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Abstract—This paper discusses robotic telemanipulation with
Kalman active observers and online stiffness estimation. Opera-
tional space techniques, feedback linearization, discrete state space
methods, augmented states, and stochastic design are used to con-
trol a robotic manipulator with a haptic device. Stiffness estimation
only based on force data (measured, desired, and estimated forces)
is proposed, avoiding explicit position information. Stability and
robustness to stiffness errors are discussed, as well as real-time
adaptation techniques. Telepresence is analyzed. Experiments
show high performance in contact with soft and hard surfaces.

Index Terms—Compliant motion control, haptics, Kalman ac-
tive observers (AOBs), robotic manipulation, stiffness estimation,
telepresence.

I. INTRODUCTION

T
OUCH sensations are essential for many telemanipulation
tasks. Haptic devices integrated in robotic systems can pro-

vide the right framework to execute contact tasks with high per-
formance. Such systems can be applied not only for industrial
purposes [32], but also in the field of service robotics [14]. Typ-
ical applications include remote handling in dangerous environ-
ments [21], telesurgery [35], and interaction with virtual objects
[18]. Telepresence is reached if the haptic feeling represents
well the real contact. Augmented reality through high-fidelity
force feedback can result in the emergence of new manipula-
tion techniques, extending human dexterity.

Physical limits (e.g., time delay, bandwidth, and sampling
time) and robustness requirements of the robotic setup have to be
mapped into an optimal haptic feeling, which is coded into the
control architecture. To design a controller, approximate and lin-
earized models are frequently considered, allowing the extensive
and rich theoryof linear systems to be applied.A simple and mod-
ular control synthesis can be achieved by decentralized control,
decoupling the overall system into several subsystems, in which
autonomous local controllers are designed. Compliant motion

Manuscript received October 13, 2005. This paper was recommended for pub-
lication by Associate Editor E. Papadopoulos and Editor K. Lynch upon eval-
uation of the reviewers’ comments. This paper is an expanded version of pa-
pers published in the Proceedings of the International Conference on Intelligent
Robots and Systems, 2003, pp. 2938–2943; the Proceedings of the International
Conference on Intelligent Robots and Systems, 2005, pp. 3146–3151; and the
Proceedings of the International Conference on Advanced Robotics, 2003, pp.
513–519.

R. Cortesão is with the Institute of Systems and Robotics, University of
Coimbra, 3030 Coimbra, Portugal (e-mail: cortesao@isr.uc.pt).

J. Park and O. Khatib are with the Robotics Group, Stanford University,
Stanford, CA 94305-9010 USA (e-mail: park73@robotics.stanford.edu;
ok@robotics.stanford.edu).

Digital Object Identifier 10.1109/TRO.2006.878787

tasks require special attention [34], since the task constraints
change abruptly and the model parameters may have wide varia-
tions, particularly for very stiff and unstructured environments.

The literature on robotic teleoperation is very extensive.
Several control techniques have been presented to cope with
uncertainty, time delay, master/slave models, robustness, and
telepresence. Zhu and Salcudean [38] proposed adaptive mo-
tion/force control robust to time delays, taking into account
nonlinear rigid body dynamics of master/slave systems. Ryu
and Kwon [33] proposed adaptive bilateral control without
estimating environment parameters. Kim et al. [24] suggested
local force feedback (shared compliant control) to provide a
compliant slave robot for stiff contact. Adaptive techniques
based on passive systems have been discussed by Hannaford
and Ryu [19]. Simple architectures such as position–force1

and position–position2 have limited performance [13], [26].
Various implementations have used additional information (such
as forces and accelerations) to achieve better telepresence [26],
[28], [37]. Hashtrudi-Zaad and Salcudean [20] have shown that
perfect telepresence can be obtained under ideal conditions using
local force feedback with a three-channel architecture. Stability
analysis has been done by Colgate and Hogan [5] using the
passivity theory, and by Flemmer et al. [17] based on closed-loop
transfer functions. Lawrence [26] analyzed the tradeoff between
stability and telepresence, proposing a unified four-channel
control architecture based on force and position signals. Kalman
active observers (AOBs), introduced in [6] and [39], have been
applied in several applications, such as force control of robotic
manipulators [8], [9], [30], haptic manipulation [11], [12], [29],
humanoids [31], and mobile systems [2], [4], [7], [27].

This paper describes a control architecture for haptic tele-
manipulation with AOBs and online stiffness estimation. The
background motivation of this study is robotic-assisted surgery,
where the surgeon and robot work in the same room. Therefore,
the system time delay is small and the contact parameters can
be lumped into a Cartesian stiffness. The teleoperation scheme
keeps a position–position architecture, in which force commands
are generated through virtual coupling. The main differences of
our approach with respect to previous work are given here.

1) The slave side has a decentralized3 adaptive compliant mo-
tion controller with Kalman AOBs. The AOB reformulates
the Kalman filter to accomplish model-reference adaptive

1Position commands on the master side and force commands on the slave
side.

2Only position commands.
3In this paper, decentralized control means an independent control for each

Cartesian dimension.
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Fig. 1. System setup. (a) Phantom device controlled by a human. (b) PUMA
robot. Soft and stiff objects belong to the PUMA workspace.

control, based on a desired closed-loop model, state aug-

mentation, and stochastic design. The system stiffness en-

ters in the AOB design, enabling consistent force responses

(i.e., the same closed-loop dynamics) independent of con-

tact objects.

2) Online stiffness estimation only based on force data (mea-

sured, desired, and estimated forces), avoiding explicit po-

sition information.

This paper is organized as follows. After the description of

the system setup in Section II, the decentralized control archi-

tecture is presented in Section III. The AOB design is introduced

in Section IV, including the AOB algorithm, estimation strate-

gies, and control design. Stability and robustness to stiffness

mismatches are discussed in Section V, including preliminary

experiments on the slave side. Section VI describes the tele-

operation scheme, analyzing telepresence and stability in free

space and contact. The algorithm for online stiffness estimation

is presented in Section VII. Haptic manipulation experiments

are addressed in Section VIII. The conclusions are summarized

in Section IX.

II. SYSTEM SETUP

Fig. 1 shows the master and slave stations. The master station

is a Phantom 1.0A which has six degrees of freedom (DOFs)

and three motors for the first joints. The haptic device is con-

trolled by a quadric-processor Pentium Pro at 200 MHz. The

slave robot is a PUMA 560, which has a stiff JR3 force sensor

at the end-effector. The PUMA has six DOFs and is connected

to a computer (Pentium II at 333 MHz with QNX real-time OS)

TABLE I
OBJECT STIFFNESSES. K AND K DATA

through a TRC205 controller and a ServoToGo board. The con-

trol of the orientation is not considered in this setup. The PUMA

robot is controlled so that it has the same orientation in a global

frame. A local area network is used to connect both stations.

The sampling time is ms. The system time delay was

obtained experimentally. It is

ms (1)

The working space has objects with different stiffnesses. When

the robot is manipulating, the system stiffness is a function

of the environment, the JR3 sensor, and the PUMA robot. If the

environment is soft, is approximately given by the environ-

ment stiffness. For stiff environments, the computation of is

not trivial.

Table I presents experimental and nominal

values of the system stiffness.4 The relation between and

is

(2)

where is the error associated with .

III. DECENTRALIZED CONTROL ARCHITECTURE

Here, we describe the decentralized control architecture ap-

plied in our system, based on operational space, feedback lin-

earization, and state-space techniques.

A. Manipulator Dynamics

Given a set of generalized coordinates (usually, joint angles

for revolute joints) describing the robot’s pose, the well-known

robot dynamics is given by

(3)

where is the mass matrix, is the vector of Coriolis and

centripetal forces, is the gravity term, and is the gener-

alized torque acting on . For a nonredundant manipulator, (3)

can be represented in the Cartesian domain by

(4)

with

(5)

(6)

(7)

(8)

where , , and are, respectively, the Jacobian matrix, Carte-

sian position (operational space), and Cartesian force [23]. An

4The nominal values are the ones used in the control design. The results of
K for the sponge were achieved offline.
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Fig. 2. Modification of the desired plant through feedback. X represents a
position command, and X is the position output.

external force always appears at the end-effector whenever

the robot is in contact. Hence, (4) can be written as

(9)

where is the force due to the commanded torque.

B. System Plant

If the desired system plant is

(10)

then should be5

(11)

Equation (10) defines a decoupled system for each Cartesian

dimension with unitary mass. The estimation of , affects

the control strategy, as will be explained in Section IV-B. The

terms , , and can be computed for a given robot.

The estimation errors present in (11) corrupt (10). To increase

robustness to model errors, the desired plant poles at the origin

are “shifted” to the left using feedback, as shown in Fig. 2. For

a critically damped response (damping factor ) with time

constant , the feedback is given by

and (12)

The problem with this approach is that the force-controlled

robot becomes a position-controlled robot (i.e., is a po-

sition). External forces (e.g., human contact) applied to the

robot’s body experience a stiff contact due to position feedback.

Eliminating the position loop and inserting and (see

Fig. 3), the system plant becomes

(13)

1) Small Time Delay: If is small, (13) can be approxi-

mated by

(14)

5The symbol^means estimate.

Fig. 3. System plantG(s) for each Cartesian dimension.u(t) is the force input,
and y(t) is the force output.

for a wide range of frequencies. Its equivalent temporal repre-

sentation is

(15)

where is the plant output (Cartesian force at the robot’s
end-effector) and is the plant input (force). Defining the state

variables and , (15) can be written as

(16)

In compact form, we have

(17)

Discretizing (17) with sampling time [1], the equivalent dis-

crete-time system is

(18)

with

(19)

(20)

(21)

...
...

...
. . .

... (22)

(23)

(24)

where , , and are given by

(25)

(26)

(27)
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has two states representing the force and force derivative.

The other states appear due to . The continuous state transi-

tion and command matrices are

and (28)

From (28), the computation of , , and is straightforward.

2) Bigger Time Delays: If is not small enough, the term

(29)

of (13) can be approximated by an adequate truncated Taylor

series, increasing the system order. The same procedure of the

small time delay can then be applied (not addressed in this

paper).

IV. AOB DESIGN

When some parameters of a controlled process have wide

variations and are poorly known, high-performance controllers

require adaptive control techniques. Landau [25] has defined

adaptive systems as systems in which the adaptation mecha-

nism modifies the parameters of the adjustable system or gener-

ates an auxiliary input to maintain a given index of performance

bounded to acceptable values. To accomplish model-reference

adaptive control, the AOB reformulates the Kalman filter, based

on the following.

1) A desired closed-loop system (reference model) that enters

in the state estimation.

2) An extra equation (auxiliary input) to estimate an equiv-

alent disturbance referred to the system input, due to un-

modeled terms including higher order dynamics, parameter

mismatches, and unknown disturbances. An active state

(extra state) is introduced to describe the equivalent distur-

bance. Its estimate performs the compensation action.

is described by (the same equation used in [10] to esti-

mate unknown functions)

(30)

The stochastic equation (30) says that the th-order deriva-

tive (or th-order evolution) of is randomly distributed.

is a Gaussian variable with zero mean. If

(31)

then (30) is a deterministic model for any disturbance

that has its th derivative equal to zero. In this way, the

stochastic information present in gives more flexi-

bility to , since its evolutionary model is not rigid.

3) The stochastic design of the Kalman matrices for the AOB

context.

Fig. 4 represents the AOB control structure. The first-order AOB

algorithm6 (AOB-1) is summarized in Section IV-A. In this case,

is given by (30) with .

6The general AOB algorithm uses N extra states to describe p̂ [6], [9].

Fig. 4. AOB. The active state p̂ compensates for the error e referred to the
system input. L is the state feedback gain.

A. AOB-1 Algorithm

Controlling (18) through state feedback from an observer and

inserting and in the loop, the overall system can be repre-

sented by (see Fig. 4)

(32)

(33)

where

(34)

(35)

The stochastic inputs and represent, re-

spectively, model and measure uncertainties. The state estimate

of (32) is based on the desired closed loop (i.e., and

). It is

(36)

with

(37)

The Kalman gain reflects the uncertainty associated with

each state, which is a function of and [3], [22], and is

computed as follows:

(38)

with

(39)

(40)

where is the augmented open-loop matrix

(41)
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Fig. 5. Compliant motion control with the AOB in the loop. L is the first
element of the state feedback gain L = [L 1], f is the force input, and y is
the force output (measured by the force sensor).

The system noise matrix can be represented by

(42)

The measurement noise matrix . is the

mean-square error matrix. Its initial value should reflect the un-

certainty in the state estimation. It should not be lower than the

initial matrix . Fig. 5 shows the control architecture with the

AOB in the loop.

B. AOB Estimation Strategies for Haptic Manipulation

Model reference adaptive control appears if is much

smaller than . In this case, the estimation for the system

state follows the reference model. Everything that does not fit in

the model goes to . However, for compliant motion tasks

(with or without haptic devices), the estimation of force (first

state) from the model is very inaccurate, since may have

abrupt and unpredictable changes. Providing methods for online

stiffness estimation and increasing for the first state cre-

ates better conditions to estimate the force. Knowing the struc-

ture of , the relation between and makes the estimates

more ( low) or less ( high) sensitive to measures, which

is reflected in . The state-estimation dynamics increase with

[see (36)], as they are limited by robustness and noise-sensi-

tivity requirements. and are a powerful tool in the control

design, creating enough space to explore complex estimation

strategies for highly unstructured tasks. In the experiments, the

following AOB stochastic matrices for each Cartesian dimen-

sion have been used:

...
. . .

...
... (43)

where and . This design entails the steady-

state Kalman gains

(44)

The for the first state in (44) is high, due to its relatively

high uncertainty in (43). The absolute values of and are

not important, since the same scaling factor applied to both of

them entails the same [9]. Therefore, the state estimates in

(36) are not affected. It should be pointed out that is not too

sensitive to and , since small changes in the stochastic

structure give similar results.

C. Pole Placement for Haptic Manipulation

In force-based tasks, force overshoots/undershoots are usu-

ally undesired. Hence, the state feedback gain can be com-

puted by Ackermann’s formula to achieve a critically damped

system . The other poles due to should be mapped far

away from the dominant poles to neglect their influence in the

system response. In our setup, they were mapped at . The

closed-loop time constant should be small enough to enable

the task execution with comfortable performance. However, it

should not be too small to avoid saturation effects in the com-

mand effort. In our setup, we have

and ms (45)

Therefore, the settling time is about (0.375 s), which is

adequate for many human-controlled tasks.

D. Free-Space Behavior

The AOB control architecture is kept even for free-space con-

ditions (no control switching). In this case, the force output is

always zero . Rewriting (36) as

(46)

in free space, (46) becomes

(47)

with

(48)

(49)

The free-space plant is depicted in Fig. 6. The AOB generates

a virtual state that enters the system. This plant is not stable.

has one discrete pole at due to the active state

equation, and has another pole at . Writing the

pulse-transfer function7 of as

(50)

with

(51)

7It is assumed that a zeroth-order hold transforms a discrete signal into a con-
tinuous one. A table of the most common pulse-transfer functions can be seen
in [1].
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Fig. 6. Free-space plant. The AOB controller generates a virtual state that en-
ters the system. This plant has one continuous pole at s = 0 and a discrete pole
at z = 1.

Fig. 7. LTF computation with the AOB in the loop.

then the equivalent transfer function of the free-space plant

, also including the preamplification of by , is

(52)

(53)

Stability of the whole system is achieved through the teleoper-

ation architecture described in Section VI.

V. AOB STABILITY AND ROBUSTNESS

Here, we analyze relative stability of AOB-based controllers

in the presence of model errors. The loop transfer function8

(LTF) of the control system has to be derived. A schematic rep-

resentation of it is depicted in Fig. 7. Applying to the plant

input and considering all other inputs zero (necessary to com-

pute the LTF), (32) and (33) can be written as

(54)

(55)

with

(56)

8The LTF is the product of the transfer functions of forward and feedback
loops. Special attention should be paid when observers are in the loop [15].

The real system matrix is equal to the nominal matrix (i.e.,

the one used in the design) plus the unknown error due to

unmodeled terms. Mathematically, we have

(57)

The AOB state estimate is9 of the form

(58)

with , , and . Defining

the estimation error as

(59)

then and can be written as

(60)

where

(61)

(62)

The LTF output is

(63)

The transfer function of the state-space equations (60) and (63)

is the LTF, , which is given by

(64)

where and are the state transition and command matrices

of (60), respectively, and is the identity matrix. Knowing

, it is straightforward to compute Nyquist/Bode plots

and the corresponding phase and gain margins.10 At very

low frequencies, noise statistics make no sense (everything is

“static”). The LTF introduces one additional integrator as the

AOB order increases, corresponding to the active state equation

(30) when . Therefore, the system type increases

with the AOB order, improving tracking capabilities, although

the relative stability decreases.

A. Robustness

In compliant motion tasks, it is important to analyze relative

stability when there are stiffness mismatches. From (19), (20),

and (1), and . Hence, from (26), .

Moreover, given by (25) does not depend on . If there is

a mismatch, is given by [see (27)]

(65)

9See (36) for r = 0.

10In the Matlab environment, the LTF representation in state space or transfer
function is all that is needed to have Nyquist/Bode plots.



CORTESÃO et al.: REAL-TIME ADAPTIVE CONTROL FOR HAPTIC TELEMANIPULATION WITH KALMAN AOBS 993

Fig. 8. Robustness to stiffness errors. (a) Gain margin. (b) Phase margin. Sta-
bility problems only arise from underestimated stiffness. The values of K
are in N/m. Simulation results.

From (22), we have

...
...

...
. . .

... (66)

Knowing (41), we have

(67)

Using (60), stability can be analyzed based on the stiffness

mismatch. From Fig. 8, it can be inferred that overestimating

the stiffness does not create stability problems (negative

values). Moreover, robustness increases with .

For N/m, the control structure is stable11 up to

N/m. If N/m, the maximum stiffness

mismatch is about 400%. This robustness analysis establishes

the maximum mismatch between the real stiffness and the

11The full teleoperation scheme discussed in Section VI is not considered in
this analysis.

nominal one without losing stability, giving an upper bound to

the estimation error. Methods for online stiffness estimation are

proposed in Section VII.

B. Real-Time Issues

This section analyzes properties of AOB-based controllers for

online stiffness adaptation. In haptic tasks, contact/noncontact

states with stiff objects are critical, since the stiffness changes

are big. To achieve consistent force responses independent of

the contact object, has to be estimated online to adapt the

AOB accordingly.

1) Control Adaptation: The feedback gain of the con-

troller can be easily adapted for new environment stiffnesses

without a complete computation of Ackermann’s formula. It can

be shown [9] that for with corresponding feedback gains

(68)

if changes , then the new vector should be com-

puted from

(69)

The feedback gains of the state variables due to do not

change. Only a proportional factor needs to be computed to

update for the “core state.”
2) State Estimation: When changes , the ma-

trix changes to . Only two elements of this matrix

have to be recomputed. The Kalman gains are obtained on-

line from (38)–(40). The state estimate of the AOB in (36) needs

to be updated, reflecting the changes in , , and .

C. Free-Space to Stiff Contact Experiments

This section illustrates the AOB controller without stiffness

adaptation. The robot moves from free-space to stiff con-

tact with a desk in the direction, keeping always

6000 N/m. When the reference force changes from 0 to 5 N, the

robot starts to accelerate due to the active state, till it reaches the

desk, where nearly 100 N are measured [see Fig. 9(a) and (c)].

Taking a closer look at the impact data [see Fig. 9(c)], the

measured force is always negative, which means that the tran-

sition from free space to stiff contact has no bouncing effects.

While in contact, the force response follows a critically damped

response [see Fig. 9(a) and (d)], with a time constant that is

bigger than expected [see (45)]. This means that the value for

is bigger than . The active state reflects this mismatch,

increasing its value during the step input, helping the robot to

push more in the -direction, as shown in Fig. 9(c), around 74 s.

The position data cannot be used in a consistent way. When

the measured force changes smoothly from 5 to 10 N,

the measured position does not change in the same way [see

Fig. 9(d)], creating problems for online stiffness estimation.

The force response drops about 3 N (around 74 s), keeping the

same position data. Additionally, a slight change in the force

makes a relatively big change in the position. These effects

make position measurements not recommended for online stiff-

ness inference, motivating the exploration of adaptive control

techniques only based on force data.
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Fig. 9. Experimental results of the AOB controller. Free-space to stiff contact (desk) in the z direction. (a) Force response. (b) Zoom of the impact data. (c) Active
state and position data. (d) Zoom of force and position responses. The position data in (b)–(d) were rescaled and shifted by a constant value to match the vertical
scale.

Fig. 10. Teleoperation scheme. G (s) represents the PUMA robot, the AOB
and the environment, and G (s) represents the master station, including the
human arm and the haptic device.

VI. TELEOPERATION SCHEME

Fig. 10 illustrates the teleoperation scheme for each direc-

tion in operational space. , , , and are the master

position, slave position, position scaling, and force scaling, re-

spectively. represents the slave station, including the

robotic manipulator, the AOB, and the environment. can

be split into two functions, describing contact and free-space

conditions. is the master station, which includes the

haptic device and the human arm. It can be represented by [36]

(70)

where , , and are, respectively, the mass, damping,

and stiffness of the master station.12 This teleoperation scheme is

similar to a position–position architecture with some differences.

12K is mainly due to the human arm stiffness.

The input to the master and slave is the desired force , gener-

ated by position errors through the virtual coupling . The AOB

commands the slave device to track with a desired dynamics.

There is no force controller at the master station, which receives

scaled by . In the teleoperation experiments

N/m

(71)

A. Teleoperation in Contact

For the control design proposed in this paper, the desired

transfer function while in contact is

(72)

which means that the force response is critically damped with

time constant , as discussed in Section IV-C.

1) Telepresence: The quality of the haptic feeling is analyzed

by investigating the transfer function13 from the human force

to the master position [26]. Looking to Fig. 11, telepresence is

achieved if is of form

(73)

13The Laplace transforms of x and f areX (s) and F (s), respectively.
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Fig. 11. Teleoperation with telepresence. Both human and haptic arms are rep-
resented by spring–damper–mass systems.

where is a positive constant.14 From Fig. 10, we have

(74)

For the general case, the effect of the slave term in (74)

depends on human arm parameters that vary during the task ex-

ecution, which is hard to quantify.

At low frequencies, (74) is approximated by

(75)

If , then (75) becomes

(76)

Comparing (76) with (73) when , it can be inferred

that there is telepresence if . Therefore, enhanced

telepresence can be achieved increasing while in contact,

making

(77)

If , then (75) becomes

(78)

In this case, there is no telepresence. The user only feels .

At high frequencies, (74) is approximated by

(79)

which means that only the master station is felt.

2) Stability: Let us consider of the form15

(80)

14For nanomanipulation schemes, augmented reality may require� > 1. On
the other hand, scaling down the real stiffness (� < 1) may help to distinguish
differences between stiff objects.

15See the desired closed-loop plant in (72).

where , , and . From (74) and (80), the

characteristic polynomial is given by

(81)

where

(82)

From (82), and . Hence, applying the

Routh–Hurwitz stability criterion, the system is stable if

(83)

(84)

Algebraic manipulation shows that (83) only has positive terms,

but (84) has a negative term.16 To eliminate the influence of this

negative term, a sufficient condition for stability [i.e., it guaran-

tees (84)] is

(85)

B. Teleoperation in Free-Space

The unstable free-space plant described in (52) is stabilized

by the teleoperation system through position feedback.

1) Telepresence: In discrete terms, applying the -transform

(86)

where is the pulse-transfer function of . For the

general case, the effect of the slave term in (86) depends

on human arm parameters, which are not known in advance.

At low frequencies, we have

(87)

due to the poles at and (see Section IV-D). There-

fore, (86) becomes

(88)

Equation (88) shows telepresence in free-space, since only the

master station is felt.

At high frequencies, all transfer functions converge to zero.

Hence, (86) is given by

(89)

16This analysis can be checked through the Mathematica command
FullSimplify[Factor[D � E B =(B C �D A )]].
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Fig. 12. Haptic manipulation in free-space. Position response after applying a
force input F of 10 N at 1 s.K is equal to K . Simulation results.

Equation (89) shows again that only the master station is felt

(there is telepresence).

2) Stability: The position-tracking capabilities can be in-

ferred from (see Fig. 10)

(90)

where is the -transform of . should be designed

such that (90) has proper closed-loop dynamics and (86) is

stable for a wide range of , , and . Making

N/m (91)

and considering that for a light phantom manipulation (the usual

situation in free-space)

N/m (92)

kg (93)

kg/s (94)

then the computation of the closed-loop poles in (86) and (90)

is straightforward. A step input of 10 N at 1 s originates the

position responses represented in Fig. 12, showing that position

commands issued by the human arm are well tracked by the

robot. This control setup guarantees stability for a wide range

of , , and . As increases, the stability margins of

(86) decrease, which can be critical if the human arm becomes

stiff.

VII. ONLINE STIFFNESS ESTIMATION

Online stiffness estimation is a key issue to enhancing telep-

resence in contact tasks. The main novelty of our method, with

respect to previous work (see [16] for a comparative study), is

that only force data are used to estimate the stiffness. The force

estimation can be compared with desired and real forces to up-

date .

Fig. 13. Teleoperation data without stiffness adaptation. (a) Underestimated
stiffness. K = 100 N/m and K changes from free-space to stiff contact
(book). (b) Overestimated stiffness. K = 3000 N/m and K changes from
free-space to soft contact (sponge).

A. Stiffness Adaptation Algorithm

The relation between measured and estimated forces ( and

, respectively) gives useful information about .

There are two cases.

1) is bigger than .

2) is smaller than .

Fig. 13(a) illustrates the first case. The system may become un-

stable such that fluctuates around . The difference between

the desired force and is relatively small, compared with the

difference between and . In the second case, represented

in Fig. 13(b), the difference between and is bigger than

the difference between and .

Based on these results, the following adaptation law is

proposed:

(95)

where

(96)

(97)



CORTESÃO et al.: REAL-TIME ADAPTIVE CONTROL FOR HAPTIC TELEMANIPULATION WITH KALMAN AOBS 997

TABLE II
NUMERICAL VALUES OF THE DESIGN PARAMETERS

FOR STIFFNESS ADAPTATION

(98)

(99)

where , and are positive parameters. The

upper script denotes the discrete time step. in (97)

corrects errors due to underestimated stiffness, and in (98)

is for overestimated stiffness. The general sigmoid function

acts as a smooth switch of centered around

. The parameter defines the smoothing factor. and

avoid ill-conditioned results when is close to zero. The

minimum value of is set to zero. Offline analysis has

shown that the object stiffness increases with applied force.

Equation (100) adjusts the stiffness for this problem

(100)

where , , and are positive parameters. indicates the

force from which is increased, and is the minimum

stiffness of .

Finally, low-pass filters are used to prevent jerky motions due

to quick changes in the stiffness estimation. The filter should

not introduce too much time lag, otherwise, the user may feel a

“sticky” behavior when the contact is released. The filter equa-

tions are

(101)

(102)

The complete estimation algorithm given by

(103)

is the sum of (101) and (102). The minimum value of is

from (100). In the experiments, 100 N/m. The

other parameters are shown in Table II. Note that is a func-

tion of , which depends on the estimation strategy. Therefore,

Table II is correlated with the AOB design.

VIII. HAPTIC MANIPULATION EXPERIMENTS

Fig. 14 shows teleoperation experiments using the AOB with

online stiffness adaptation. Three contact surfaces were tested

(sponge, book, and table) with free-space transitions. The stiff-

ness that the user perceives depends on human arm parame-

ters [see (74) and (86)], which cannot be directly inferred from

Fig. 14. Teleoperation data with the AOB and adaptation in the z direction.
Sponge, book and desk contacts. (a) Force and active state data. (b) Robot po-
sition x versus phantom position � x . Online stiffness estimation.

Fig. 14. For the sponge contact, telepresence is achieved [see

(76)]. The book and desk are stiffer than , decreasing telep-

resence. In the experiments, the virtual coupling and scaling fac-

tors given by (71) limit the haptic feeling quality of stiff objects

[see (78)]. This problem can be solved by (77). adaptation

techniques are not addressed in this study.

Fig. 14(a) shows the control performance. Measured and es-

timated forces closely match the desired one independent of

the contact surface. The active state is more “active” during

free-space-to-contact (and vice versa) transitions, due to bigger

modeling errors. Moving up the phantom in free-space (con-

tact-to-free-space transitions), a positive force is created,

since the phantom position goes ahead of the robot position. On

the other hand, if the phantom is moving down, becomes

negative. This drag effect is felt by the user in free-space mo-

tion, being calibrated by [see (90)].

The stiffness estimation reflects the real stiffness, distin-

guishing the sponge, book, and desk at the beginning of contact

[see Fig. 14(b)].
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Fig. 15. Teleoperation data with a PID controller in the z-direction. Sponge,
book, and desk contacts. Force data.

Big position-tracking errors indicate contact. These errors

generate forces through that are felt at the master station.

For instance, at 225 s, we have

cm (104)

which entails (Fig. 10)

N (105)

This means that the phantom arm (i.e., ) moved down about

1.25 cm from the beginning of desk contact.

The same experiment with a proportional-integral-derivative

(PID)-based controller on the slave side is presented in Fig. 15.

The PID gains were experimentally tuned to improve the overall

performance. The derivative gain to avoid force sensor

noise amplification. The integral and proportional gains were,

respectively, set to and . This design was

chosen to guarantee stability on hard contact, affecting the per-

formance in free-space due to small bandwidth. This effect can

be seen by high around 220, 229, and 237 s. Good results

were achieved in sponge contact, but stiffer contacts were mar-

ginally stable.

The AOB control scheme with online stiffness adaptation sig-

nificantly improved telepresence in contact and free-space with

respect to PID-based solutions.

IX. CONCLUSION

This paper has presented an adaptive compliant motion con-

troller with Kalman AOBs, which run on top of operational

space and feedback linearization techniques. This controller has

been applied in a teleoperation system with small time delay,

consisting of a robotic manipulator connected to a haptic device

through virtual coupling. No control switching between con-

tact/noncontact states is required. Stochastic estimation strate-

gies for haptic manipulation have been proposed. If the system

model is inaccurate, sensor-based estimations should be fol-

lowed. Stability and robustness analysis have shown that on-

line stiffness adaptation is necessary if the robot manipulates

soft and stiff objects. Real-time methods have been presented to

adapt the state estimation and the control gains when there are

stiffness changes. Only force signals have been used to estimate

the stiffness (measured, desired, and estimated forces). Sigmoid

functions, online filtering, and offline analysis are important to

tune stiffness estimation parameters. Stability and telepresence

of the teleoperation scheme have been discussed. The virtual

coupling established the tradeoff between telepresence in con-

tact and robustness and comfortable performance in free space.

Experiments have shown good results in contact with soft and

stiff surfaces, improving telepresence with respect to PID-based

solutions.
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