflation-Protected Securities, TIPS) and by Ejsing, Garćıa, and
Werner (2007) for the real term structure of the euro area implied
by French OAT€i’s.

2.3 Splines

Problem (2) can also be solved by parametrizing the discount-rate,
the spot-rate, or the instantaneous forward-rate function by means
of splines (de Boor 1978). A spline is a special function defined piece-
wise by polynomials, which is often preferred to polynomial inter-
polation in interpolating problems because it yields similar results
even when low-degree polynomials are used. Splines have constraints
imposed to ensure that the overall term structure is continuous and
smooth. This contrasts with the fundamental approach that speci-
fies a single functional form to describe the entire term structure.
The ability of the individual segments of the spline curve to move to
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some degree independently of one another (subject to the continuity
and smoothness constraints) is the reason for the superior perfor-
mance of the spline with respect to that of fundamental models or
simple functional forms such as those of model (5).

The most commonly used splines in term structure estimation
are B-splines. Formally, assume that the curve starts at t0 = 0 and
ends at Tmax (say, thirty years), choose K knot points t−3, . . . , tM+4,
with

t−3 < · · · < t0 = 0 < t1 < · · · < tM = Tmax < · · · < tM+4,

and let {φ(τ)}M+4
k=−3 be the set of the B-spline basis functions of a

cubic spline corresponding to these knot points.
Define the term structure function h(τ ; θ) for τ ∈ [0, Tmax] as

h(τ ; θ) =

M+4∑

k=−3

θkφk(τ) = φ(τ) · θ, (6)

and a function g such that δ(τ ; θ) = g(h(τ ; θ), τ) = g(φ(τ) · θ). Then
the estimated price can be written as

P̂ (θ) = δ⊺(τ ; θ̂) · C = g⊺(φ(τ) · θ̂) · C. (7)

The objective is to solve the usual minimization problem

min
θ

(P − P̂ (θ))⊺W−1(P − P̂ (θ)). (8)

Even if problem (8) can be solved with standard non-linear optimiza-
tion algorithms, Fisher, Nychka, and Zervos (1995) propose solving

it by taking the first-order Taylor approximation of P̂ (θ) around θ0,
namely

P̂ (θ) ≈ P̂ (θ0) − (θ − θ0)X(θ0),

where X(θ0) �
∂P̂ (θ)
∂θ⊺ |θ=θ0 . Define Y (θ0) = P − P̂ (θ0) + θ0X(θ0), so

that (8) can be written as

min
θ

(Y (θ0) − θ0X(θ0))⊺W−1(Y (θ0) − θ0X(θ0)), (9)



10 International Journal of Central Banking March 2014

whose solution is

θ1 = (X(θ0)⊺W−1X(θ0))⊺X(θ0)⊺W−1Y (θ0), (10)

where the ̂ symbols on θ0 and θ1 are omitted to simplify the nota-
tion. The solution to (8) is found by iterating (10) until convergence;
namely, first, θ1 is plugged into X1 = X(θ1) and Y 1 = Y (θ1), second
θ2 = (X1⊺W−1X1)⊺X1⊺W−1Y 1 is computed and, finally, this itera-
tive process is terminated when the difference between two successive
values, say θn−1 and θn, becomes small enough.

The main differences arise around the choice of the term struc-
ture function h(τ ; θ). A choice for g(τ ; θ) is the identity function
to model the discount factor, g(h(τ ; θ), τ) = g(δ(τ ; θ), τ) = δ(τ ; θ).
Alternatively, h(τ ; θ) can define the term structure of the spot rate
and, hence, g(τ ; θ) = exp(−h(τ ; θ)τ). The third choice is the instan-

taneous forward rate and, hence, g(τ ; θ) = exp(−
∫ t

0
h(u; θ)du).

Depending on the choice of the term structure function to be param-
etrized, there are different specifications for X(θ0) in equation (9).

McCulloch and Kochin (2000) introduce the quadratic-natural
spline, instead of the B-spline, to model the negative of the log-
discount factor, g(τ ; θ) = − ln(δ(τ ; θ)) = −

∑Tmax

j=1 θiψi(τ), where

ψi(τ)’s are splines defined by

ψi(τ) = ζj(τ) −
ζ ′′
j (τn)

ζ ′′
n+1(τn)

ζn+1(τ), j = 1, . . . , n, (11)

and the functions ζj(τ) are given by

ζ1(τ) = τ , ζ2(τ) = τ2, ζj(τ) = max(0, τ − τj−2)
3, j = 3, . . . , n + 1.

As in the B-spline case, the authors define P̂ (θ) = exp(−
∑n

j=1 θ̂i

ψi(τ))⊺C and find the optimal solution with the iterative algorithm
described by (9)–(10).

For the euro-area IL bond market, Hördal and Tristani (2007) use
the quadratic-natural spline, which is specifically designed to work
even when bond data are only available for a few maturities. For the
U.S. market, McCulloch (2008) estimates monthly real zero-coupon
rates derived from U.S. TIPS obtained by means of the McCulloch
and Kochin (2000) methodology.
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2.4 Smoothing Splines

In a spline, the number of basis functions s is determined by the
number of knot points: too few or too many parameters can lead
to poor estimates. Smoothing splines tackle this problem by using a
strategy that penalizes excess variability in the estimated function
and reduces the effective number of parameters by introducing a
penalty that forces an implicit relationship between the spline basis
functions. The minimization problem associated with the smoothing
spline is

min
θ

(
(
P − P̂ (θ)

)⊺

W−1
(
P − P̂ (θ)

)
+

∫ Tmax

0

λ(t)

(
∂2h(t; θ)

∂2t

)2

dt

)
,

(12)

where the term under the integral is the penalty term and λ is the
smoothing parameter.

Fisher, Nychka, and Zervos (1995) use a constant penalty term
across maturity but time varying, λ(t) = λ, in the sense that its
value is computed on a daily basis. So the penalty term becomes
λθ⊺Hθ, where θ are the parameters of the smoothing B-spline, and

the generic element of H is H(i, j) =
∫ T

0
φ′′

i (s)φ′′
j (s)ds, defined over

the domain of the spline [0, T ]. The penalty parameter λ, which
moves inversely to the effective number of parameters θ, controls
the penalty matrix H; the more λ becomes a large number, the
more the penalty matrix H becomes important in (12). The appro-
priate value of λ is obtained by minimizing the so-called generalized
cross-validation (GCV) function

κ(λ) =
((I − Q)Y )⊺((I − Q)Y ))

(T − γ · tr(Q))2
,

where the numerator is the residual sum of squares, with Q =
X(X⊺X−λH)−1X⊺ and Y and X are defined as in (9). The denomi-
nator is the squared effective degrees of freedom, with T the number
of observations, tr the trace operator, and γ a parameter called cost,
which controls the trade-off between goodness of fit and parsimony.
The parameter γ can be increased to reduce the signal extraction;
when it is posited equal to 1, κ(λ) is a plain-vanilla GCV.2 Note

2Fisher, Nychka, and Zervos (1995) use γ = 2.
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that when the spline is used to parametrize the discount factor,
X ≡ C⊺ ·φ(τ) and thus the values for λ and κ(λ) are found before the
iterative procedure. Conversely, when the spline is used to parame-
trize the instantaneous forward rate, X ≡ P (θ) · C⊺ ·

∫ τ

0
φ(u)du, or

the spot rate, X ≡ P (θ) ·C⊺ ·φ(τ), and thus κ(λ) must be computed
at every step of the minimization algorithm.

Other techniques with λ varying across maturities but con-
stant across time have been proposed by Waggoner (1997), Ander-
son and Sleath (2001), and Bolder and Gusba (2002). Wag-
goner (1997) proposes three values for λ, namely for bills, notes,
and bonds; Anderson and Sleath (2001) introduce an exponen-

tial function λ(τ ; η0, η1, η2) = exp[η0 − (η0 − η1)e
−

τ
η2 ], called the

variable-roughness penalty; Bolder and Gusba (2002) use either
λ(τ ; η0, η1, η2) = η0/(1 + η1e

−η2τ ) or λ(τ ; η0) = η0 ln(τ + 1). All
these functional forms are time invariant and tend to penalize longer
maturities with increasing importance.

The maturity-varying penalty function works in such a way that
curvature at any maturity is not penalized equally; since the yield
curve tends to have much more curvature at the short end than at the
long end, the penalty function is increasing in maturity, τ , and thus
assigns smaller weights to shorter maturities. According to Anderson
and Sleath (2001), the smoothing B-spline with maturity-varying
penalty function outperforms the other non-parametric methodolo-
gies because it shows greater stability, in the sense that small changes
in the data at one maturity (such as at the very long end) do not
have a disproportionate effect on forward rates at other maturities.
With respect to other spline methods, the addition of a penalty term
has the advantage that the term structure is relatively less flexible
at the long end than at shorter maturities, where expectations are
likely to be better defined.

The smoothing B-spline on forward rates, used by the Federal
Reserve Board to estimate the nominal term structure for the U.S.
government bond market, is also used by Sack (2000) in the estimate
of the real term structure derived from nominal and index-linked
stripped coupons and principals (separate trading of registered inter-
est and principal securities, or STRIPS). As yields to maturity on
coupon and principal STRIPS are evenly spaced zero-coupon rates,
the construction of the term structure is extremely simplified.
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2.5 Bootstrapping

The most popular method among practitioners to compute the
term structure of interest rates is bootstrapping. Bootstrapping is
a method for constructing the term structure of zero-coupon inter-
est rates from the prices of a set of coupon bonds by solving for
the discount factors recursively, by forward substitution. Fama and
Bliss (1987) were the first to publish an implementation of the boot-
strapping technique, sometimes called “unsmoothed Fama-Bliss,”
even if several earlier authors proposed its use. Formally, if you
have coupon-bond prices, P1, P2, . . . Pi . . . , PN , with evenly spaced
annual coupons, C1, C2, . . . Ci . . . , CN , and corresponding maturi-
ties t1 < t2 < · · · ti · · · < tN , the discount factor for maturity t1
solves P1 = δ(t1)(1 + C1), the discount factor for maturity t2 solves
P2 = δ(t1)C2+δ(t2)(1+C2), where δ(t1) is computed in the first step,
and so on up to maturity tN . In general, the payoffs are not evenly
spaced, so more refined techniques must be used. A common refine-
ment of bootstrapping attempts to smooth the discount function by
interpolating between subsequent discount factors and by weighting
the coupon payments with their time-distance. This method works
well if a set of discount bonds is available, and if a few interpolations
are necessary; moreover, a sufficient accuracy is obtained if payoffs
are evenly spaced and if the number of bonds is sufficiently large.
In the evaluation of the pricing performances below, the results of
several methodologies are compared with those obtained with boot-
strapping, as the latter is still the workhorse in the financial industry
and, as we will see below, gives very good results in in-sample pricing
even if it performs poorly in out-of-sample pricing.3

3. The Data

This paper uses daily quotes of French IL bonds, namely OAT€i’s
(OATi’s), which are government bonds indexed to the euro-area
HICP excluding tobacco (domestic French Consumer Price Index,
CPI); their principal is protected from inflation thanks to indexation
to a daily reference price index, even if it is paid out by the issuer

3In this paper we interpolate the discount factors with piecewise cubic Hermite
polynomials (Hagan and West 2006).
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at the moment the bond is redeemed. In 1998 the French Treasury
pioneered the euro-area IL bond markets with the issue of govern-
ment bonds, OAT€i’s, indexed to the domestic French CPI; in the
following years the French Treasury continued to issue IL bonds of
the same class and enriched the maturity spectrum of the French
IL bond market. In 2002 the first issue was made of French gov-
ernment bonds, OAT€i’s, indexed to the euro-area HICP excluding
tobacco, the reference price index of the euro area. Similarly, in 2003
the Greek, the Italian, and (in 2006) the German Treasuries started
issuing IL bonds indexed to the euro-area HICP excluding tobacco.
This work considers only French IL bonds for two reasons: first, until
January 2012 they were given the maximum rating by all the major
rating agencies, against the lower rating given to the Greek and
Italian government securities and, second, the time series start from
1998, considering indexation to the French CPI, and from 2001, con-
sidering indexation to the euro-area HICP excluding tobacco, thus
allowing a long-term comparison with the corresponding nominal
bonds. At the end of April 2012, there were only five outstanding
issues of German IL bonds, and this makes the computation of a Ger-
man real term structure extremely cumbersome. From 1998 to April
2012 there were eight issues of OATi, and from 2001 to April 2012
seven issues of OAT€i and one of a medium-term note, BTAN€i (Bon

à Taux Annuel Normalisé indexed to the euro-area HICP). Coupons
are paid once a year on July 25, and this generates some mispricing
around this date.

Since 2004 the French IL bond market has been further enriched
by the possibility of stripping the principal and the coupons of
OATi’s and OAT€i’s; namely, STRIPS are OATs whose interest and
principal portions of the security have been separated, or “stripped,”
and may then be sold separately in the secondary market.4 Given
that STRIPS are quoted as discount bonds and are available along
the entire time to expiration of the bond, they increase the number
of bonds and allow a substantial improvement in the estimation of
the real term structure. However, since quotes for STRIPS derived
from OATi’s and OAT€i’s have been available only since August

4The name derives from the days before computerization, when paper bonds
were physically traded: traders would literally tear the interest coupons off paper
securities for separate resale.
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2009, they have just been used to cross-validate this paper’s model
on some specific dates.

Similarly, the nominal term structure is estimated using quotes
of medium-term notes (BTANs) with time to maturity greater than
one month and below five years, and quotes of standard OATs with
maturity greater than one month. As a robustness check, the nom-
inal term structure has been estimated using (i) the quotes of the
euro repo rates with maturity of one week, two weeks, three weeks,
one month, two months, three months, six months, nine months, and
twelve months for the short term, and (ii) the quotes of the short-
term discount Treasury bills, BTFs (Bons du Trésor à taux fixe et à

intérêts précomptés). As the comparison between nominal and real
rates is made for maturities greater than one year, estimates of the
corresponding BEIR do not differ.

Daily mid-quotes are obtained from Bloomberg and Thomson
Financial Reuters. The daily consumer price index reference is
obtained from the website of the ECB (www.ecb.int) and from the
website of the French Treasury (www.aft.gouv.fr).

The sample of the IL bonds is split into two sub-periods. The
first runs from November 2001 to December 2004; in this sample
the real term structure is obtained from the OATi’s and OAT€i’s.
The second runs from January 2005 to April 2012 and considers only
OAT€i’s. The use of OATi’s in the first sub-sample is necessary given
the very few issues of OAT€i’s before 2004. However, the results do
not differ when one compares the estimates obtained from OAT€i’s
with those obtained from OAT€i’s and OATi’s for the second period.
For consistency, the same spline methodology is used to compute the
nominal term structure.

The OAT€i, like IL bonds in general, is guaranteed by a redemp-
tion at par. This implies that in case of deflation throughout the life
of the bond, its redemption value is equal to 100. Thus one compo-
nent of the price of the OAT€i is a par-floor option whose value will
be small in the long term but can be non-negligible in the months
after the issuance, when there is a positive probability that the cumu-
lative inflation may be negative. In fact, the likelihood of deflation
over the entire life of an IL bond is extremely low even if there
may be a temporary decrease in the HICP for short periods; thus
researchers usually tend to omit the value of this option in pricing IL
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bonds. However, Grishchenko, Vanden, and Zhang (2011) and Chris-
tensen, Lopez, and Rudebusch (2012) present estimates of the value
of the deflation option embedded in U.S. TIPS and find that its value
is small except in times of financial distress. This paper assumes that
deflation in the euro area is unlikely over the average OAT€i life and
therefore does not consider the deflation option component in the
OAT€i price; the option estimate is left to future research.

Before the introduction of IL bonds, the real term structure was
derived by a no-arbitrage restriction in a nominal term structure
model constrained by inflation expectations (for example, Campbell
and Shiller 1996 and Hördahl and Tristani 2007, for the period before
2002). Only since the introduction of IL bonds have researchers been
able to estimate the real term structure from quoted bonds.5 The
academic literature on real term structure originated in the United
States and in the United Kingdom, countries with liquid and deep
markets for IL bonds since the beginning of the 1990s in the United
Kingdom and from 1997 in the United States. Only recently has a
similar stream of literature grown up in the euro area thanks to the
issuance of this type of bond.6

4. Results

Table 1 reports the sample statistics for the real and nominal zero-
coupon interest rates obtained by means of the smoothing B-spline
on forward rates with constant penalty, following the methodology
shown in equations (8)–(10); figure 1 plots the three-year, five-year,

5Gürkaynak, Sack, and Wright (2010) compute the daily real term struc-
ture for the United States implied by TIPS, and make estimates available
at www.federalreserve.gov/econresdata/researchdata/feds200628.xls. McCulloch
(2008) posts on his website (http://economics.sbs.ohio-state.edu/jhm/ts/
ts.html) the end-of-month U.S. real and nominal term structures. The Bank
of England publishes the estimates of the UK real and nominal term struc-
tures obtained by means of the variable-roughness-penalty spline of Anderson
and Sleath (2001); zero-coupon real rates are available at www.bankofengland.
co.uk/statistics/yieldcurve/index.htm.

6An assessment of the performance of different methodologies in estimating
the nominal term structure is proposed in Bliss (1997), Bolder and Streliski
(1999), and Ioannides (2003). According to a survey of the Bank for International
Settlements (2005) both splines and Nelson and Siegel (1987) methodologies are
widely applied at central banks.



Vol. 10 No. 1 Real Term Structure and Inflation Compensation 17

T
a
b
le

1
.

S
ta

ti
st

ic
s

fo
r

D
a
il
y

Z
e
ro

-C
o
u
p
o
n

R
a
te

s

µ
a

σ
b
,c

σ
3
/µ

c 3
σ

4
/µ

c 4
ρ
a 1

ρ
a 5

ρ
a 2
0

ρ
a 6
0

ρ
a 1
2
0

ρ
a 2
5
0

R
e
a
l
R

a
te

T
e
n
o
r

T
h
re

e
Y

ea
rs

1.
06

1.
5
2

0.
82

17
.9

5
0
.9

9
0
.9

7
0.

91
0
.7

3
0
.5

5
0.

2
2

F
iv

e
Y

ea
rs

1.
34

0.
9
7

0.
81

13
.9

0
0
.9

9
0
.9

8
0.

91
0
.7

4
0
.5

6
0.

1
8

S
ev

en
Y

ea
rs

1.
56

0.
7
4

0.
49

13
.2

1
0
.9

9
0
.9

8
0.

91
0
.7

3
0
.5

6
0.

1
5

T
en

Y
ea

rs
1.

78
0.

6
8

0.
04

12
.8

4
0
.9

9
0
.9

8
0.

91
0
.7

4
0
.5

7
0.

1
7

F
if
te

en
Y

ea
rs

1.
99

0.
8
1

0.
38

16
.6

0
0
.9

9
0
.9

7
0.

91
0
.7

8
0
.6

2
0.

2
9

T
w

en
ty

Y
ea

rs
2.

10
0.

8
9

0.
26

13
.0

5
0
.9

9
0
.9

7
0.

91
0
.8

0
0
.6

7
0.

3
5

T
w

en
ty

-F
iv

e
Y

ea
rs

2.
15

0.
8
4

0.
31

20
.9

5
0
.9

9
0
.9

7
0.

92
0
.7

9
0
.6

5
0.

3
2

N
o
m

in
a
l
R

a
te

T
e
n
o
r

T
h
re

e
Y

ea
rs

2.
81

1.
2
1

0.
69

22
.9

0
0
.9

9
0
.9

9
0.

95
0
.8

1
0
.6

0
0.

2
9

F
iv

e
Y

ea
rs

3.
23

0.
9
1

0.
58

12
.0

1
0
.9

9
0
.9

8
0.

93
0
.7

7
0
.5

2
0.

1
9

S
ev

en
Y

ea
rs

3.
56

0.
8
5

0.
55

8.
16

0
.9

9
0
.9

8
0.

92
0
.7

3
0
.4

8
0.

1
3

T
en

Y
ea

rs
3.

91
0.

7
9

0.
51

14
.8

5
0
.9

9
0
.9

8
0.

92
0
.7

3
0
.4

8
0.

1
3

F
if
te

en
Y

ea
rs

4.
26

0.
7
2

0.
03

24
.0

3
0
.9

9
0
.9

8
0.

92
0
.7

7
0
.5

5
0.

2
0

T
w

en
ty

Y
ea

rs
4.

44
0.

7
7

−
0.

22
23

.7
1

0
.9

9
0
.9

7
0.

92
0
.7

7
0
.5

6
0.

2
5

T
w

en
ty

-F
iv

e
Y

ea
rs

4.
45

0.
7
8

−
0.

01
8.

71
0
.9

9
0
.9

7
0.

92
0
.7

7
0
.5

5
0.

2
8

a
S
ta

ti
st

ic
s

fo
r

th
e

le
v
e
l
o
f
z
e
ro

-c
o
u
p
o
n

in
te

re
st

ra
te

s.
b
In

a
n
n
u
a
l
te

rm
s.

c
S
ta

ti
st

ic
s

fo
r

th
e

fi
rs

t
d
iff

e
re

n
c
e
s

o
f

z
e
ro

-c
o
u
p
o
n

in
te

re
st

ra
te

s;
µ

is
th

e
a
ri

th
m

e
ti

c
m

e
a
n
,

σ
th

e
st

a
n
d
a
rd

d
e
v
ia

ti
o
n
,

σ
3
/
µ

3
th

e
sk

e
w

n
e
ss

,

σ
4
/
µ

4
th

e
u
n
c
e
n
te

re
d

k
u
rt

o
si

s,
a
n
d

ρ
i

th
e

a
u
to

c
o
rr

e
la

ti
o
n

c
o
e
ffi

c
ie

n
t

a
t

la
g

i.

N
o
t
e
:
T

h
e

st
a
ti

st
ic

s
re

fe
r

to
d
a
il
y

d
a
ta

fr
o
m

J
a
n
u
a
ry

2
0
0
2

to
D

e
c
e
m

b
e
r

2
0
1
1
.



18 International Journal of Central Banking March 2014

Figure 1. Term Structure of Real Zero-Coupon Rates

ten-year, and twenty-year zero-coupon real interest rates. Real-rate
averages are increasing in maturity, ranging from 1.06 percent for
the three-year rate to 2.15 percent for the twenty-five-year rate. The
standard deviation, the skewness, and the kurtosis of the first dif-
ference of zero-coupon real rates have a V shape with peaks at the
shorter- and longer-dated maturities; this result is broadly consistent
across methodologies.7 It is not possible to give a clear interpretation

7The same V-shaped pattern is obtained by using the Nelson-Siegel, the
quadratic-natural spline, and the exponential spline methodologies. Conversely,
the results given by the B-spline on forward rates with maturity-varying penalty
(Anderson and Sleath 2001) show a decreasing pattern in the standard devia-
tion, the skewness, and the kurtosis. In order to interpret my results, I have
computed the three statistics for the UK zero-coupon real rates computed by
the Bank of England with the B-spline on forward rates as in Anderson and
Sleath (2001) and for the U.S. zero-coupon real rates computed by Gürkaynak,
Sack, and Wright (2010) with the Nelson-Siegel methodology. For the UK term
structure, the three statistics are decreasing, and this is similar to my results
for the euro-area real term structure obtained with the same methodology. Like
my Nelson-Siegel estimates for the euro area, for the U.S. zero-coupon real term
structure, the standard deviation and the kurtosis show a V-shaped pattern while
the skewness is negative and decreasing.
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of this pattern, as it can be heavily influenced by the market
microstructure of euro-area IL bonds, which is characterized by
large segmentation. As a matter of fact, the lower levels of the stan-
dard deviation, skewness, and kurtosis in the seven- and fifteen-year
maturity bracket can be partially reconciled with the higher liquid-
ity of the corresponding bonds. The rise in the three statistics for
longer-dated maturities can be partly explained by the methodology
used to estimate the term structure. While the large kurtosis of the
real-rate daily differences is also found for the United Kingdom and
the United States, the positive value of the skewness is peculiar to the
euro-area market. A Jarque-Bera test, not shown, documents that
the null of a normal distribution is rejected across the maturity spec-
trum. The non-normality of the real-rate daily differences has major
implications for derivative pricing algorithms and risk-management
models, as most of them make some underlying assumptions about
the distributional properties of returns over a given time horizon.
Finally, real rates are very persistent, as evidenced by the large
autocorrelations from the one-day lag to the twenty-day lag.

The nominal term structure can be used as a benchmark to eval-
uate the consistency of the real term structure estimate; real rates
show very strong similarities with the corresponding nominal rates
in terms of the V-shaped pattern of standard deviation and kur-
tosis, and in terms of autocorrelation; conversely, the skewness of
nominal zero-coupon rates decreases and reaches negative values for
longer-dated maturities.

Looking at the time series of the zero-coupon real rates, it
appears that the term structure of real rates shows an inverted
shape in 2002, computed as the difference between the ten-year
and the three-year interest rates, while it has a standard natural
positive slope from January 2003 onwards. Moreover, from January
2003 until the middle of 2006, the steepness of the term structure is
strictly positive, even with decreasing real interest rates; it flattens
from the middle of 2006 until the end of 2007. From the beginning
of 2009 it steepens, influenced by the sharp decrease in interest rates
at the shortest maturity, which—as in 2005—hit negative territory.
Sample statistics show a positive slope of the real term structure,
with an average of 1.78− 1.06 = 0.52 percentage points between the
ten- and three-year maturities and 2.15 − 1.06 = 1.09 percentage
points between the twenty- and three-year maturities.
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As shown by Ejsing, Garćıa, and Werner (2007) and Pericoli
(2012), the construction of a constant-maturity inflation expecta-
tion measure, given by the difference between nominal and real rates,
has to encompass the seasonality of the euro-area HICP excluding
tobacco. The dynamics of the seasonality factor widen progressively
from January 2002. This implies that the gross price of IL bonds,
computed as the clean price plus the accrued interest and the infla-
tion accrual, depends on the time of year. However, the order of
magnitude of the adjustment required to compare IL bond quotes
on different days of the year is small (the average of the daily cor-
rection factor for bond prices is around 1.003, with a range of 0.012)
and the correction mostly impacts bonds with the shortest matu-
rities. The difference between zero-coupon real rates corrected for
seasonality and the standard zero-coupon real interest rates is over
12 basis points for the shortest maturities but decreases to below 2
basis points for real interest rates with maturity greater than fifteen
years (figure 2).

4.1 Comparison of Methodologies

There are three forces that shape the term structure: expectations,
risk premia, and convexity. Roughly speaking, risk premia are linear
in maturity and tend to raise yields, while convexity is quadratic in
maturity and tends to lower yields. Both effects tend to be larger
with greater uncertainty. The kind of curvature found in the spline
forward-rate estimates, and in particular in the smoothing B-spline
on forward rates, captures those two effects; in fact, the convex-
ity component only becomes significant after the fifteen- or twenty-
year maturity. Alternatively, one can directly observe the convexity
implied in the yields on STRIPS, which are zero-coupon rates; con-
vexity cannot be seen in coupon yields because they are averages of
zero rates.

In addition to this consideration, it should be pointed out that,
by and large, when the number of bonds is small, a parsimonious
model sometimes has great difficulty converging. However, under
normal circumstances, all the methodologies presented tend to give
similar results for the term structure of spot rates while giving dif-
ferent results for the term structure of forward rates. The main
differences are due to the fact that the parsimonious parametric
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Figure 2. Average Differences Due to Correction for
HICP Seasonality

Notes: Average difference in basis points between the daily not-seasonally-
adjusted term structure and the seasonally adjusted term structure. Sample:
January 1, 2002–April 30, 2012.

models (such as the Nelson-Siegel and the Svensson models) impose
an asymptote on the spot curve, and the quadratic-natural spline
imposes an asymptote on the curve shape. Conversely, the B-spline,
either with constant penalty or with maturity-varying penalty, is
more flexible and, thus, can give better information on long-term
interest rate expectations.

Figure 3 reports the term structure for real spot and real forward
rates on June 7, 2006 and November 18, 2009 computed with dif-
ferent methods, namely the smoothing B-spline on forward rates—
either with constant penalty or with maturity-varying penalty—
the Nelson-Siegel, the quadratic-natural spline, and the exponential
spline; for the second date, figure 3 also reports the real term struc-
ture obtained from STRIPS quotes with the smoothing B-spline
on forward rates. Term structures estimated with B-splines either
on discount factors or on spot rates—not shown—and with the
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Figure 3. Real Term Structures

Notes: On June 7, 2006, estimates were made using ten French and German
IL bonds with modified duration ranging from 2.9 to 18.4 years. On Novem-
ber 19, 2009, estimates were made using ten French and German IL bonds
with modified duration ranging from 1.7 to 23.3 years; on the same day there
were twenty-eight coupon and principal STRIPS. “B-spline f” refers to the
smoothing B-spline model defined by equation (6) estimated with the forward
rate, with constant penalty, similar to the methodology of Fisher, Nychka, and
Zervos (1995); “B-spline f mat.var.” refers to the smoothing B-spline model
of equation (6) estimated with the forward rate, with maturity-varying penalty
λ(τ) = exp(η0 − (η0 − η1) exp(−τ/η2)) as in the variable-roughness-penalty
smoothing B-spline of Anderson and Sleath (2001); “exp. spline” refers to the
exponential spline of Vasicek and Fong (1982) defined by equation (3); “quad.
spline” refers to the quadratic-natural spline of McCulloch and Kochin (2000)
defined by equation (11); and “Nelson-Siegel” refers to the methodology of Nelson
and Siegel (1987) defined by equation (5).
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exponential spline tend to bend towards large values at the shortest
maturities when they are not anchored by short-dated bonds.

All in all, the spot real term structures are very different in level
between the instantaneous and the five-year rates, while they con-
verge to similar figures in the five- to ten-year bracket. The forward-
rate smoothing B-spline term structure obtained from STRIPS—
available only after August 2009—is much more bent at the long end
thanks to the convexity effect stemming from the separate trading
of zero-coupon bonds. Nelson-Siegel and smoothing B-spline short-
term real rates tend to be very close and seem not very different
after the five-year maturity. Conversely, quadratic-natural spline and
exponential spline short-term real rates are not well behaved in the
zero- to five-year bracket, showing large swings due to the combined
effect of being estimated on discount rates and with very few bonds.
The higher level of STRIPS short-term rates is striking even if it can
be explained by the fact that they command a premium connected
to their lower liquidity.

Conversely, the forward real term structures differ substantially.
In particular, the quadratic-natural spline and the exponential-spline
term structures show large humps over the entire maturity spec-
trum, while the forward-rate smoothing B-spline term structure,
either with constant penalty or with maturity-varying penalty, is
very stable until the twenty-year maturity and converges around
the figures recorded by the Nelson-Siegel estimates. Incidentally,
on November 18, 2009, the forward smoothing B-spline term struc-
ture did not converge to the long-term forward rate obtained by
the STRIPS estimates; the forward-rate smoothing B-spline term
structure implied by STRIPS was most bent at the long end due to
the convexity effect, which was averaged out in the other estimates.
By comparing the spot and forward term structure, it appears that
the forward-rate smoothing B-spline and the Nelson-Siegel method-
ology have very similar features over the two dates; on the other
hand, the quadratic natural spline and the exponential-spline meth-
ods bend the spot term structure excessively at the short end and
show very large swings in the forward term structure. The shape
of the instantaneous forward curve has major implications for the
financial industry, as the pricing of derivatives, whose underlyings
are interest rates, are usually priced by means of future forward
curves based on instantaneous forward-rate term structures. Hence,
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a zigzag instantaneous forward term structure, such as that exhib-
ited by the exponential spline and the quadratic-natural spline, can
give unreasonable derivatives prices.8

The accuracy of the model in estimating the yield to maturity
is depicted in the bottom panels of figure 3, which show the current
yields, the yields estimated by means of the forward-rate smooth-
ing B-spline, and the par-yield curves obtained by several meth-
ods for the two dates. In general, current yields are quite close to
their forward-rate smoothing B-spline estimates; at the same time,
the forward-rate smoothing B-spline par-yield curve (the “B-spline
f” line) shows a smooth pattern. The same smooth pattern is
observed in the par-yield curves estimated by means of the smooth-
ing B-spline with maturity-varying penalty and the Nelson-Siegel
methods. On the contrary, the par-yield curve estimated by means
of the quadratic-natural spline and the exponential spline match the
current yields more closely; in fact, the two par-yield curves pass
through the black circles that identify the current yields. However,
this accuracy in pricing yields is counterbalanced by the low smooth-
ness shown by the large swings in the quadratic-natural and the
exponential-spline par-yield curves on June 7, 2006. The excellent
in-sample goodness of fit of these last two models is counterbalanced
by the poor performance in pricing bonds out of sample and by the
lack of a smoothing pattern; these two features come out in the
comparison of the out-of-sample pricing performances in the next
sub-section.

4.2 Pricing Performances

A standard way to compare term structure models is the compu-
tation of in-sample and out-of-sample performance measures across
estimation methods for various subsets and sub-periods. The in-
sample performance is evaluated by examining the ability of eleven
estimation methods to fit bond prices and is measured by the mean
absolute fitted-price errors (MAEs) and by the MAEs weighted by
the bond duration (WMAEs); table 2 reports the MAEs and the

8Jarrow and Yildirim (2003) use a three-factor arbitrage-free term structure
model à la Heath-Jarrow-Morton to price U.S. TIPS and related derivative secu-
rities. The usefulness of the pricing model is illustrated by valuing call options
on the inflation index.
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WMAEs over different time and maturity samples for the smoothing
B-spline—using the discount factor, the spot rate, and the forward
rate, with and without maturity-varying penalty factor—defined by
(6), the exponential spline defined by (3), the quadratic-natural
spline defined by equation (11), the Nelson-Siegel defined by (5) and
its simplified version, the monotonic model, and, finally, the standard
bootstrapping technique. We compute the errors over the entire sam-
ple and two sub-samples; we limit our comment to the sub-sample
2005–11, less affected by the low liquidity typical of the early period.
The focus is on the five- to ten-year bracket, which is less affected
by the large swings observed in the term structures estimated with
different methodologies.

The out-of-sample performance (also defined as cross-validation
by the literature) of the term structure models is measured by the
MAEs and the WMAEs over the issues excluded from the sub-
sample used to estimate the underlying term structure; the out-
of-sample MAEs and WMAEs are the averages of the pricing errors
computed for each traded bond left out of the estimation of the term
structure (table 3).9

As far as the in-sample pricing errors are concerned (table 2), the
smoothing B-splines with constant penalty—defined in terms of the
discount factor, the spot, and the forward rate—are outperformed
uniquely by the exponential-spline and the bootstrapping method-
ology. Without considering the bootstrapping, we can see that, over
the entire maturity spectrum, the “B-spline forward-rate” MAE is
equal to 0.365 (average error in basis points). The same ranking
among models holds for the WMAEs. The worst performers are,
in order, the quadratic-natural spline, the monotonic, the Nelson-
Siegel, and the B-spline on forward rates with maturity-varying
penalty.

As far as the out-of-sample MAEs and WMAEs are concerned
(table 3), the smoothing B-splines with constant penalty—defined
for the discount factor and for the spot rate—consistently outper-
form the other models over the whole maturity spectrum. In par-
ticular, over the five- to ten-year maturity spectrum, the average
WMAE of the B-spline on discount factors, spot rates, and forward

9In the out-of-sample performance test, pricing errors are not computed for
the bonds with the shortest and longest maturity.
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Figure 4. Term Structure of Break-Even Inflation Rates

rates (0.078, 0.079, and 0.082, respectively) is very tiny compared
with those obtained with the other methodologies. The bootstrap-
ping estimation of the real term structure reveals good in-sample
MAEs but poor out-of-sample MAEs and WMAEs.

5. Inflation Compensation

The real term structure can also used be to extract the inflation
compensation requested by investors to hold IL bonds. This com-
pensation, known as the BEIR, is equal to the difference between
the nominal and the real interest rates, namely

BEIRn
t = ỹn

t − rn
t , (13)

where ỹn
t is the nominal zero-coupon interest rate at time t with

maturity n adjusted for the liquidity premium, as explained in sub-
section 5.1, and rn

t is the corresponding real zero-coupon interest
rate. The time series of BEIRs are shown in figure 4 and their
statistics are shown in table 4.

Note that, since the OAT€i is indexed to the euro-area HICP,
the real term structure is compared with the corresponding nominal
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term structure extracted from nominal OATs issued by the French
Treasury; differently, Hördahl and Tristani (2007) compare the real
term structure extracted from OAT€i’s with the German nominal
term structure. The nominal term structure for French government
bonds is also estimated with the forward-rate smoothing B-spline
methodology used for IL bonds.

BEIRs are very volatile at short-term maturities and tend to sta-
bilize as maturity increases. The dynamics of the BEIRs suggests two
main conclusions. First, the dispersion of inflation forecasts across
the maturity spectrum is very large at the beginning of the sample,
which coincides with the introduction of the single monetary pol-
icy; the dispersion can also be explained by possible pricing errors
due to the impaired liquidity connected with the small amount of
IL bonds outstanding. Second, the BEIR tends to be highly stable
for longer maturities; ten-year and twenty-year BEIRs fluctuate in
the range 2.0–2.5 percent from the beginning of 2002 to the end of
2008, with an abrupt drop in the last quarter of 2008 against the
backdrop of deteriorating conditions in the international financial
markets. The difference in volatility between short- and long-term
BEIRs can be attributed to the anchoring of inflation expectations
in the long term, to the volatility of the inflation risk premia, or to
a combination of the two.

Estimates of inflation compensation around the end of 2008 and
the beginning of 2009 show very low figures, which are difficult to
interpret as expectations of deflation in the euro area but can be
ascribed to the impairment of the IL bond market. Campbell, Shiller,
and Viceira (2009) document for the United States the impact of
market-specific factors on inflation-indexed bond yields; the increase
in volatility of TIPS yields in the autumn of 2008 appears to
have been the result in part of the unwinding of large institu-
tional positions after the failure of Lehman Brothers. These institu-
tional influences on yields can be described alternatively as liquidity,
market segmentation, or demand and supply effects. No research
has been conducted in a similar vein for the euro-area IL bond
market.

The BEIR is not a pure expectation of the inflation rate since,
as shown by Evans (1998), it can be thought of as the sum of the
expected inflation rate at time t during the n periods to matu-
rity, πn

t , and the inflation risk premium at period t, IRPn
t , namely
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BEIRn
t = πn

t + IRPn
t . This premium is required by investors to

hold assets whose real payoff is affected by unanticipated changes
in inflation. Thus, investors require a premium as compensation
for changes in inflation they are not able to forecast. This pre-
mium, in a standard representative-agent power-utility model, is
positive when the covariance between the stochastic discount fac-
tor and inflation is negative—in other words, when expected con-
sumption growth is low and inflation is high. It can be shown that
if variables are jointly log-normal, the risk premium is given by
IRPn

t = Cov(mn
t , πn

t )− 1
2Var(πn

t ), where m is the stochastic discount
factor over the horizon n; in other words, the premium requested by
investors to hold IL bonds and to hedge against unexpected changes
in inflation depends on the negative covariance between the mar-
ginal rate of substitution (the stochastic discount factor) and the
inflation rate; the second term is a Jensen inequality. Sometimes,
the first term, Cov(mn

t , πn
t ), of the inflation risk premium is referred

to as the “pure inflation risk premium.”
The inflation risk premium—i.e., the compensation for risk due

to uncertainty of future inflation—can be evaluated by means of ad
hoc models and is not the aim of this paper. However, it is worthwhile
spending some words on this variable, as it affects the computation
of the inflation compensation. A first evidence of the risk premium
embedded in the BEIR can be obtained by comparing it with the cor-
responding long-term inflation expectations surveyed by professional
forecasters (figure 5); quarterly expectations for the five-year-ahead
annual inflation rate are collected by the ECB Survey of Professional
Forecasters, while semi-annual expectations of the annual inflation
rate between five and ten years ahead are collected by Consensus
Economics. As in Evans (1998), the inflation risk premium, IRP, is
approximated by the difference between the BEIR and the expected
inflation rate at the corresponding maturity. Results show the IRP

is constantly positive with the exception of the 2002–3 period for the
five-year horizon and of the 2008–9 period for the five-year and the
ten-year horizons. Even if the main driver of the IRP is the covari-
ance between the discount factor and the inflation rate, which can
partly explain the drop in the risk premium around the end of 2008,
other factors may be at play. The following part of this section con-
siders the liquidity premium that can partly explain the dynamics
of the BEIR.
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Figure 5. Selected BEIRs and Inflation Expectations

Notes: The figure reports the five-year expected inflation given by the quar-
terly data in the ECB Survey of Professional Forecasters, and the five-year-
ahead five-year expected inflation given by the half-yearly survey of Consensus
Economics. The five-year BEIR is the difference between the five-year nomi-
nal zero-coupon rate and the corresponding real zero-coupon rate; the five-year-
ahead five-year BEIR is the compounded five-year-forward five-year BEIR, i.e.,
2 × BEIR10−year

− BEIR5−year.

5.1 Liquidity Premia

Sack (2000), Ejsing, Garćıa, and Werner (2007), Gürkaynak, Sack
and Wright (2010), Christensen and Gillan (2011), and Pflueger and
Viceira (2011) document that the comparison between nominal and
real interest rates is made difficult by the different degree of liquid-
ity of nominal bonds with respect to IL bonds. In fact, investors
who are holding an illiquid bond are willing to require a premium.
Accordingly, equation (13) becomes

BEIRn
t = ỹn

t − rn
t = yn

t + LPn
t − rn

t (14)

= πe,n
t + IRPn

t + LPn
t ,
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where ỹn
t is the liquidity-adjusted nominal rate given by the sum of

the nominal rate, yn
t , and the liquidity premium LPn

t that captures
the compensation requested for the different degree of liquidity of
the two types of bonds.

A first method to take account of the liquidity premium in the
BEIR is to consider nominal and real bonds with the same degree of
liquidity. In this vein, Gürkaynak, Sack, and Wright (2010) use the
difference between the zero-coupon nominal rates computed includ-
ing only off-the-run Treasuries and zero-coupon real rates computed
with U.S. TIPS, under the assumption that the former are less liquid
than the benchmark nominal bonds used to build a standard nom-
inal term structure. Similarly, Sack (2000) compares the nominal
and the real term structures implied in the corresponding STRIPS;
unfortunately, this method cannot be applied to the French gov-
ernment bonds, as index-linked STRIPS have been available only
since August 2009. As a robustness check, we estimate the euro-area
BEIRs implied by the nominal French government OAT STRIPS
and by the corresponding index-linked OAT€i STRIPS, quoted only
since August 2009, which show no major differences with respect
to the results obtained by comparing the nominal liquidity-adjusted
and IL bond term structures.

This paper follows Gürkaynak, Sack, and Wright (2010) and
compares the real and the nominal term structures, where the lat-
ter is computed without the first on-the-run bond. As a robustness
check, not only the first on-the-run but also the penultimate issue,
also known as the second on-the-run bond, are eliminated, but the
results do not show major differences. However, this methodology
assumes that off-the-run standard bonds and IL bonds share the
same investor base, an assumption that can be severely challenged,
especially during periods of tension.

An alternative method corrects the BEIR by adding a liquidity
premium, which is calculated explicitly as the spread between rates
on nominal bonds with different liquidity but same credit risk. After
the seminal work of Longstaff (2004) on the liquidity premium in
the U.S. Treasury market, similar studies have been conducted on
the euro-area bond markets. In particular, ECB (2009) and Monfort
and Rennes (2011) estimate the liquidity premium by comparing
the term structure obtained from government agency bonds with
that obtained from the corresponding standard nominal government
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bonds. The rationale is that, since the Treasury is the guarantor of
government agencies, the two types of bonds have the same credit
risk and the difference in zero-coupon rates is due uniquely to a
liquidity premium. Longstaff (2004) and Pflueger and Viceira (2011)
interpret the U.S. agency versus the U.S. Treasury spread as an
empirical proxy for flight-to-liquidity episodes in the U.S. Treas-
ury market and use it as a liquidity indicator, jointly with other
variables, to infer the liquidity premium. Analogously, the liquidity
premium for the French nominal bond market can be computed as
the difference between the zero-coupon rate extracted from nominal
bonds issued by the French public agency CADES and the corre-
sponding zero-coupon rate extracted from nominal French govern-
ment bonds (figure 6).10 The five-year and ten-year liquidity premia
average 70–80 basis points for the available sample but show large
variations. In particular, the premia are quite low in the period 2006–
7 and increase at the end of 2008 on the back of uncertainty in
the international financial markets. However, this liquidity premium
implied by CADES bonds can only be interpreted as a compensa-
tion for holding nominal bonds with lower liquidity, and it is difficult
to consider it as the corresponding premium for holding IL bonds
with respect to nominal bonds. Nonetheless, the dynamics of the
liquidity premium give information on its trend in flight-to-liquidity
episodes, if one assumes that these premia between different nominal
rates and between nominal and real rates are strongly linked. Thus,
the large drop in BEIRs recorded in the last quarter of 2008 and the
first quarter of 2009 can be partly explained by the large liquidity
premium investors demanded for holding less liquid bonds, such as
CADES and French IL bonds.

10CADES—Caisse d’Amortissement de la Dette Sociale—is a French adminis-
trative public agency supervised by the French government. Its mission is to pay
off the social security debt transferred to it, to contribute to the general bud-
get of the French government, and to make payments to various social security
funds and organizations. The company only operates in France. Like most com-
panies in its industry (small companies that only issue bonds), CADES publishes
very little information regarding sustainability. Still, in the field of sustainability,
CADES belongs to the 50 percent best-performing companies in the industry.
In the same vein, the ECB (2009) computes a liquidity correction for German
government bonds using bonds issued by the state-owned KfW Bankengruppe,
which have the same characteristics as the French CADES bonds.
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Figure 6. Liquidity Premia in the French Government
Bond Market

Notes: The figure reports the difference in basis points between the zero-coupon
interest rate implied by French public agency CADES bonds, whose guarantor
is the French Treasury, and the corresponding rate implied by French govern-
ment bonds; this difference approximates the risk premium for liquidity. The
term structures for CADES bonds and French government bonds are estimated
with a smoothing B-spline on forward rates. The ten-year zero-coupon rate on
the CADES is missing from end-2002 to end-2004 due to the absence of bonds
with this maturity.

The estimate of a liquidity premium for the French IL bonds
is beyond the scope of this paper. However, estimates for the U.S.
Treasury market present a wide range. Pflueger and Viceira (2011)
estimate that the liquidity premium for the U.S. TIPS is around 70
basis points during normal times but much larger during the early
years of the TIPS and during the financial crisis of 2008–9. Con-
versely, Christensen and Gillan (2011) provide evidence that the
TIPS liquidity premium can vary in a range of 120 basis points for
the ten-year maturity but is closer to the bottom half of this range;
in particular, the estimated deflation probabilities and their impli-
cations for the value of the deflation protection embedded in TIPS
are considerably more realistic when TIPS are considered to have
no liquidity premium rather than the maximum.
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6. Conclusion

This paper presents an estimate of the euro-area term structure that
is very effective in capturing the general shape of the term structure
while smoothing through idiosyncratic variations in the yields of IL
bonds and outperforms other methodologies commonly used in the
literature. The smoothing B-spline is preferred to other methods for
several reasons. First, it is very stable across the sample period with
respect to the model of Nelson and Siegel (1987) for which con-
vergence is very hard due to the small number of issues available.
Second, with respect to the other spline methodologies used in the
literature, the forward-rate smoothing B-spline does not impose a
limiting forward rate like the quadratic-natural spline by McCul-
loch and Kochin, and it does not require fine-tuning of the short-
term end of the term structure like the smoothing spline of Ander-
son and Sleath (2001). Finally, the smoothing B-spline on average
outperforms the other methodologies in both in-sample pricing and
out-of-sample pricing.

The B-spline methodology satisfies the three main properties
that are supposedly sought after in term structure estimates. First,
this technique gives smooth forward curves rather than attempt-
ing to fit every data point, as the aim is to supply a measure of
market expectations for monetary policy purposes instead of a pre-
cise pricing of all bonds in the market. Second, the technique is
sufficiently flexible to capture movements in the underlying term
structure. Third, estimates of the term structure at any particular
maturity are stable, in the sense that small changes in data at one
maturity, especially at the extremes of the maturity spectrum, do not
have a disproportionate effect on forward rates at other maturities.

The results show that zero-coupon real interest rates tend to be
fairly stable at longer horizons and the average ten-year real rate
from 2002 to 2011 is close to 1.8 percent. The correction for the sea-
sonality of the euro-area reference price index does not change the
results substantially. In addition, by analyzing the indications from
the corresponding agency bonds, evidence is found that inflation
compensation was held down in the period 2008–9 by a premium
associated with the illiquidity of OAT€i’s.

Finally, an approximation of the inflation risk premium is intro-
duced by comparing the inflation compensation implied by the
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nominal and real term structures and the inflation expectations sur-
veyed by Consensus Economics and by the ECB Survey of Profes-
sional Forecasters.

Having the real term structure should greatly aid our efforts to
achieve a better understanding of the behavior of nominal yields. It
allows us to parse nominal yields and forward rates into their real
rate component and their inflation compensation component. These
two components may behave quite differently, in which case simply
looking at a nominal yield might mask important information. As
the functioning of the IL bond market in the euro area can be of fun-
damental importance in assessing the reliability of readily available
inflation expectations and the necessary monetary policy interven-
tion, a sharper analysis of this market in the euro area should be a
priority in the research agenda of financial economists.
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