
Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

November 1993

c 1993 Carnegie Mellon University

Real-time 3-D Pose Estimation
Using a High-Speed Range Sensor

David A. Simon, Martial Hebert and Takeo Kanade

CMU-RI-TR-93-24

ii

Table of Contents

1.0 Introduction..1

2.0 Registration..2
2.1 The ICP Algorithm..2

2.2 Speed Enhancements to ICP...4
2.2.1 Kd-trees...4
2.2.2 Closest Point Caching ...4
2.2.3 Closest Surface Point Computation ..4
2.2.4 Acceleration ..5
2.2.5 Enhancement Results ..5

3.0 The Tracking Algorithm ..6

4.0 Experimental Setup..8

5.0 Pose Estimation Results...9
5.1 Static Accuracy Results...10

5.2 Dynamic Tracking Results ..12

6.0 Conclusions..12

iii

Abstract

This report describes a system which can perform full 3-D pose estimation of a
single arbitrarily shaped, rigid object at rates up to 10Hz. A triangular mesh
model of the object to be tracked is generated offline using conventional range
sensors. Real-time range data of the object is sensed by the CMU high speed
VLSI range sensor. Pose estimation is performed by registering the real-time
range data to the triangular mesh model using an enhanced implementation of
the Iterative Closest Point (ICP) Algorithm introduced by Besl and McKay. The
method does not require explicit feature extraction or specification of correspon-
dence. Pose estimation accuracies on the order of 1mm in translation and 1
degree in rotation have been measured.

1

1.0 Introduction

The problem of determining the 3-D pose of a rigid object at high speed has been
approached by a number of researchers [10][12]. However, there are few systems capable
of full 3-D pose estimation of arbitrarily shaped objects in real-time. There are three rea-
sons why this goal has been difficult to attain. First, the 2-D data provided by conventional
video cameras lacks the sensitivity required foraccurate3-D pose estimation of arbitrarily
shaped objects. Second, many approaches to 3-D pose estimation require two operations
which are difficult to perform: feature extraction and correspondence specification. Third,
in order to perform 3-D pose estimation in real-time, each step in the underlying algorithm
must be computationally efficient.

Direct use of 3-D data simplifies the pose estimation problem by providing shape structure
which would otherwise need to be inferred from 2-D data. As noted in [12], while 2-D
data is useful for estimating object motion in planes normal to a camera’s optical axis, it is
less sensitive to motions which deviate from these planes. Direct use of 3-D data should
provide more precise object pose estimates, especially for general 3-D motions.

Many previous approaches to 3-D pose estimation are feature based [8][10][12]. Such
approaches, however, suffer from some common difficulties. Typically, the steps in feature
based pose estimation are: 1) extract features such as points or lines from the underlying
data; 2) specify correspondence between data and model features; 3) compute the pose
estimate from the derived correspondence. Unfortunately, the extraction of reliable fea-
tures from images of real-world objects is difficult. Even when such features can be found,
solution of the correspondence problem can be complex and computationally expensive.

In our approach, raw range data points which lie on the surface of the tracked object are
matched to the underlying object surface model using an iterative least squares technique
(the ICP algorithm). This approach eliminates the need to perform any feature extraction,
or to specify feature correspondence.

To our knowledge, no previous approaches have succeeded in combining both high speed
acquisition of 3-D data with high speed 3-D pose computation. Several researchers have
utilized range data in the 3-D pose estimation problem [8][13]. Yamamoto [13] discusses a
system for estimating the shape and pose of deformable objects using a video rate range
camera, but the required computations are not performed at high speed.

The remainder of this paper is organized as follows. Section 2.0 describes the Iterative
Closest Point algorithm and enhancements which allow it to be used for real-time pose
estimation. Section 3.0 outlines the algorithm for real-time pose estimation. Section 4.0
describes the experimental setup used to demonstrate the approach. Section 5.0 contains
experimental results, and Section 6.0 contains the conclusion.

2

2.0 Registration

The registration algorithm used in this system is strongly motivated by the work of Besl and
McKay [2]. Their paper describes a general purpose method for the registration of rigid 3-D
shapes which they refer to as the Iterative Closest Point algorithm. Zhang [14] has indepen-
dently developed a similar algorithm which is better at handling outliers and occlusions in
the data. Since these were not a major concern in our work, the formulation presented below
parallels that of Besl and McKay.

2.1 The ICP Algorithm

Suppose that we have two independently derived sets of 3-D points which correspond to a
single shape. We will call one of these sets themodelsetM, and the other thedata setD.
Assume that for each point in the data set, the corresponding point in the model set is
known. The problem is to find a 3-D transformation which when applied to the data setD,
minimizes a distance measure between the two point sets. The goal of this problem can be
stated more formally as follows:

(1)

whereR is a 3x3 rotation matrix,T is a 3x1 translation vector, and the subscripti refers to
corresponding elements of the setsM andD as shown in Figure 1. Efficient, non-iterative
solutions to this problem, both employing unit quaternions, were presented in two papers,
one by Faugeras and Hebert [4] and the other by Horn [7].

The general 3-D shape registration problem that we address here, however, differs from the
corresponding point set registration problem in two important regards. First, the point corre-
spondence which was assumed to be known in the above problem is unknown in the general

min
R T,

Mi RDi T+()–
2

i
∑

Figure 1: Corresponding Point Set Registration

D

M M / D

3

case. Second, general 3-D shapes to be registered are not necessarily represented as point
sets [2].

Suppose that we are again given two setsM andD corresponding to a single shape, whereD
is a set of 3-D points andM is a triangular faceted surface. Assume that the correspondence
between points in the two sets is initially unknown. As seen in Figure 2, for each point
from the setD, there exists at least one point on the surface ofM which is closer to than
all other points inM. This is theclosest point, .

The basic idea behind the ICP algorithm is that under certain conditions, the point corre-
spondence provided by sets of closest points is a reasonable approximation to the true point
correspondence. Besl and McKay proved that if the process of finding closest point sets and
then solving equation (1) is repeated, the solution is guaranteed to converge to alocal mini-
mum. The ICP algorithm can now be stated:

1. For each point inD, compute the closest point inM
2. With the correspondence from step 1, compute the incremental transformation (R, T)

[equation (1)].
3. Apply the incremental transformation from step 2 to the dataD.
4. Compute the change in total mean square error. If the change in error is less than a

threshold,ε, terminate. Else goto step 1.

While the ICP algorithm is only guaranteed to converge to a local minima, there is no guar-
antee that this local minima will correspond to the actual global minima. How well the algo-
rithm performs is a function of the initial pose estimate and the characteristics of the shape
being registered. Besl and McKay discuss in detail the problem of finding the global mini-
mum in situations where initial pose error is large. We have found that the ICP algorithm con-
verges to the global minimum even with fairly large initial pose discrepancies. For the
purposes of the system described in this paper, the initial pose discrepancies are usually
small.

Di
Di

Mi

Figure 2: Closest Point Set Registration

D

M

4

2.2 Speed Enhancements to ICP
A basic implementation of the ICP algorithm lacks the speed required to perform pose esti-
mation in real-time. We have implemented several enhancements: kd-trees, closest point
caching, efficient point to surface computation, and acceleration.

2.2.1 Kd-trees

The most computationally expensive step in the ICP algorithm is finding the closest point
sets. In general if there are points in the data set and geometric entities (i.e.: points,
lines, triangles) in the model set, then the complexity of the closest point computation is

. However, as suggested in [2] and demonstrated in [14], this complexity can be
reduced to by the use of a k-dimensional binary tree, or simply kd-tree [1].
The use of kd-trees for closest point computation allows us at each node of a binary tree to
decide which side of a hyperplane the closest point will lie on. Thus, large regions of the
search space can be pruned at each level in the search. We have implemented a closest point
algorithm based on the kd-tree [5]. We have found that the actual performance improvement
approaches that predicted by theory.

2.2.2 Closest Point Caching

A second small speed improvement was realized by caching closest points. Points in the sets
M andD which are proximal at timek, are highly likely to be proximal at timek+1. Thus,
rather than finding the single closest point inM for a given pointDi[k], we can findn closest
points inM and cache these points together with the pointDi[k]. Note that there is little over-
head involved in findingn closest points whenn is a small number like 5. On the next itera-
tion, since the pointDi[k+1] is likely to be close to the pointDi[k], it is also likely that the
closest point inM to Di[k+1] will be one of the points cached on the previous iteration. It is
possible to determine conclusively whether the closest point is contained in the cached set by
performing a simple test. This test compares the magnitude of the previous incremental trans-
formation to the distance between the closest cached point and thenth closest cached point
(wheren is the number of cached points). A variation on this test can also determine whether
the closest point at timek+1 is thesame as the closest point at timek. The overall result of
caching is that closest points can often be found without requiring a full search of the kd-tree.
Rather, only the points in the cached set must be tested.

A similar caching technique can be applied tospatially (rather thantemporally) adjacent
points. If two data pointsDi[k] andDi+ 1[k] are proximal, then it is likely that their corre-
sponding closest pointsMi[k] andMi+ 1[k] will also be proximal. An analogous caching tech-
nique can be applied for this situation, however we have not yet implemented caching for
spatially adjacent points.

2.2.3 ClosestSurface Point Computation

WhenM is a triangular faceted surface, computation of the closest point requires an addition-
al step. The output of the kd-tree based closest point algorithm will return the closestvertex
Vi on the surface ofM, as shown in Figure 3. GivenVi, the closest pointMi will lie within, or
on the border of, one of the triangles to which the vertex belongs1. In order to findMi, Di is

1. This is not strictly true, as there are pathological cases for whichMi will lie in a totally different triangle. In
our experience, we found that we can ignore such cases.

ND NM

O NDNM()
O ND NMlog()

5

projected into the plane of each triangle, and the closest point betweenDi and that triangle is
computed. This is repeated for all triangles containingVi, and the overall closest point is se-
lected. In order to perform these computations quickly, onceDi is projected into the plane,
all computations are performed in 2-D rather than 3-D. Thus, during initialization each trian-
gle must be saved in both its 2-D and 3-D representations.

2.2.4 Acceleration

A final speed improvement was realized using a modified version of theaccelerated ICP al-
gorithm described in [2]. The accelerated ICP algorithm adds the following step to the basic
algorithm (after step 2):

2b. If the incremental transformations (R, T) at timesk-1, k-2, andk-3 arewell aligned,
extrapolate the current incremental transformation.

The well aligned condition above tests that the solution has been moving in an approximately
constant direction. Extrapolation is performed by scaling the current incremental transforma-
tion. The scale factor is a function of the mean square error and the magnitude of the incre-
mental transformations at the previous three iterations.

Besl and McKay calculate a single acceleration scale factor for both translation and rotation.
We achieved better results by decoupling the acceleration of translation and rotation. There
are two reasons for doing this. First, in Besl’s approach, the well aligned condition above is
tested once for both rotation and translation. Thus, for example, if rotation was well aligned
but translation was not, no acceleration would be performed. However, an acceleration on ro-
tation alone seems desirable in this situation. A second reason for decoupling is related to the
scale factor used in extrapolation. Besl and McKay used the same scale factor to extrapolate
both rotation and translation components. This scale factor is designed to extrapolate the so-
lution as much as possible in a single step without overshoot. In the coupled version, the size
of the scale factor is governed by the component (translation or rotation) which would cause
the solution to overshoot first. The other component could usually be accelerated further. By
decoupling, translation and rotation are independently accelerated as much as possible with-
out overshoot.

2.2.5 Enhancement Results

Four speed enhancements were described in this section: closest point computation via
kd-trees, closest point caching, efficient computation of closest facet points, and decoupled
acceleration. The results of applying each of these enhancements to a single registration prob-
lem are summarized in Table 1. In this problem,D was a point set containing 2432 points and

Di

Mi

Figure 3: Closest Facet Point Computation

Vi

6

M was a triangular mesh containing 4860 facets. The initial pose error was roughly 10 de-
grees of rotation about each axis, and about 10% of object size in each translation. The ICP
termination threshold,ε, was small.1

In the table,Type indicates the enhancements used: a - coupled acceleration; kd - kd-tree
search; d - decoupled acceleration; c - closest point caching; 2d - 2d calculation of closest
facet points.Time is the total ICP execution time in seconds. %T is percentage of time relative
to the slowest time.Iter is the number of ICP iterations.R-Acc andT-Acc are the number of
accelerations for rotation and translation respectively.

The speed improvements shown in Table 1 give an idea of the relative utility of each of the
described enhancements. The actual relative utility is a function of the underlying data, the
initial pose, and the termination threshold. Acceleration and kd-tree search are always the two
most important enhancements. The relative utility of kd-tree search increases with the num-
ber of points in the data set. Caching is useful when the termination threshold is small, since
the number of cache hits will be large during fine-tuning.

3.0 The Tracking Algorithm

An outline of the tracking algorithm is shown in Figure 4. Each box in the diagram represents
a processing step, and the processing sequence is indicated by the large-headed arrows. In-
puts to a processing step are indicated by the quantities to the left of each box, while outputs
are indicated by the quantities to the right.

During initialization, a precomputed triangular mesh model,M, is loaded into memory, and
a kd-tree is built fromM. For our experiments,M is constructed offline using a technique
based on deformable surfaces [3]. This technique can fuse range data collected from multiple
views into a single triangular mesh surface model. The range data used to createM is provid-
ed by several commercially available light-stripe range finders [11]. These sensors have been
calibrated so that all data points are expressed in a single, world-centered coordinate frame.

To initialize the tracking algorithm, the transformation between the model,M, and the initial
object poseD[0], must be calculated. This transformation, , can be found in several
seconds using the ICP algorithm with a starting transformation provided by the user2. In prac-

1. The magnitude ofε determines the amount of “fine-tuning” performed by the ICP algorithm. Small-
er values ofε result in pose estimates closer to the local minima.
2. A fully automated initialization which does not require user input would be possible by applying
one of the techniques for solving the global pose estimation problem discussed in [2].

Type Time %T Iter R-Acc T-Acc
none 908.8 100.0 122 0 0
a 261.2 28.7 35 11 11
kd 62.2 6.8 122 0 0
kd/a 18.0 2.0 35 11 11
kd/a/d 13.1 1.4 25 13 7
kd/a/d/c 11.9 1.3 25 13 7
kd/a/d/c/2d 8.3 0.9 25 13 7

Table 1: Enhancement Comparisons

TM
D 0[]

7

tice, we have found that initial pose errors as large as 15 degrees of rotation about each axis,
and 50% of the object size in any translation will typically converge to the global minimum.
Once has been calculated, it is used to transform themodel, M to the initial object
position. Thus, all future pose estimates are measured with respect to this initial starting po-
sition.

After initialization, the algorithm enters the tracking loop. Within the loop, data are acquired
by the high speed range sensor, and the object pose is estimated via the ICP algorithm in
roughly 0.1 - 0.3 sec. These high speeds are possible for two reasons. First, the difference in

Figure 4: Tracking Algorithm

T
M

D
k[]

M D 0[],,

T
M

D
user[] 




Load Precomputed Object
Model,M from disk;

Acquire Sensor Data

Calculate Initial Pose
Estimate via ICP

Calculate Incremental
Pose Estimate via ICP

k = k + 1

Acquire Sensor Data

M, k

D[0]

T
M

D
0[]

D[k]

M D k[],,

T
M

D
k 1–[] 




Initialize Counter:k = 1

TM
D 0[]

8

object position at timek and timek-1 is typically small. For example, translational velocities
of 10cm per second and rotational velocities of 20 degrees per second lead to incremental ob-
ject pose discrepancies of roughly 2cm and 4 degrees. Thus, since the ICP algorithm uses

as the starting point when finding , the algorithm can perform the regis-
tration in a small number of iterations, typically 3-10. Second, the resolution of the range data
used in the tracking loop, usually 16x16, is less than the full sensor resolution of 32x32. The
reduced number of data points in the setD[k] results in a faster calculation of the pose esti-
mate.

During each data acquisition cycle, two simple preprocessing steps are performed on the
range data. The first step eliminates noisy range data. For the CMU high speed range sensor,
noisy data is associated with poor reflection of the projected light from the object. Thus, noisy
range data can be eliminated by thresholding the reflected intensity values. Since each cell in
the range sensor has circuitry for measuring intensity, this is a trivial operation. The second
preprocessing step determines which range data points lie on the surface of the object to be
tracked. Since our experiments are performed in an uncluttered environment, range data on
the object surface can be distinguished by thresholding the Z component of the range data.
While this simple operation works well for our experiments, a more sophisticated approach
would be required if the object were in a cluttered environment.

Using as the starting point for incremental pose estimation works well when ob-
ject motion is erratic and unpredictable. In some situations, however, object motion may be
smooth, continuous and thus easier to predict. For such motions, improved results are possi-
ble using an extrapolation scheme such as a Kalman filter. While we have not implemented
a Kalman filter for this purpose, we have implemented both first and second order extrapola-
tion. Since the extrapolated pose is often closer to the true pose than , the time
required to compute the pose is reduced.

4.0 Experimental Setup

The experimental setup is shown in Figure 5. The CMU high speed VLSI range sensor de-
veloped by Gruss, Tada and Kanade [6] consists of two primary components: the sensor head
and the light stripe generator. The tracked object, in this case a small bust of the Greek god-
dess Venus, is mounted on the end effector of a Microbot robot. The CCD imager is not a
primary component of the system, but is used for display purposes only. Not shown is a
Sparc-10 workstation used for computing the pose estimate, and for graphically displaying a
3-D model of the tracked object. The pose of the graphical 3-D model is updated at high speed
to reflect the current object pose estimate.

The CMU high speed range sensor is based on a modified version of the traditional light-
stripe range imaging technique known as the cell-parallel light-stripe method. The primary
advantage of the cell-parallel method is that range image acquisition time is made indepen-
dent of the number of data points in each frame.

The current version of the CMU range sensor can acquire a complete 32x32 cell range image
in as little as one millisecond. The range data is acquired at 10 bits of resolution, and is accu-
rate to 0.1% or better (0.5mm at 500mm). The sensor workspace is shaped like a four sided
pyramid. As currently configured, at a distance of 55cm from the sensor along the optical
axis, a cross section of the workspace is an 11.5cm square. Thus, the sensor resolution at this
distance is about 2.8 range measurements per cm in each direction.

TM
D k 1–[] TM

D k[]

TM
D k 1–[]

TM
D k 1–[]

9

All of the results presented below were collected using the face object shown in Figure 6.
This object was manufactured directly from a triangular mesh CAD model using a stere-
olithographic process [9]. The advantage of this approach is that the physical object is very
accurately represented by the corresponding CAD model. Thus, for purposes of characteriz-
ing system accuracy, errors caused by differences between the physical object and the CAD
model are minimized.

All pose estimates presented below are specified in an object centered coordinate system as
shown in Figure 6. The object itself is roughly 8cm x 10cm x 6cm in the X, Y, and Z direc-
tions respectively.

5.0 Pose Estimation Results

There are two results presented in this section. The first demonstrates the ability of our system
to accurately estimate the pose of stationary, or slowly moving objects. The second demon-
strates the ability to track complex motions in a highlyrepeatable manner. Currently, we do
not have the ability to generate complex and accurately calibrated dynamic trajectories which
are precisely known at each point along the trajectory. Therefore, we can not currently dem-
onstrate that our system canaccurately track high-speedmotions.

Figure 5: System Components

Tracked Object
Sensor Head
& Electronics

CCD Imager

Light-stripe GeneratorPositioning Device

10

5.1 Static Accuracy Results
The graphs in Figure 7 demonstrate the absolute accuracy of the system when the object is
assumed to be stationary. To collect this data, the object was manually positioned to selected
points along a trajectory using a high precision positioning device. At each point, 100 pose
estimates were computed, and corresponding mean and standard deviation values were cal-
culated. Each data point in the graphs compares the object’s ground truth position to the mean
of the corresponding estimated position. The solid line represents the zero error case, and ver-
tical deviations from this line can be interpreted as error.

The object trajectory for these experiments consisted of coupled translations along each axis,
and rotations about the Y axis. We were unable to generate rotations about the X and Z axes
due to limitations in our apparatus. The average error between ground truth and estimated po-
sitions is 0.93mm in the translation components and 1.4 degrees in the rotation components.
The standard deviation of each position estimate is less than 0.06mm in translation and 0.1
degree in rotation.

The results of Figure 7 demonstrate that the system can generate accurate pose estimates for
stationary or slowly moving objects. In these experiments, the full resolution of the sensor
was used, and the ICP termination threshold,ε, was small. In the current implementation, the
system is only capable of tracking very slowly moving objects using these parameter settings.
When tracking faster motions, such as those described in Section 5.2, the sensor resolution is

Figure 6: Face Object

Z

Y

X

11

0.0 10.0 20.030.0 40.0 50.0
Actual (mm)

0.0

10.0

20.0

30.0

40.0

50.0

M
ea

su
re

d
(m

m
)

X Translation

0.0 10.0 20.0 30.0 40.0 50.0
Actual (mm)

0.0

10.0

20.0

30.0

40.0

50.0

M
ea

su
re

d
(m

m
)

Y Translation

-25.0 -15.0 -5.0 5.0 15.0 25.0
Actual (mm)

-25.0

-15.0

-5.0

5.0

15.0

25.0

M
ea

su
re

d
(m

m
)

Z Translation

-2.0 -1.0 0.0 1.0 2.0
Actual (deg.)

-2.0

-1.0

0.0

1.0

2.0

M
ea

su
re

d
(d

eg
.)

X Rotation

-40.0 -20.0 0.0 20.0 40.0
Actual (deg.)

-40.0

-20.0

0.0

20.0

40.0

M
ea

su
re

d
(d

eg
.)

Y Rotation

-2.0 -1.0 0.0 1.0 2.0
Actual (deg.)

-2.0

-1.0

0.0

1.0

2.0

M
ea

su
re

d
(d

eg
.)

Z Rotation

Figure 7: Static Accuracy Measurements

12

5.2 Dynamic Tracking Results
Figure 8 contains plots of estimated pose as the object is moved through a complex trajectory
by the Microbot. Pose estimates are specified with respect to the object’s initial pose at time
0. Maximum object velocities are roughly 100 mm/sec in translation and 22 degrees/sec in
rotation.

Each graph in these figures actually contains 2 overlaid data sets corresponding to 2 different
executions of the trajectory. Furthermore, each single execution of the trajectory is periodic
with a period of 2. It is evident from these graphs that therepeatability of the pose estimation
system is quite good. These results also demonstrate that the system can perform pose esti-
mation fast enough to track object motion at the velocities specified above. The average cycle
time in these experiments was about 0.3 seconds (3.3Hz), with variation between about 0.1
seconds (10Hz) and 0.5 seconds (2Hz). This variation in cycle time reflects the variation in
the initial pose estimate relative to the actual pose. Large transformations be-
tween initial and actual pose result in an increased number of cycles required by the ICP al-
gorithm, and thus a longer overall cycle time. Thus, faster object velocities typically lead to
longer cycle times, while slower velocities lead to shorter cycle times.

6.0 Conclusions

We have described and demonstrated an approach for performing full 3-D pose estimation of
arbitrarily shaped rigid objects at speeds up to 10Hz. The approach utilizes a high speed VLSI
range sensor capable of acquiring 32x32 cell range images in 1 millisecond or less.

Three fundamental difficulties in real-time pose estimation have been addressed by the cur-
rent work. First, the direct use of 3-D range data circumvents the need to infer depth infor-
mation from 2-D data. Second, direct matching of object surface data avoids the need to solve
the feature extraction and correspondence problems. Third, computationally efficient algo-
rithms allow fast computation of the 3-D pose.

Real-time 3-D pose estimation would be useful in a variety of situations. In manufacturing
environments, it could be used in feedback control loops to allow a mechanism (i.e.: a robot)
to perform an operation (i.e.: grasping) on a moving part. In the area of Human Computer
Interaction (HCI), real-time pose estimation could be useful for tracking movements of a
body part for subsequent interpretation as input to a computer. In medicine, a variety of prob-
lems involve the need to register pre-operative, volumetric data with the corresponding anat-
omy of the actual patient. The approach described in this paper may be useful in these cases.

Acknowledgments

The authors would like to thank Kazunori Higuchi for supplying the triangular mesh CAD
models, Mark Wheeler for providing the code to implement the kd-tree search, Andy Gruss
and Shige Tada for providing assistance with the high speed range sensor, and Lee Weiss and
Kevin Hartmann for producing the stereolithographed object.

TM
D k 1–[]

13

0.0 50.0 100.0 150.0
time (secs)

-100.0

0.0

100.0

200.0
po

si
tio

n
(m

m
) X Translation

path 1
path 2

0.0 50.0 100.0 150.0
time (secs)

-100.0

0.0

100.0

200.0

po
si

tio
n

(m
m

) Y Translation
path 1
path 2

0.0 50.0 100.0 150.0
time (secs)

-600.0
-400.0
-200.0

0.0
200.0
400.0
600.0

po
si

tio
n

(m
m

) Z Translation
path 1
path 2

0.0 50.0 100.0 150.0
time (secs)

-30.0

-10.0

10.0

30.0

po
si

tio
n

(d
eg

.) X Rotation
path 1
path 2

0.0 50.0 100.0 150.0
time (secs)

-25.0
-15.0
-5.0
5.0

15.0
25.0

po
si

tio
n

(d
eg

.) Y Rotation
path 1
path 2

0.0 50.0 100.0 150.0
time (secs)

-200.0

-100.0

0.0

100.0

200.0

po
si

tio
n

(d
eg

.)

Z Rotation
path 1
path 2

Figure 8: Dynamic Repeatability Measurements

14

References

[1] Bentley, J.L. Multidimensional binary search trees used for associative searching.
Communications of the ACM. 18(9):509-517, September, 1975.

[2] Besl, P.J. and McKay, N.D. A method for registration of 3-D shapes.IEEE Transac-
tions on Pattern Analysis and Machine Intelligence. 14(2):239-256, February, 1992.

[3] Delingette, H., Hebert, M. and Ikeuchi, K. Shape representation and image segmen-
tation using deformable surfaces.Image and Vision Computing. 10(3):132-144,
April, 1992.

[4] Faugeras, O.D. and Hebert, M. The representation, recognition, and locating of 3-D
objects.The International Journal of Robotics Research. 5(3):27-52, Fall, 1986.

[5] Friedman, J.H., Bentley, J.L. and Finkel, R.A. An algorithm for finding best matches
in logarithmic expected time.ACM Transactions on Mathematical Software.
3(3):209-226, 1977.

[6] Gruss, A., Tada, S. and Kanade, T. A VLSI smart sensor for fast range imaging.Inter-
national Conference on Intelligent Robots and Systems (IROS '92), pages 349-58.
IEEE, Raleigh, NC, July, 1992.

[7] Horn, B.K.P. Closed-form solution of absolute orientation using unit quaternions.
Journal of the Optical Society of America A. 4(4):629-642, April, 1987.

[8] Kehtarnavaz, N. and Mohan, S. A framework for estimation of motion parameters
from range images.Computer Vision, Graphics, and Image Processing. 45(1):88-
105, January, 1989.

[9] Marcus, H. and Bourell, D. Solid free form fabrication.Advanced Materials and Pro-
cesses. 144(3):28-35, September, 1993.

[10] Papanikolopoulos, N.P., Nelson, B and Khosla, P.K. Full 3-D tracking using the con-
trolled active vision paradigm.Proceedings of the International Symposium on Intel-
ligent Control. IEEE, Glasgow, Scotland, U.K., August, 1992.

[11] Sato, K. and Inokuchi, S. Range-imaging system utilizing nematic liquid crystal
mask.Proc. ICCV, pages 657-661. London, UK, 1987.

[12] Wang, J. and Wilson, W.J. 3D relative position and orientation estimation using Kal-
man filter for robot control.Proceedings of IEEE International Conference on Robot-
ics and Automation, pages 2638-2645. IEEE, Nice, France, May, 1992.

[13] Yamamoto, M. Direct estimation of range flow on deformable shape from a video rate
range camera.IEEE Transactions on Pattern Analysis and Machine Intelligence.
15(1):82-89, January, 1993.

[14] Zhang, Z. Iterative point matching for registration of free-form curves and surfaces.
The International Journal of Computer Vision. To Appear.

