
Real-time 3D Reconstruction in Dynamic Scenes using Point-based Fusion

Maik Keller

pmdtechnologies

Damien Lefloch

University of Siegen

Martin Lambers

University of Siegen

Shahram Izadi

Microsoft Research

Tim Weyrich

University College London

Andreas Kolb

University of Siegen

Abstract

Real-time or online 3D reconstruction has wide appli-

cability and receives further interest due to availability of

consumer depth cameras. Typical approaches use a mov-

ing sensor to accumulate depth measurements into a single

model which is continuously refined. Designing such systems

is an intricate balance between reconstruction quality, speed,

spatial scale, and scene assumptions. Existing online meth-

ods either trade scale to achieve higher quality reconstruc-

tions of small objects/scenes. Or handle larger scenes by

trading real-time performance and/or quality, or by limiting

the bounds of the active reconstruction. Additionally, many

systems assume a static scene, and cannot robustly handle

scene motion or reconstructions that evolve to reflect scene

changes. We address these limitations with a new system

for real-time dense reconstruction with equivalent quality

to existing online methods, but with support for additional

spatial scale and robustness in dynamic scenes. Our system

is designed around a simple and flat point-based represen-

tation, which directly works with the input acquired from

range/depth sensors, without the overhead of converting be-

tween representations. The use of points enables speed and

memory efficiency, directly leveraging the standard graphics

pipeline for all central operations; i.e., camera pose estima-

tion, data association, outlier removal, fusion of depth maps

into a single denoised model, and detection and update of

dynamic objects. We conclude with qualitative and quantita-

tive results that highlight robust tracking and high quality

reconstructions of a diverse set of scenes at varying scales.

1. Introduction and Background

Online 3D reconstruction receives much attention as inex-

pensive depth cameras (such as the Microsoft Kinect, Asus

Xtion or PMD CamBoard) become widely available. Com-

pared to offline 3D scanning approaches, the ability to obtain

reconstructions in real time opens up a variety of interactive

applications including: augmented reality (AR) where real-

world geometry can be fused with 3D graphics and rendered

live to the user; autonomous guidance for robots to recon-

struct and respond rapidly to their environment; or even to

provide immediate feedback to users during 3D scanning.

The first step of the reconstruction process is to acquire

depth measurements either using sequences of regular 2D

images (e.g. [19]), or with active sensors, such as laser

scanners or depth cameras, based on triangulation or time-

of-flight (ToF) techniques. Unlike methods that focus on

reconstruction from a complete set of 3D points [5, 7], on-

line methods require fusion of many overlapping depth maps

into a single 3D representation that is continuously refined.

Typically methods first find correspondences between depth

maps (data association) and register or align depth maps to

estimate the sensor’s egomotion [1, 24]. The fusion method

typically involves removal of outliers e.g. by visibility test-

ing between depth maps [16], observing freespace violations

[2], or photo-consistency [12], and merging of measurements

into the global model, e.g. using simple weighted averaging

[2] or more costly spatial regularization [25, 12].

Recent online systems [6, 11] achieve high-quality results

by adopting the volumetric fusion method of Curless and

Levoy [2]. This approach supports incremental updates, ex-

ploits redundant samples, makes no topological assumptions,

approximates sensor uncertainty, and fusion is performed

using a simple weighted average. For active sensors, this

method produces very compelling results [2, 9, 6, 11]. The

drawbacks are the computational overheads needed to con-

tinuously transition between different data representations:

Where point-based input is converted to a continuous implicit

function, discretized within a regular grid data structure, and

converted back to an (explicit) form using expensive poly-

gonization [10] or raycasting [14] methods. As well as the

memory overheads imposed by using a regular voxel grid,

which represents both empty space and surfaces densely, and

thus greatly limits the size of the reconstruction volume.

These memory limitations have led to moving-volume

systems [17, 23], which still operate on a very restricted

volume, but free-up voxels as the sensor moves; or hierarchi-

cal volumetric data structures [26], which incur additional

computational and data structure complexity for only limited

gains in terms of spatial extent.

Beyond volumetric methods, simpler representations have

1



also been explored. Height-map representations [3] work

with compact data structures allowing scalability, especially

suited for modeling large buildings with floors and walls,

since these appear as clear discontinuities in the height-

map. Multi-layered height-maps support reconstruction of

more complex 3D scenes such as balconies, doorways, and

arches [3]. While these methods support compression of

surface data for simple scenes, the 2.5D representation fails

to model complex 3D environments efficiently.

Point-based representations are more amenable to the

input acquired from depth/range sensors. [18] used a point-

based method and custom structured light sensor to demon-

strate in-hand online 3D scanning. Online model rendering

required an intermediate volumetric data structure. Interest-

ingly, an offline volumetric method [2] was used for higher

quality final output, which nicely highlights the computa-

tional and quality trade-offs between point-based and volu-

metric methods. [22] took this one step further, demonstrat-

ing higher quality scanning of small objects using a higher

resolution custom structured light camera, sensor drift correc-

tion, and higher quality surfel-based [15] rendering. These

systems however focus on single small object scanning. Fur-

ther, the sensors produce less noise than consumer depth

cameras (due to dynamic rather than fixed structured light

patterns), making model denoising less challenging.

Beyond reducing computational complexity, point-based

methods lower the memory overhead associated with vol-

umetric (regular grid) approaches, as long as overlapping

points are merged. Such methods have therefore been used

in larger sized reconstructions [4, 20]. However, a clear

trade-off becomes apparent in terms of scale versus speed

and quality. For example, [4] allow for reconstructions of

entire floors of a building (with support for loop closure and

bundle adjustment), but frame rate is limited (∼ 3 Hz) and an

unoptimized surfel map representation for merging 3D points

can take seconds to compute. [20] use a multi-level surfel

representation that achieves interactive rates (∼ 10 Hz) but

require an intermediate octree representation which limits

scalability and adds computational complexity.

In this paper we present an online reconstruction system

also based around a flat, point-based representation, rather

than any spatial data structure. A key contribution is that our

system is memory-efficient, supporting spatially extended

reconstructions, but without trading reconstruction quality

or frame rate. As we will show, the ability to directly render

the representation using the standard graphics pipeline, with-

out converting between multiple representations, enables

efficient implementation of all central operations, i.e., cam-

era pose estimation, data association, denoising and fusion

through data accumulation, and outlier removal.

A core technical contribution is leveraging a fusion

method that closely resembles [2] but removes the voxel

grid all-together. Despite the lack of a spatial data structure,

our system still captures many benefits of volumetric fusion,

with competitive performance and quality to previous online

systems, allowing for accumulation of denoised 3D models

over time that exploit redundant samples, model measure-

ment uncertainty, and make no topological assumptions.

The simplicity of our approach allows us to tackle another

fundamental challenge of online reconstruction systems: the

assumption of a static scene. Most previous systems make

this assumption or treat dynamic content as outliers [18, 22];

only KinectFusion [6] is at least capable of reconstructing

moving objects in a scene, provided a static pre-scan of the

background is first acquired. Instead, we leverage the imme-

diacy of our representation to design a method to not only

robustly segment dynamic objects in the scene, which greatly

improves the robustness of the camera pose estimation, but

also to continuously update the global reconstruction, regard-

less of whether objects are added or removed. Our approach

is further able to detect when a moving object has become

static or a stationary object has become dynamic.

The ability to support reconstructions at quality compara-

ble to state-of-the-art, without trading real-time performance,

with the addition of extended spatial scale and support for

dynamic scenes provides unique capabilities over prior work.

We conclude with results from reconstructing a variety of

static and dynamic scenes of different scales, and an experi-

mental comparison to related systems.

2. System Overview

Our high-level approach shares commonalities with the

existing incremental reconstruction systems (presented previ-

ously): we use samples from a moving depth sensor; first pre-

process the depth data; then estimate the current six degree-

of-freedom (6DoF) pose of sensor relative to the scene; and

finally use this pose to convert depth samples into a unified

coordinate space and fuse them into an accumulated global

model. Unlike prior systems, we adopt a purely point-based

representation throughout our pipeline, carefully designed

to support data fusion with quality comparable to online vol-

umetric methods, whilst enabling real-time reconstructions

at extended scales and in dynamic scenes.

Our choice of representation makes our pipeline ex-

tremely amenable to implementation using commodity

graphics hardware. The main system pipeline as shown

in Fig. 1 is based on the following steps:

Figure 1. Main system pipeline.

Depth Map Preprocessing Using the intrinsic parame-

ters of the camera, each input depth map from the depth



sensor is transformed into a set of 3D points, stored in a

2D vertex map. Corresponding normals are computed from

central-differences of the denoised vertex positions, and per-

point radii are computed as a function of depth and gradient

(stored in respective normal and radius maps).

Depth Map Fusion Given a valid camera pose, input

points are fused into the global model. The global model is

simply a list of 3D points with associated attributes. Points

evolve from unstable to stable status based on the confi-

dence they gathered (essentially a function of how often they

are observed by the sensor). Data fusion first projectively

associates each point in the input depth map with the set

of points in the global model, by rendering the model as

an index map. If corresponding points are found, the most

reliable point is merged with the new point estimate using

a weighted average. If no reliable corresponding points are

found, the new point estimate is added to the global model as

an unstable point. The global model is cleaned up over time

to remove outliers due to visibility and temporal constraints.

Sec. 4 discusses our point-based data fusion in detail.

Camera Pose Estimation All established (high confi-

dence) model points are passed to the visualization stage,

which reconstructs dense surfaces using a surface splatting

technique (see Sec. 5). To estimate the 6DoF camera pose,

the model points are projected from the previous camera

pose, and a pyramid-based dense iterative closest point (ICP)

[11] alignment is performed using this rendered model map

and input depth map. This provides a new relative rigid 6DoF

transformation that maps from the previous to new global

camera pose. Pose estimation occurs prior to data fusion, to

ensure the correct projection during data association.

Dynamics Estimation A key feature of our method is

automatic detection of dynamic changes in the scene, to

update the global reconstruction and support robust camera

tracking. Dynamic objects are initially indicated by outliers

in point correspondences during ICP. Starting from these

areas, we perform a point-based region growing procedure to

identify dynamic regions. These regions are excluded from

the camera pose estimate, and their corresponding points

in the global model are reset to unstable status, leading to

a natural propagation of scene changes into our depth map

fusion. For more detail, see Sec. 6.

3. Depth Map Preprocessing

We denote a 2D pixel as u = (x,y)⊤∈ R
2. Di ∈ R is the

raw depth map at time frame i. Given the intrinsic camera

calibration matrix Ki, we transform Di into a corresponding

vertex map Vi, by converting each depth sample Di(u) into

a vertex position vi(u) = Di(u)K
−1
i (u⊤,1)⊤ ∈ R

3 in cam-

era space. A corresponding normal map Ni is determined

from central-differences of the vertex map. A copy of the

depth map (and hence associated vertices and normals) are

also denoised using a bilateral filter [21] (for camera pose

estimation later).

The 6DoF camera pose transformation comprises of rota-

tion (Ri ∈ SO3) matrix and translation (ti ∈ R
3) vector, com-

puted per frame i as Ti = [Ri, ti]∈ SE3. A vertex is converted

to global coordinates as v
g
i = Tivi. The associated normal is

converted to global coordinates as n
g
i (u) = Ri ni(u). Multi-

scale pyramids V l
i and N l

i are computed from vertex and

normal maps for hierarchical ICP, where l ∈ {0,1,2} and

l = 0 denotes the original input resolution (e.g. 640×480 for

Kinect or 200×200 for PMD CamBoard).

Each input vertex also has an associated radius ri(u) ∈ R

(collectively stored in a radius mapRi ∈ R), determined as

in [22]. To prevent arbitrarily large radii from oblique views,

we clamp radii for grazing observations exceeding 75◦.

In the remainder, we omit time frame indices i for clarity,

unless we refer to two different time frames at once.

4. Depth Map Fusion

Our system maintains a single global model, which is

simply an unstructured set of points P̄k each with associated

position v̄k ∈ R
3, normal n̄k ∈ R

3, radius r̄k ∈ R, confidence

counter c̄k ∈ R, and time stamp t̄k ∈ N, stored in a flat array

indexed by k ∈ N.

New measurements v are either added as or merged with

unstable points, or they get merged with stable model points.

Merging v with a point P̄k in the global model increases the

confidence counter c̄k. Eventually an unstable point changes

its status to stable: points with c̄k ≥ cstable are considered

stable (in practice cstable = 10). In specific temporal or geo-

metric conditions, points are removed from the global model.

4.1. Data Association

After estimation of the camera pose of the current input

frame (see Sec. 5), each vertex v
g and associated normal and

radius are integrated into the global model.

In a first step, for each valid vertex v
g, we find potential

corresponding points on the global model. Given the inverse

global camera pose T
−1 and intrinsics K, each point P̄k in

the global model can be projected onto the image plane

of the current physical camera view, where the respective

point index k is stored: we render all model points into a

sparse index map I. Unlike the splat-based dense surface

reconstruction renderer used in other parts of our pipeline

(see Sec. 5), this stage renders each point index into a single

pixel to reveal the actual surface sample distribution.

As nearby model points may project onto the same pixel,

we increase the precision of I by supersampling, represent-

ing I at 4×4 the resolution of the input depth map. We start

identifying model points near v
g(u) by collecting point in-

dices within the 4×4-neighborhood around each input pixel

location u (suitably coordinate-transformed from D to I).



Amongst those points, we determine a single corresponding

model point by applying the following criteria:

1. Discard points larger than ±δdepth distance from the

viewing ray v
g(u) (the sensor line of sight), with δdepth

adapted according to sensor uncertainty (i.e. as a func-

tion of depth for triangulation-based methods [13]).

2. Discard points whose normals have an angle larger than

δnorm to the normal n
g(u). (We use δnorm = 20◦.)

3. From the remaining points, select the ones with the

highest confidence count.

4. If multiple such points exist, select the one closest to

the viewing ray through v
g(u).

4.2. Point Averaging with Sensor Uncertainty

If a corresponding model point P̄k is found during data

association, this is averaged with the input vertex v
g(u) and

normal n
g(u) as follows:

v̄k←
c̄kv̄k +αv

g(u)

c̄k +α
, n̄k←

c̄kn̄k +αn
g(u)

c̄k +α
, (1)

c̄k← c̄k +α , t̄k← t , (2)

where t is a new time stamp. Our weighted average is distinct

from the original KinectFusion system [11], as we introduce

an explicit sample confidence α . This applies a Gaussian

weight on the current depth measurement as α = e−
γ2/2σ2

,

where γ is the normalized radial distance of the current depth

measurement from the camera center, and σ = 0.6 is derived

empirically. This approach weights measurements based on

the assumption that measurements closer to the sensor center

will increase in accuracy [2]. As shown in Fig. 2, modeling

this sensor uncertainty leads to higher quality denoising.

Figure 2. Weighted averaging of points using our method (left) and

the method of [11] (right).

Since the noise level of the input measurement increases

as a function of depth [13], we apply Eqs. (1) only if the

radius of the new point is not significantly larger than the

radius of the model point, i.e., if r(u) ≤ (1+ δr)r̄; we em-

pirically chose δr = 1/2. This ensures that we always refine

details, but never coarsen the global model. We apply the

time stamp and the confidence counter updates according to

Eqs. (2) irrespectively.

If no corresponding model point has been identified, a

new unstable point is added to the global model with c̄k = α ,

containing the input vertex, normal and radius.

4.3. Removing Points

So far we have merged or added new measurements to

the global model. Another key step is to remove points from

our global model due to various conditions:

1. Points that remain in the unstable state for a long time

are likely outliers or artifacts from moving objects and

will be removed after tmax time steps.

2. For stable model points that are merged with new data,

we remove all model points that lie in front of these

newly merged points, as these are free-space violations.

To find these points to remove, we use the index map

again and search the neighborhood around the pixel

location that the merged point projects onto1. This is

similar in spirit to the free-space carving method of [2],

but avoids expensive voxel space traversal.

3. If after averaging, a stable point has neighboring points

(identified again via the index map) with very similar

position and normal and their radii overlap, then we

merge these redundant neighboring points to further

simplify the model.

Points are first marked to be removed from P̄k, and in a

second pass, the list is sorted (using a fast radix sort imple-

mentation), moving all marked points to the end, and finally

items deleted.

5. Camera Pose Estimation

Following the approach of KinectFusion [11], our camera

pose estimation uses dense hierarchical ICP to align the bilat-

eral filtered input depth map Di (of the current frame i) with

the reconstructed model by rendering the model into a virtual

depth map, or model map, D̂i−1, as seen from the previous

frame’s camera pose Ti−1. We use 3 hierarchy levels, with

the finest level at the camera’s resolution; unstable model

points are ignored. The registration transformation provides

the relative change from Ti−1 to Ti.

While KinectFusion employs raycasting of the (implicit)

voxel-based reconstruction, we render our explicit, point-

based representation using a simple surface-splatting tech-

nique: we render overlapping, disk-shaped surface splats

that are spanned by the model point’s position v̄, radius r̄

and orientation n̄. Unlike more refined surface-splatting

techniques, such as EWA Surface Splatting [27], we do not

perform blending and analytical prefiltering of splats but

trade local surface reconstruction quality for performance by

simply rendering opaque splats.

We use the same point-based renderer for user feedback,

but add Phong shading of surface splats, and also overlay

the dynamic regions of the input depth map.

1Backfacing points that are close to the merged points remain protected—

such points may occur in regions of high curvature or around thin geometry

in the presence of noise and slight registration errors. Furthermore, we

protect points that would be consistent with direct neighbor pixels in D, to

avoid spurious removal of points around depth discontinuities.



6. Dynamics Estimation

The system as described above already has limited sup-

port for dynamic objects, in that unstable points must gain

confidence to be promoted to stable model points, and so

fast moving objects will be added and then deleted from the

global model. In this section we describe additional steps

that lead to an explicit classification of observed points as

being part of a dynamic object. In addition, we aim at seg-

menting entire objects whose surface is partially moving and

remove them from the global point model.

We build upon an observation by Izadi et al. [6]: when

performing ICP, failure of data association to find model

correspondences for input points is a strong indication that

these points are depth samples belonging to dynamic objects.

Accordingly, we retrieve this information by constructing

an ICP status map S (with elements si(u)) that encodes for

each depth sample the return state of ICP’s search for a

corresponding model point in the data association step:

no input: vk(u) is invalid or missing.

no cand: No stable model points in proximity of vk(u).
no corr: Stable model points in proximity of, but no

valid ICP correspondence for vk(u).
corr: Otherwise ICP found a correspondence.

Input points marked as no corr are a strong initial estimate

of parts of the scene that move independent of camera mo-

tion, i.e. dynamic objects in the scene.

We use these points to seed our segmentation method

based on hierarchical region growing (see below). It creates

a dynamics map X, storing flags xi(u), that segments the

current input frame into static and dynamic points. The

region growing aims at marking complete objects as dynamic

even if only parts of them actually move. (Note that this high-

level view on dynamics is an improvement over the limited

handling of dynamics in previous approaches, e.g., [6].)

In the depth map fusion stage, model points that are

merged with input points marked as dynamic are potentially

demoted to unstable points using the following rule:

if xi(u) ∧ c̄k ≥ cstable +1 then c̄k← 1 (3)

Thus, the state change from static to dynamic is reflected

immediately in the model. A critical aspect is the offset

of +1 in Eq. (3): it ensures that any dynamic point that

sufficiently grew in confidence (potentially because it is now

static) is allowed to be added to the global model for at

least one iteration; otherwise, a surface that has once been

classified as dynamic would never be able to re-added to the

global model, as it would always be inconsistent with the

model, leading to no corr classification.

For the bulk of the time, however, dynamic points remain

unstable and as such are not considered for camera pose

estimation (see Sec. 5), which greatly improves accuracy

and robustness of T.

Hierarchical Region Growing The remainder of this sec-

tion explains the region growing-based segmentation ap-

proach that computes the map X.

The goal is essentially to find connected components in

D. In the absence of explicit neighborhood relations in

the point data, we perform region growing based on point

attribute similarity. Starting from the seed points marked in

X, we agglomerate points whose position and normal are

within given thresholds of vertex v(u) and normal n(u) of a

neighbor with x(u) = true.

To accelerate the process, we start at a downsampled X 2,

and repeatedly upsample until we reach X 0 = X, each time

resuming region growing. (We reuse the input pyramids built

for camera pose estimation.)

We improve robustness to camera noise and occlusions

by removing stray no corr points through morphological

erosion at the coarsest pyramid level X 2 after initializing

it from S. This also ensures that X 2 covers only the inner

region of dynamic objects.

7. Results

We have tested our system on a variety of scenes (see

Table 1 ). Fig. 3 shows a synthetic scene Sim. We generated

rendered depth maps for a virtual camera rotating around

#frames #model- Avg. timings [ms]

input/processed points ICP Dyn- Fusion

(fps in./proc.) Seg.

Sim 950/950 467,200 18.90 2.03 11.50

(15/15)

Flower- 600/480 496,260 15.87 1.90 6.89

pot (30/24)

Teapot 1000/923 191,459 15.20 1.60 5.56

(30/27)

Large 11892/6704 4,610,800 21.75 2.39 13.90

Office (30/17)

Moving 912/623 210,500 15.92 3.23 16.61

Person (30/20)

Ball- 1886/1273 350,940 16.74 3.15 17.66

game (30/21)

PMD 4101/4101 280,050 10.70 0.73 3.06

(27/27)

Table 1. Results from test scenes obtained on a PC equipped with

an Intel i7 8-core CPU and an NVidia GTX 680 GPU. Input frames

have a size of 640×480 pixels, except for the PMD scene which

uses a frame size of 200×200.

Figure 3. The synthetic scene Sim. Left: error in final global model

based on ground truth camera transformations. Right: final error

based on ICP pose estimation2.



Figure 4. The scenes Flowerpot (top row) and Teapot (bottom row).

A and B show reconstruction results of the original KinectFusion

system. The other images show our method (middle: phong-shaded

surfels, right: model points colored with surface normals).

this scene and used these as input to our system. This gave

us ground truth camera transformations T
GT
i and ground

truth scene geometry. Using T
GT
i , the points in the resulting

global model have a mean position error of 0.019 mm. This

demonstrates only minimal error for our point-based data

fusion approach. The camera transformations Ti obtained

from ICP have a mean position error of 0.87 cm and a mean

viewing direction error of 0.1 degrees. This results in a mean

position error of 0.20 cm for global model points.

The Flowerpot and Teapot scenes shown in Fig. 4 were

recorded by Nguyen et al. [13]. Objects are placed on a

turntable which is rotated around a stationary Kinect camera.

Vicon is used for ground truth pose estimation of the Kinect,

which are compared to ICP for our method and the original

KinectFusion system Fig. 5

Fig. 6 shows that the number of global model points for

these scenes remains roughly constant after one full turn

of the turntable. This demonstrates that new points are not

continuously added; and the global model is refined but kept

compact. Note that one Kinect camera input frame provides

up to 307,200 input points, but the total number of points in

the final global teapot model is less than 300,000.

The Large Office scene shown in Fig. 7 consists of

two rooms with a total spatial extent of approximately

10m× 6m× 2.5m. A predefined volumetric grid with 32-

bit voxels and 512 MB of GPU memory would result in a

voxel size of more than 1 cm3. In contrast, our system does

not define the scene extents in advance: the global model

grows as required. Furthermore, it does not limit the size

of representable details; Fig. 7 shows close-ups of details

on the millimeter scale (e.g. the telephone keys). The 4.6

million global model points reported in Tab. 1 can be stored

in 110 MB of GPU memory using 3 floating point values

for the point position, 2 for the normalized point normal, 1

for the radius, and one extra byte for a confidence counter.

Additionally, RGB colors can be stored for each global point,

to texture the final model (see Fig. 7 far right). Rather than

2Rendered using CloudCompare, http://www.danielgm.net/cc/.

Figure 5. Tracking errors for the original KinectFusion system

compared to our point-based approach. Tracking results were

computed on the Flowerpot sequence, by subtracting Vicon ground

truth data from the resulting per frame 3D camera position. For

each system, error is computed as the absolute distance between

the estimated camera position and the ground truth position (after

aligning both coordinate spaces manually). Where the error of the

original KinectFusion exceeds that of the new, the gap is colored

blue. Where the error of our method exceeds the original, the gap

is colored red. Note our method is similar in performance with the

largest delta being ∼ 1cm.

Figure 6. The number of global model points stored on the GPU

plotted over time for the Flowerpot and Teapot scenes. Note after

the completion of one full turn of the turntable, the number of

points converges instead of continuously growing.

merge RGB samples, we simply store the last one currently.

In the Moving Person scene shown in Fig. 8, the person

first sits in front of the sensor and is reconstructed before

moving out of view. Since the moving person occupies

much of the field of view, leaving only few reliable points

for ICP, camera tracking fails with previous approaches (see

e.g. Izadi et al. Fig. 8 [6]). Our system segments the moving

person and ignores dynamic scene parts in the ICP stage,

thereby ensuring robustness to dynamic motion.

The Ballgame scene shown in Fig. 9 shows two people

playing with a ball across a table. Our region growing ap-

proach segments dynamics on the object level instead of just

http://www.danielgm.net/cc/


Figure 7. The Large Office scene, consisting of two large rooms and connecting corridors. A: overview; B and C: dynamically moving

objects during acquisition; Note the millimeter scale of the phone’s keypad. Other close-ups are also shown (right column: RGB textured).

Figure 8. The Moving Person scene. Person sits on a chair, is

reconstructed, and then moves. Dynamic parts occupy much of the

field-of-view and cause ICP errors with previous approaches (top

row). Segmenting the dynamics (A) and ignoring them during pose

estimation (B) allows increased robustness (bottom row).

the point level: each person is recognized as dynamic even if

only parts of their bodies are actually moving. Static objects

that start moving are marked as dynamic and their model

points are demoted to unstable status, while dynamic objects

that stop moving eventually reach stable status in the global

model when the observed points gain enough confidence.

Most scenes shown throughout this paper were recorded

with a Microsoft Kinect camera in near mode, but our method

is agnostic to the type of sensor used. Fig. 10 shows an ex-

ample scene recorded with a PMD CamBoard ToF camera,

which exhibits significantly different noise and error charac-

teristics [8]. In this example, we used the per-pixel amplitude

information provided by PMD sensors in the computation of

the sample confidence α (see Sec. 4.2).

8. Conclusion

We have presented a new system for online 3D recon-

struction which demonstrates new capabilities beyond the

state-of-art. Our system has been explicitly designed to allow

Figure 9. The Ballgame scene consists of two people moving a

ball across a table. A: global model colored with surface normals;

B: raw input data of the previously static ball being picked up; C:

segmentation of dynamic parts; Bottom row: reconstructed result

(model points + dynamic parts).

Figure 10. A: the PMD scene acquired with a PMD ToF camera. B

and C: close-ups using per-pixel intensity values for coloring.

for a single point-based representation to be used through-

out our pipeline, which closely fits the sensor input, and is

amenable to rendering (for visualization and data associa-

tion) through the standard graphics pipeline.

Despite the lack of a spatial data structure, our system

still captures many benefits of volumetric fusion, allowing

for accumulation of denoised 3D models over time that ex-

ploit redundant samples, model measurement uncertainty,

and make no topological assumptions. This is achieved

using a new point-based fusion method based on [2]. Recon-

structions at this scale, quality, speed and with the ability to

deal with scene motion and dynamic updates have yet to be

demonstrated by other point-based methods, and are core

contributions of our work.



There are many areas for future work. For example, whilst

our system scales to large scenes, there is the additional pos-

sibility of adding mechanisms for streaming subset of points

(from GPU to CPU) especially once they are significantly

far away from the current pose. This would help increase

performance and clearly the point-based data would be low

overhead in terms of CPU-GPU bandwidth. Another issue is

sensor drift, which we do not currently tackle, instead focus-

ing on the data representation. Drift in larger environments

can become an issue and remains an interesting direction

for future work. Here again the point-based representation

might be more amenable to correction after loop closure

detection, rather than resampling a dense voxel grid.

Acknowledgements

This research has partly been funded by the German Re-

search Foundation (DFG), grant GRK-1564 Imaging New

Modalities, and by the FP7 EU collaborative project BEAM-

ING (248620). We thank Jens Orthmann for his work on the

GPU framework osgCompute.

References

[1] P. Besl and N. McKay. A method for registration of 3-

D shapes. IEEE Trans. Pattern Anal. and Mach. Intell.,

14(2):239–256, 1992. 1

[2] B. Curless and M. Levoy. A volumetric method for building

complex models from range images. In Proc. Comp. Graph.

& Interact. Techn., pages 303–312, 1996. 1, 2, 4, 7

[3] D. Gallup, M. Pollefeys, and J.-M. Frahm. 3d reconstruction

using an n-layer heightmap. In Pattern Recognition, pages

1–10. Springer, 2010. 2

[4] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-D

mapping: Using Kinect-style depth cameras for dense 3D

modeling of indoor environments. Int. J. Robotics Research,

31:647–663, Apr. 2012. 2

[5] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and

W. Stuetzle. Surface reconstruction from unorganized points.

Computer Graphics (Proc. SIGGRAPH), 26(2), 1992. 1

[6] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe,

P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison, and

A. Fitzgibbon. KinectFusion: real-time 3D reconstruction

and interaction using a moving depth camera. In Proc. ACM

Symp. User Interface Softw. & Tech., pages 559–568, 2011.

1, 2, 5, 6

[7] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface

reconstruction. In Proc. EG Symp. Geom. Proc., 2006. 1

[8] A. Kolb, E. Barth, R. Koch, and R. Larsen. Time-of-flight

cameras in computer graphics. Computer Graphics Forum,

29(1):141–159, 2010. 7

[9] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller,

L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg,

et al. The digital michelangelo project: 3D scanning of large

statues. In Proc. Comp. Graph & Interact. Techn., pages

131–144, 2000. 1

[10] W. Lorensen and H. Cline. Marching cubes: A high resolu-

tion 3D surface construction algorithm. Computer Graphics,

21(4):163–169, 1987. 1

[11] R. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,

A. Davison, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon.

KinectFusion: Real-time dense surface mapping and tracking.

In Proc. IEEE Int. Symp. Mixed and Augm. Reality, pages

127–136, 2011. 1, 3, 4

[12] R. Newcombe, S. Lovegrove, and A. Davison. DTAM: Dense

tracking and mapping in real-time. In Proc. IEEE Int. Conf.

Comp. Vision, pages 2320–2327, 2011. 1

[13] C. Nguyen, S. Izadi, and D. Lovell. Modeling Kinect sen-

sor noise for improved 3D reconstruction and tracking. In

Proc. Int. Conf. 3D Imaging, Modeling, Processing, Vis. &

Transmission, pages 524–530, 2012. 4, 6

[14] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan.

Interactive ray tracing for isosurface rendering. In Proc. IEEE

Vis., pages 233–238. IEEE, 1998. 1

[15] H. Pfister, M. Zwicker, J. Van Baar, and M. Gross. Surfels:

Surface elements as rendering primitives. In Proc. Conf.

Comp. Graphics & Interact. Techn., pages 335–342, 2000. 2

[16] M. Pollefeys, D. Nistér, J. Frahm, A. Akbarzadeh, P. Mordo-

hai, B. Clipp, C. Engels, D. Gallup, S. Kim, P. Merrell, et al.

Detailed real-time urban 3D reconstruction from video. Int. J.

Comp. Vision, 78(2):143–167, 2008. 1

[17] H. Roth and M. Vona. Moving volume KinectFusion. In

British Machine Vision Conf., 2012. 1

[18] S. Rusinkiewicz, O. Hall-Holt, and M. Levoy. Real-time 3D

model acquisition. ACM Trans. Graph. (Proc. SIGGRAPH),

21(3):438–446, 2002. 2

[19] S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski.

A comparison and evaluation of multi-view stereo reconstruc-

tion algorithms. In Proc. IEEE Conf. Comp. Vision & Pat.

Rec., volume 1, pages 519–528. IEEE, 2006. 1

[20] J. Stückler and S. Behnke. Integrating depth and color cues for

dense multi-resolution scene mapping using RGB-D cameras.

In Proc. IEEE Int. Conf. Multisensor Fusion & Information

Integration, pages 162–167, 2012. 2

[21] C. Tomasi and R. Manduchi. Bilateral filtering for gray and

color images. In Proc. Int. Conf. Computer Vision, pages

839–846, 1998. 3

[22] T. Weise, T. Wismer, B. Leibe, and L. Van Gool. In-hand

scanning with online loop closure. In Proc. IEEE Int. Conf.

Computer Vision Workshops, pages 1630–1637, 2009. 2, 3

[23] T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard,

and J. McDonald. Kintinuous: Spatially extended KinectFu-

sion. Technical report, CSAIL, MIT, 2012. 1

[24] C. Yang and G. Medioni. Object modelling by registration

of multiple range images. Image and Vision Computing,

10(3):145–155, 1992. 1

[25] C. Zach. Fast and high quality fusion of depth maps. In

Proc. Int. Symp. on 3D Data Processing, Visualization and

Transmission (3DPVT), volume 1, 2008. 1

[26] M. Zeng, F. Zhao, J. Zheng, and X. Liu. Octree-based fusion

for realtime 3D reconstruction. Graph. Models, 75(3):126 –

136, 2013. 1

[27] M. Zwicker, H. Pfister., J. V. Baar, and M. Gross. Surface

splatting. In Computer Graphics (Proc. SIGGRAPH), pages

371–378, 2001. 4


