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Abstract

Video surveillance systems produce huge amounts of

data for storage and display. Long-term human mon-

itoring of the acquired video is impractical and in-

effective. Automatic abnormal motion detection sys-

tem which can effectively attract operator attention and

trigger recording is therefore the key to successful video

surveillance in dynamic scenes, such as airport termi-

nals. This paper presents a novel solution for real-

time abnormal motion detection. The proposed method

is well-suited for modern video-surveillance architec-

tures, where limited computing power is available near

the camera for compression and communication. The

algorithm uses the macroblock motion vectors that are

generated in any case as part of the video compression

process. Motion features are derived from the motion

vectors. The statistical distribution of these features

during normal activity is estimated by training. At the

operational stage, improbable-motion feature values in-

dicate abnormal motion. Experimental results demon-

strate reliable real-time operation.

1. Introduction

A video surveillance system covering a large office

building or a busy airport can apply hundreds and even

thousands of cameras. To avoid communication bot-

tlenecks, the acquired video is often compressed by a

local processor within the camera, or at a nearby video-

server. The compressed video is then transmitted to a

central facility for storage and display.

Abnormal motion detection is the key to effective

and economical video surveillance. The detection of

an abnormal motion can trigger video transmission and

recording, and can be used to attract the attention of

a human observer to a particular video channel. The

problem is characterized by three related challenges.

One is the reliability requirement, meaning that irreg-

ular events should be consistently detected, while the

false-alarm rate should be sufficiently low. The second

is effective characterization of normal motion, allow-

ing discrimination between normal and abnormal activ-

ity. Third, abnormal motion detection should be accom-

plished using the limited computational power available

at or near the camera.

This paper presents a novel real-time abnormal mo-

tion detection scheme. The algorithm uses the mac-

roblock motion vectors that are generated anyway as

part of standard video compression methods [3]. Mo-

tion features are derived from the motion vectors. Nor-

mal activity is characterized by the joint statistical dis-

tribution of the motion features, estimated during a

training phase at the inspected site. During online op-

eration, improbable-motion feature values indicate ab-

normal motion. Relying on motion vectors rather than

on pixel data reduces the input data rate by about two

orders of magnitude, and allows real-time operation on

limited computational platforms.

Previous works that rely on segmentation, grouping

or tracking have been reported in [7, 2, 13, 20, 16,

14, 6, 10]. Steps towards liberation from segmenta-

tion and tracking in activity analysis have been taken

by [11, 18, 15, 4, 9]. Activity analysis relying on an-

ticipated characteristics of human motion, such as peri-

odicity, gait or gestures, can be found in [1, 12, 19, 11].

In [11], principal component analysis of the macroblock

motion vectors was used to match the detected activ-

ity in a video stream to known human activities (walk-

ing, running, kicking), and for selective access of details

from the uncompressed domain. Novelty or activity de-

tection in video using pixel-level motion analysis has

been reported by [8, 5].

Unlike most previous methods for video analysis,

the suggested approach completely avoids segmenta-

tion and tracking. Taken together with the reliance on

macroblock motion vectors and the lack of a-priori pre-

sumptions regarding normal motion, these design deci-

sions distinguish our work from most of the available

literature.



2 Method

2.1 From video to motion vectors

Common video compression schemes exploit both

the spatial and the temporal (frame-to-frame) redun-

dancy present in the image sequence [3]. A frame is

either an intra-frame that is compressed as a full still

image, eliminating its spatial redundancy, or an inter-

frame represented by macro-block displacement vectors

relative to (say) the previous frame, and an error image.

Intra-frames are generated at constant intervals, to al-

low random-access to the content, and to reduce accu-

mulated errors. An intra-frame is also provided when

there is a significant change in the scene (e.g., an edit-

ing cut), so that representation of the current frame in

terms of the previous one is inefficient.

A motion vector Vi,j = {Vxi,j
, Vyi,j

} is associ-

ated with each Mh × Mw macro-block (i, j) in an

inter-frame. In the current implementation Mh =
Mw = 16 pixels. Generally, i ∈ {1, . . . , imax},

j ∈ {1, . . . , jmax}. The motion vector points to the

location of the most similar Mh ×Mw block in the pre-

vious frame. Inter-frame l is then represented by a set

of n = imax × jmax motion vectors V l = {V l
i,j , i =

1, . . . , imax, j = 1, . . . , jmax} associated with its mac-

roblocks, or by their 2n components {V l
xi,j

, V l
yi,j

, i =
1, . . . , imax, j = 1, . . . , jmax}.

The difference between the current block and the ref-

erence block in the previous frame is compressed as part

of the error image, and used for reconstruction. When

the match between the current macro-block and the ref-

erence block is poor, the current block is compressed by

itself and is referred to as an intra-block.

2.2 From motion-vectors to motion features

A small set F l of m << n features is derived from

the set of motion vectors V l. Its regular probability dis-

tribution is estimated during training. In the course of

online operation, the feature vector F l of the incoming

frame is compared to the statistical model. If its proba-

bility is low, it is declared abnormal.

The surveillance domain knowledge allows “man-

ual” selection of the m features in F l. The advantage of

human-designed features with respect to blindly gen-

erated ones is their clear conceptual meaning, provid-

ing insight and promoting testability and maintainabil-

ity. Let

|V l
i,j | =

√

(V l
xi,j

)2 + (V l
yi,j

)2,

Φl
i,j = arctan(V l

yi,j
/V l

xi,j
)

respectively denote the magnitude and direction of the

motion vector V l
i,j . The current implementation uses

the following m = 5 features.

2.2.1 Total absolute motion

F l
TAM =

∑

i,j

|Vi,j | (1)

This feature corresponds to the total motion in the

scene. No distinction is made between the motion of

‘objects’ and the motion of, say, tree branches on a

windy day.

2.2.2 Regional information

Dividing the frame into K rectangular sub-frames Ak,

the area of dominant motion is obtained by:

F l
ADM = k∗ = arg max

k
(

∑

i,j∈Ak

|V l
i,j |) (2)

This feature is the index of the sub-area of frame l with

the largest sum of absolute values of motion vectors.

Informally, this is the part of the frame with the largest

absolute motion. In the current implementation, K = 9.

The ratio between the total absolute motion in the

dominant area Ak∗ of frame l and the total absolute

motion F l
TAM is an indicator of motion homogeneity

within the frame. Formally,

F l
MH = max

k

∑

i,j∈Ak
|V l

i,j |

F l
TAM + ǫ

(3)

The addition of the small positive constant ǫ to the de-

nominator prevents division by 0 in static frames.

2.2.3 Directional information

The range of motion directions {−π, π} is divided into

R equal fractions of size ∆ϕ = 2π/R. Let r =
0 . . . R − 1 be the angular fraction index. The princi-

pal motion direction is defined as the index of the most

popular angular fraction:

F l
PMD = r∗ = arg max

r

∑

i,j

(|Φl
i,j − r∆ϕ| <

∆ϕ

2
)

(4)

where the sum is incremented if the arithmetic condition

is satisfied.

A measure for the dominance of the principal motion

direction is obtained by the ratio of the total motion in

the principal motion direction and the total absolute mo-

tion in the frame:

F l
DPM =

∑

i,j |V
l
i,j |(|Φ

l
i,j − r∗∆ϕ| < ∆ϕ

2
)

F l
TAM + ǫ

(5)



2.3 Training and online detection

The feature vector F l corresponding to frame l is

represented by a point in an m-dimensional feature

space. The essence of the training phase is estimation or

modeling of the probability density function of feature

vectors during normal conditions. Having an estimate

of the probability density function allows, in the opera-

tional stage, to associate with each incoming frame the

probability density of its feature vector under the nor-

mal motion hypothesis. The requirement of real-time

computation at the full video rate supports the selection

of a histogram that holds a discrete approximation of the

m-dimensional probability density function of the fea-

ture vectors obtained during the training stage. In the

detection phase, the feature vector associated with each

incoming frame is computed. When the probabilities of

the occurrence of k features vectors associated with k
consecutive frames are below a threshold T , the k-est

frame is declared abnormal.

3 Experimental results

The suggested abnormal motion detection algorithm

was successfully tested at outdoor location. The al-

gorithm was implemented in C++. The simplicity of

the computations and the well-defined dynamic ranges

allow fixed-point numerical representation. The code

runs on a Pentium 4 2.8GHz PC with a Windows C++

graphical user interface at a rate of 75 frames per sec-

ond, without optimization. This is three times faster

than the video rate. In this experiment, the camera

captured a pedestrian pathway from a nearby build-

ing. The complete movie, with analysis by our system,

can be found at http://abn-motion.axspace.com. Abnor-

mal/normal motion frames are framed with red/green

respectively.

Roughly 50 minutes of video were acquired. About

41 minutes of normal pedestrian traffic were used for

training. The 9-minute long test sequence contained

normal and abnormal activity. The movie was captured

using a SONY TRV900E PAL (25fps) digital video

camera. It was then transformed to a computer in

DV format and coded to MPEG-1 format using the

generic MPEG-2 codec from the MPEG group website

http://www.mpeg.org/MPEG/MSSG/#source.

Several representative frames from the video se-

quence are provided. Examples of frames showing nor-

mal behavior are presented in Fig. 1. A few frames de-

tected as abnormal are presented in Fig 2. The frames

shown belong to a jumping episode, to a running and

grass-crossing episode and to service vehicle episode.

Note that the semantic descriptions (jumping, running,

frame 169 frame 993

frame 1044 frame 1382

Figure 1: Examples of normal behavior.

grass-crossing) are provided merely for clarity. The op-

eration of the algorithm is based on global motion fea-

tures, without segmentation, tracking or any other at-

tempt for semantic interpretation. These events are ab-

normal simply in the sense that similar motion patterns

had not been observed (generally, have only rarely been

observed) during the training session.

4 Discussion

We presented a computationally efficient and reliable

method for abnormal motion detection in compressed

video streams. The input to the algorithm is the set

of macro-block motion vectors (as well as intra-frame

and intra-block flags) that are produced anyway by the

compression process - an essential part of many modern

video surveillance systems.

In the context of video analysis, ‘normal’ and ‘ab-

normal’ are fundamentally hard to define. The best cur-

rent way to evaluate an abnormal motion detector is by

learning the patterns of normal activity. Since the learn-

ing is based global motion features, no attempt is made

to associate the motion abnormality detected with any

‘object’ in the scene. From a practical point of view,

since the algorithm is used mainly for triggering video

recording for later human analysis, or for triggering

transmission to a human observer, detecting the ‘ob-

ject’ that generated the abnormal motion is much less

important than the detection of the abnormality itself.

Fundamentally, the algorithm can detect abnormal mo-

tion that cannot be associated with any specific object.

For example, panic in a crowd of people at a subway



frame 558 frame 570

frame 11644 frame 12311

frame 11132 frame 11155

Figure 2: Frames taken from a jumping episode (first

row), from a running and grass-crossing episode (sec-

ond row) and from a service vehicle episode (third row)

are detected as abnormal.

The complete movie, with analysis by our system, can

be found at http://abn-motion.axspace.com.

station, or an unexpected tsunami wave at the seafront,

are alarming situations characterized by abnormal mo-

tion, even though no particular ‘object’ in the scene can

be associated with it.

The algorithm is modular, in the sense that different
feature vectors can be suggested and alternative prob-
ability density estimation or modeling methods can be
used. Further extension given long training sequences
would be to learn normal pattern of activity from short
frame sequences using for example Markov chains.
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