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Abstract

We present a machine learning-based approach

to lossy image compression which outperforms

all existing codecs, while running in real-time.

Our algorithm typically produces files 2.5 times

smaller than JPEG and JPEG 2000, 2 times

smaller than WebP, and 1.7 times smaller than

BPG on datasets of generic images across all

quality levels. At the same time, our codec is de-

signed to be lightweight and deployable: for ex-

ample, it can encode or decode the Kodak dataset

in around 10ms per image on GPU. Our architec-

ture is an autoencoder featuring pyramidal anal-

ysis, an adaptive coding module, and regulariza-

tion of the expected codelength. We also sup-

plement our approach with adversarial training

specialized towards use in a compression setting:

this enables us to produce visually pleasing re-

constructions for very low bitrates.

1. Introduction

Streaming of digital media makes 70% of internet traffic,

and is projected to reach 80% by 2020 (CIS, 2015). How-

ever, it has been challenging for existing commercial com-

pression algorithms to adapt to the growing demand and

the changing landscape of requirements and applications.

While digital media are transmitted in a wide variety of

settings, the available codecs are “one-size-fits-all”: they

are hard-coded, and cannot be customized to particular use

cases beyond high-level hyperparameter tuning.

In the last few years, deep learning has revolutionized many

tasks such as machine translation, speech recognition, face

recognition, and photo-realistic image generation. Even

though the world of compression seems a natural domain

for machine learning approaches, it has not yet benefited

from these advancements, for two main reasons. First,

our deep learning primitives, in their raw forms, are not
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well-suited to construct representations sufficiently com-

pact. Recently, there have been a number of important ef-

forts by Toderici et al. (2015; 2016), Theis et al. (2016),

Ballé et al. (2016), and Johnston et al. (2017) towards al-

leviating this: see Section 2.2. Second, it is difficult to

develop a deep learning compression approach sufficiently

efficient for deployment in environments constrained by

computation power, memory footprint and battery life.

In this work, we present progress on both performance and

computational feasibility of ML-based image compression.

Our algorithm outperforms all existing image compression

approaches, both traditional and ML-based: it typically

produces files 2.5 times smaller than JPEG and JPEG 2000

(JP2), 2 times smaller than WebP, and 1.7 times smaller

than BPG on the Kodak PhotoCD and RAISE-1k 512×768
datasets across all of quality levels. At the same time, we

designed our approach to be lightweight and efficiently de-

ployable. On a GTX 980 Ti GPU, it takes around 9ms to

encode and 10ms to decode an image from these datasets:

for JPEG, encode/decode times are 18ms/12ms, for JP2

350ms/80ms and for WebP 70ms/80ms. Results for a rep-

resentative quality level are presented in Table 1.

To our knowledge, this is the first ML-based approach to

surpass all commercial image compression techniques, and

moreover run in real-time.

We additionally supplement our algorithm with adversarial

training specialized towards use in a compression setting.

This enables us to produce convincing reconstructions for

very low bitrates.

Codec
RGB file
size (kb)

YCbCr file
size (kb)

Encode
time (ms)

Decode
time (ms)

Ours 21.4 (100%) 17.4 (100%) 8.6∗ 9.9∗

JPEG 65.3 (304%) 43.6 (250%) 18.6 13.0
JP2 54.4 (254%) 43.8 (252%) 367.4 80.4
WebP 49.7 (232%) 37.6 (216%) 67.0 83.7

Table 1. Performance of different codecs on the RAISE-1k 512×
768 dataset for a representative MS-SSIM value of 0.98 in both

RGB and YCbCr color spaces. Comprehensive results can be

found in Section 5. ∗We emphasize our codec was run on GPU.
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JPEG

0.0826 BPP (7.5% bigger)

JPEG 2000

0.0778 BPP

WebP

0.0945 BPP (23% bigger)

Ours

0.0768 BPP

JPEG

0.111 BPP (10% bigger)

JPEG 2000

0.102 BPP

WebP

0.168 BPP (66% bigger)

Ours

0.101 BPP

Figure 1. Examples of reconstructions by different codecs for very low bits per pixel (BPP) values. The uncompressed size is 24 BPP,

so the examples represent compression by around 250 times. We reduce the bitrates of other codecs by their header lengths for fair

comparison. For each codec, we search over bitrates and present the reconstruction for the smallest BPP above ours. WebP and JPEG

were not able to produce reconstructions for such low BPP: the reconstructions presented are for the smallest bitrate they offer. More

examples can be found in the appendix.

2. Background & Related Work

2.1. Traditional compression techniques

Compression, in general, is very closely related to pattern

recognition. If we are able to discover structure in our in-

put, we can eliminate this redundancy to represent it more

succinctly. In traditional codecs such as JPEG and JP2,

this is achieved via a pipeline which roughly breaks down

into 3 modules: transformation, quantization, and encoding

(Wallace (1992) and Rabbani & Joshi (2002) provide great

overviews of the JPEG standards).

In traditional codecs, since all components are hard-coded,

they are heavily engineered to fit together. For example,

the coding scheme is custom-tailored to match the distribu-

tion of the outputs of the preceding transformation. JPEG,

for instance, employs 8 × 8 block DCT transforms, fol-

lowed by run-length encoding which exploits the sparsity

pattern of the resultant frequency coefficients. JP2 employs

an adaptive arithmetic coder to capture the distribution of

coefficient magnitudes produced by the preceding multi-

resolution wavelet transform.

However, despite the careful construction and assembly of

these pipelines, there still remains significant room for im-

provement of compression efficiency. For example, the

transformation is fixed in place irrespective of the distri-

bution of the inputs, and is not adapted to their statistics in

any way. In addition, hard-coded approaches often com-

partmentalize the loss of information within the quantiza-

tion step. As such, the transformation module is chosen

to be bijective: however, this limits the ability to reduce

redundancy prior to coding. Moreover, the encode-decode

pipeline cannot be optimized for a particular metric beyond

manual tweaking: even if we had the perfect metric for im-

age quality assessment, traditional approaches cannot di-

rectly optimize their reconstructions for it.

2.2. ML-based lossy image compression

In approaches based on machine learning, structure is au-

tomatically discovered, rather than manually engineered.

One of the first such efforts by Bottou et al. (1998), for

example, introduced the DjVu format for document image

compression, which employs techniques such as segmen-

tation and K-means clustering separate foreground from

background, and analyze the document’s contents.
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Figure 2. Our overall model architecture. The feature extractor, described in Section 3.1, discovers structure and reduces redundancy

via the pyramidal decomposition and interscale alignment modules. The lossless coding scheme, described in Section 3.2, further

compresses the quantized tensor via bitplane decomposition and adaptive arithmetic coding. The adaptive codelength regularization

then modulates the expected code length to a prescribed target bitrate. Distortions between the target and its reconstruction are penalized

by the reconstruction loss. The discriminator loss, described in Section 4, encourages visually pleasing reconstructions by penalizing

discrepancies between their distributions and the targets’.

At a high level, one natural approach to implement the

encoder-decoder image compression pipeline is to use an

autoencoder to map the target through a bitrate bottleneck,

and train the model to minimize a loss function penalizing

it from its reconstruction. This requires carefully construct-

ing a feature extractor and synthesizer for the encoder and

decoder, selecting an appropriate objective, and possibly

introducing a coding scheme to further compress the fixed-

size representation to attain variable-length codes.

Many of the existing ML-based image compression ap-

proaches (including ours) follow this general strategy.

Toderici et al. (2015; 2016) explored various transforma-

tions for binary feature extraction based on different types

of recurrent neural networks; the binary representations

were then entropy-coded. Johnston et al. (2017) enabled

another considerable leap in performance by introducing a

loss weighted with SSIM (Wang et al., 2004), and spatially-

adaptive bit allocation. Theis et al. (2016) and Ballé et al.

(2016) quantize rather than binarize, and propose strategies

to approximate the entropy of the quantized representation:

this provides them with a proxy to penalize it. Finally, Pied

Piper has recently claimed to employ ML techniques in its

Middle-Out algorithm (Judge et al., 2016), although their

nature is shrouded in mystery.

2.3. Generative Adversarial Networks

One of the most exciting innovations in machine learning

in the last few years is the idea of Generative Adversarial

Networks (GANs) (Goodfellow et al., 2014). The idea is

to construct a generator network GΦ(·) whose goal is to

synthesize outputs according to a target distribution ptrue,

and a discriminator network DΘ(·) whose goal is to dis-

tinguish between examples sampled from the ground truth

distribution, and ones produced by the generator. This can

be expressed concretely in terms of the minimax problem:

min
Φ

max
Θ

Ex∼ptrue logDΘ(x) + Ez∼pz log [1− DΘ(GΦ(z))] .

This idea has enabled significant progress in photo-realistic

image generation (Denton et al., 2015; Radford et al.,

2015; Salimans et al., 2016), single-image super-resolution

(Ledig et al., 2016), image-to-image conditional translation

(Isola et al., 2016), and various other important problems.

The adversarial training framework is particularly relevant

to the compression world. In traditional codecs, distortions

often take the form of blurriness, pixelation, and so on.

These artifacts are unappealing, but are increasingly no-

ticeable as the bitrate is lowered. We propose a multiscale

adversarial training model to encourage reconstructions to

match the statistics of their ground truth counterparts, re-

sulting in sharp and visually pleasing results even for very

low bitrates. As far as we know, we are the first to propose

using GANs for image compression.

3. Model

Our model architecture is shown in Figure 2, and com-

prises a number of components which we briefly outline

below. In this section, we limit our focus to operations per-

formed by the encoder: since the decoder simply performs

the counterpart inverse operations, we only address excep-

tions which require particular attention.

Feature extraction. Images feature a number of different

types of structure: across input channels, within individual

scales, and across scales. We design our feature extraction

architecture to recognize these. It consists of a pyramidal

decomposition which analyzes individual scales, followed

by an interscale alignment procedure which exploits struc-

ture shared across scales.

Code computation and regularization. This module is

responsible for further compressing the extracted features.

It quantizes the features, and encodes them via an adaptive

arithmetic coding scheme applied on their binary expan-

sions. An adaptive codelength regularization is introduced

to penalize the entropy of the features, which the coding

scheme exploits to achieve better compression.

Discriminator loss. We employ adversarial training to

pursue realistic reconstructions. We dedicate Section 4 to

describing our GAN formulation.
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3.1. Feature extraction

3.1.1. PYRAMIDAL DECOMPOSITION

Our pyramidal decomposition encoder is loosely inspired

by the use of wavelets for multiresolution analysis, in

which an input is analyzed recursively via feature extrac-

tion and downsampling operators (Mallat, 1989). The

JPEG 2000 standard, for example, employs discrete

wavelet transforms with the Daubechies 9/7 kernels (An-

tonini et al., 1992; Rabbani & Joshi, 2002). This transform

is in fact a linear operator, which can be entirely expressed

via compositions of convolutions with only two hard-coded

and separable 9×9 filters applied irrespective of scale, and

independently for each channel.

The idea of a pyramidal decomposition has been employed

in machine learning: for instance, Mathieu et al. (2015)

uses a pyramidal composition for next frame prediction,

and Denton et al. (2015) uses it for image generation. The

spectral representations of CNN activations have also been

investigated by Rippel et al. (2015) to enable processing

across a spectrum of scales, but this approach does not en-

able FIR processing as does wavelet analysis.

We generalize the wavelet decomposition idea to learn op-

timal, nonlinear extractors individually for each scale. Let

us assume an input x to the model, and a total of M
scales. We perform recursive analysis: let us denote xm

as the input to scale m; we set the input to the first scale

x1 = x as the input to the model. For each scale m,

we perform two operations: first, we extract coefficients

cm = fm(xm) ∈ R
Cm×Hm×Wm via some parametrized

function fm(·) for output channels Cm, height Hm and

width Wm. Second, we compute the input to the next scale

as xm+1 = Dm(xm) where Dm(·) is some downsampling

operator (either fixed or learned).

Our pyramidal decomposition architecture is illustrated in

Figure 3. In practice, we extract across a total of M =

Pyramidal decomposition Interscale alignment

Figure 3. The coefficient extraction pipeline, illustrated for 3

scales. The pyramidal decomposition module discovers structure

within individual scales. The extracted coefficient maps are then

aligned to discover joint structure across the different scales.

6 scales. The feature extractors for the individual scales

are composed of a sequence of convolutions with kernels

3 × 3 or 1 × 1 and ReLUs with a leak of 0.2. We learn all

downsamplers as 4× 4 convolutions with a stride of 2.

3.1.2. INTERSCALE ALIGNMENT

Interscale alignment is designed to leverage information

shared across different scales — a benefit not offered by

the classic wavelet analysis. It takes in as input the set of

coefficients extracted from the different scales {cm}Mm=1 ⊂
R

Cm×Hm×Wm , and produces a single tensor of a target out-

put dimensionality C ×H ×W .

To do this, we first map each input tensor cm to the tar-

get dimensionality via some parametrized function gm(·).
This involves ensuring that this function spatially resam-

ples cm to the appropriate output map size H×W , and out-

puts the appropriate number of channels C. We then sum

gm(cm),m = 1, . . . ,M , and apply another parametrized

non-linear transformation g(·) for joint processing.

The interscale alignment module can be seen in Figure 3.

We denote its output as y. In practice, we choose each

gm(·) as a convolution or a deconvolution with an appro-

priate stride to produce the target spatial map size H ×W ;

see Section 5.1 for a more detailed discussion. We choose

g(·) simply as a sequence of 3× 3 convolutions.

3.2. Code computation and regularization

Given the extracted tensor y ∈ R
C×H×W , we proceed to

quantize it and encode it. This pipeline involves a num-

ber of components which we overview here and describe in

detail throughout this section.

Quantization. The tensor y is quantized to bit preci-

sion B:

ŷ := QUANTIZEB(y) .

Bitplane decomposition. The quantized tensor ŷ is

transformed into a binary tensor suitable for encoding via a

lossless bitplane decomposition:

b := BITPLANEDECOMPOSEB(ŷ) ∈ {0, 1}B×C×H×W .

Adaptive arithmetic coding. The adaptive arithmetic

coder (AAC) is trained to leverage the structure remaining

in the data. It encodes b into its final variable-length binary

sequence s of length ℓ(s):

s := AACENCODE(b) ∈ {0, 1}ℓ(s) .

Adaptive codelength regularization. The adaptive

codelength regularization (ACR) modulates the distribu-

tion of the quantized representation ŷ to achieve a target
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expected bit count across inputs:

Ex[ℓ(s)] −→ ℓtarget .

3.2.1. QUANTIZATION

Given a desired precision of B bits, we quantize our feature

tensor y into 2B equal-sized bins as

ŷchw := QUANTIZEB(ychw) =
1

2B−1

⌈

2B−1ychw
⌉

.

For the special case B = 1, this reduces exactly to a binary

quantization scheme. While some ML-based approaches

to compression employ such thresholding, we found better

performance with the smoother quantization described. We

quantize with B = 6 for all models in this paper.

3.2.2. BITPLANE DECOMPOSITION

We decompose ŷ into bitplanes. This transformation maps

each value ŷchw into its binary expansion of B bits. Hence,

each of the C spatial maps ŷc ∈ R
H×W of ŷ expands

into B binary bitplanes. We illustrate this transformation in

Figure 4, and denote its output as b ∈ {0, 1}B×C×H×W .

This transformation is lossless.

As described in Section 3.2.3, this decomposition will en-

able our entropy coder to exploit structure in the distribu-

tion of the activations in y to achieve a compact representa-

tion. In Section 3.2.4, we introduce a strategy to encourage

such exploitable structure to be featured.

3.2.3. ADAPTIVE ARITHMETIC CODING

The output b of the bitplane decomposition is a binary

tensor, which contains significant structure: for example,

higher bitplanes are sparser, and spatially neighboring bits

often have the same value (in Section 3.2.4 we propose a

technique to guarantee presence of these properties). We

exploit this low entropy by lossless compression via adap-

tive arithmetic coding.

Namely, we associate each bit location in b with a context,

which comprises a set of features indicative of the bit value.

These are based on the position of the bit as well as the

values of neighboring bits. We train a classifier to predict

the value of each bit from its context features, and then use

these probabilities to compress b via arithmetic coding.

During decoding, we decompress the code by performing

the inverse operation. Namely, we interleave between com-

puting the context of a particular bit using the values of

previously decoded bits, and using this context to retrieve

the activation probability of the bit and decode it. We note

that this constrains the context of each bit to only include

features composed of bits already decoded.

3.2.4. ADAPTIVE CODELENGTH REGULARIZATION

One problem with classic autoencoder architectures is that

their bottleneck has fixed capacity. The bottleneck may be

too small to represent complex patterns well, which affects

quality, and it may be too large for simple patterns, which

results in inefficient compression. What we need is a model

capable of generating long representations for complex pat-

terns and short for simple ones, while maintaining an ex-

pected codelength target over large number of examples.

To achieve this, the AAC is necessary, but not sufficient.

We extend the architecture by increasing the dimensional-

ity of b — but at the same time controlling its informa-

tion content, thereby resulting in shorter compressed code

s = AACENCODE(b) ∈ {0, 1}. Specifically, we intro-

duce the adaptive codelength regularization (ACR), which

enables us to regulate the expected codelength Ex[ℓ(s)] to

a target value ℓtarget. This penalty is designed to encour-

age structure exactly where the AAC is able to exploit it.

Namely, we regularize our quantized tensor ŷ with

P(ŷ) =
αt

CHW

∑

chw

{

log2 |ŷchw|

+
∑

(x,y)∈S

log2
∣

∣ŷchw − ŷc(h−y)(w−x)

∣

∣

}

,

for iteration t and difference index set S =
{(0, 1), (1, 0), (1, 1), (−1, 1)}. The first term penal-

izes the magnitude of each tensor element, and the second

penalizes deviations between spatial neighbors. These

enable better prediction by the AAC.

As we train our model, we continuously modulate the

scalar coefficient αt to pursue our target codelength. We

do this via a feedback loop. We use the AAC to monitor

the mean number of effective bits. If it is too high, we in-

crease αt; if too low, we decrease it. In practice, the model

reaches an equilibrium in a few hundred iterations, and is

able to maintain it throughout training.

Hence, we get a knob to tune: the ratio of total bits, namely

the BCHW bits available in b, to the target number of

effective bits ℓtarget. This allows exploring the trade-off of

increasing the number of channels or spatial map size of

Figure 4. Each of the C spatial maps ŷc ∈ R
H×W of ŷ is de-

composed into B bitplanes as each element ŷchw is expressed in

its binary expansion. Each set of bitplanes is then fed to the adap-

tive arithmetic coder for variable-length encoding. The adaptive

codelength regularization enables more compact codes for higher

bitplanes by encouraging them to feature higher sparsity.
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Figure 5. Compression results for the RAISE-1k 512×768 dataset, measured in the RGB domain (top row) and YCbCr domain (bottom

row). We compare against commercial codecs JPEG, JPEG 2000, WebP and BPG5 (4:2:0 for YCbCr and 4:4:4 for RGB). The plots on

the left present average reconstruction quality, as function of the number of bits per pixel fixed for each image. The plots on the right

show average compressed file sizes relative to ours for different target MS-SSIM values for each image. In Section 5.2 we discuss the

curve generation procedures in detail.

b at the cost of increasing sparsity. We find that a total-

to-target ratio of BCHW/ℓtarget = 4 works well across all

architectures we have explored.

4. Realistic Reconstructions via Multiscale

Adversarial Training

4.1. Discriminator design

In our compression approach, we take the generator as the

encoder-decoder pipeline, to which we append a discrim-

inator — albeit with a few key differences from existing

GAN formulations.

In many GAN approaches featuring both a reconstruction

and a discrimination loss, the target and the reconstruction

are treated independently: each is separately assigned a la-

bel indicating whether it is real or fake. In our formulation,

we consider the target and its reconstruction jointly as a

single example: we compare the two by asking which of

the two images is the real one.

To do this, we first swap between the target and recon-

struction in each input pair to the discriminator with uni-

form probability. Following the random swap, we prop-

agate each set of examples through the network. How-

ever, instead of producing an output for classification at the

very last layer of the pipeline, we accumulate scalar outputs

along branches constructed along it at different depths. We

average these to attain the final value provided to the termi-

nal sigmoid function. This multiscale architecture allows

aggregating information across different scales, and is mo-

tivated by the observation that undesirable artifacts vary as

function of the scale in which they are exhibited. For exam-

ple, high-frequency artifacts such as noise and blurriness

are discovered by earlier scales, whereas more abstract dis-

crepancies are found in deeper scales.

We apply our discriminator DΘ on the aggregate sum

across scales, and proceed to formulate our objectives as

described in Section 2.3. The complete discriminator ar-

chitecture is illustrated in the appendix.

4.2. Adversarial training

Training a GAN system can be tricky due to optimization

instability. In our case, we were able to address this by de-

signing a training scheme adaptive in two ways. First, the

reconstructor is trained by both the confusion signal gradi-

ent as well as the reconstruction loss gradient: we balance

the two as function of their gradient magnitudes. Second,

at any point during training, we either train the discrimina-

tor or propagate confusion signal through the reconstructor,

as function of the prediction accuracy of the discriminator.
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Figure 6. Performance on the Kodak PhotoCD dataset measured in the RGB domain (top row) and YCbCr domain (bottom row). We

compare against commercial codecs JPEG, JPEG 2000, WebP and BPG5 (4:2:0 for YCbCr and 4:4:4 for RGB), as well as recent ML-

based compression work by Toderici et al. (2016)2, Theis et al. (2016)3, Ballé et al. (2016)4, and Johnston et al. (2017)3 in all settings

where results exist. The plots on the left present average reconstruction quality, as function of the number of bits per pixel fixed for each

image. The plots on the right show average compressed file sizes relative to ours for different target MS-SSIM values for each image.

More concretely, given lower and upper accuracy bounds

L,U ∈ [0, 1] and discriminator accuracy a(DΘ), we apply

the following procedure:

• If a < L: freeze propagation of confusion signal

through the reconstructor, and train the discriminator.

• If L ≤ a < U : alternate between propagating confu-

sion signal and training the disciminator.

• If U ≤ a: propagate confusion signal through the re-

constructor, and freeze the discriminator.

In practice we used L = 0.8, U = 0.95. We compute the

accuracy a as a running average over mini-batches with a

momentum of 0.8.

5. Results

5.1. Experimental setup

Similarity metric. We trained and tested all models on

the Multi-Scale Structural Similarity Index Metric (MS-

SSIM) (Wang et al., 2003). This metric has been specif-

ically designed to match the human visual system, and

has been established to be significantly more representative

than losses in the ℓp family and variants such as PSNR.

Color space. Since the human visual system is much

more sensitive to variations in brightness than color, most

codecs represent colors in the YCbCr color space to de-

vote more bandwidth towards encoding luma rather than

chroma. In quantifying image similarity, then, it is

common to assign the Y, Cb, Cr components weights

6/8, 1/8, 1/8. While many ML-based compression pa-

pers evaluate similarity in the RGB space with equal color

weights, this does not allow fair comparison with standard

codecs such as JPEG, JPEG 2000 and WebP, since they

have not been designed to perform optimally in this do-

main. In this work, we provide comparisons with both tra-

ditional and ML-based codecs, and present results in both

the RGB domain with equal color weights, as well as in

YCbCr with weights as above.

Reported performance metrics. We present both com-

pression performance of our algorithm, but also its runtime.

While the requirement of running the approach in real-time

severely constrains the capacity of the model, it must be

met to enable feasible deployment in real-life applications.

Training and deployment procedure. We trained and

tested all models on a GeForce GTX 980 Ti GPU and a cus-

tom codebase. We trained all models on 128× 128 patches

sampled at random from the Yahoo Flickr Creative Com-
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mons 100 Million dataset (Thomee et al., 2016).

We optimized all models with Adam (Kingma & Ba, 2014).

We used an initial learning rate of 3 × 10−4, and reduced

it twice by a factor of 5 during training. We chose a batch

size of 16 and trained each model for a total of 400,000

iterations. We initialized the ACR coefficient as α0 = 1.

During runtime we deployed the model on arbitrarily-sized

images in a fully-convolutional way. To attain the rate-

distortion (RD)curves presented in Section 5.2, we trained

models for a range of target bitrates ℓtarget.

5.2. Performance

We present several types of results:

1. Average MS-SSIM as function of the BPP fixed for

each image, found in Figures 5 and 6, and Table 1.

2. Average compressed file sizes relative to ours as func-

tion of the MS-SSIM fixed for each image, found in

Figures 5 and 6, and Table 1.

3. Encode and decode timings as function of MS-SSIM,

found in Figure 7, in the appendix, and Table 1.

4. Visual examples of reconstructions of different com-

pression approaches for the same BPP, found in Fig-

ure 1 and in the appendix.

Test sets. To enable comparison with other approaches,

we first present performance on the Kodak PhotoCD

dataset1. While the Kodak dataset is very popular for

testing compression performance, it contains only 24 im-

ages, and hence is susceptible to overfitting and does not

necessarily fully capture broader statistics of natural im-

ages. As such, we additionally present performance on

the RAISE-1k dataset (Dang-Nguyen et al., 2015) which

contains 1,000 raw images. We resized each image to size

512× 768 (backwards if vertical): we intend to release our

preparation code to enable reproduction of the dataset used.

1The Kodak PhotoCD dataset can be found at http://
r0k.us/graphics/kodak. We do not crop or process the
images in any way.

2The results of Toderici et al. (2016) on the Ko-
dak RGB dataset are available at http://github.com/

tensorflow/models/tree/master/compression.
3We have no access to reconstructions by Theis et al. (2016)

and Johnston et al. (2017), so we carefully transcribed their re-
sults, only available in RGB, from the graphs in their paper.

4Reconstructions by Ballé et al. (2016) of images in the Ko-
dak dataset can be found at http://www.cns.nyu.edu/

˜lcv/iclr2017/ for both RGB and YCbCr and across a spec-
trum of BPPs. We use these to compute RD curves by the proce-
dure described in this section.

5An implementation of the BPG codec is available at http:
//bellard.org/bpg.
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Figure 7. Average times to encode and decode images from the

RAISE-1k 512× 768 dataset using our approach.

We remark it is important to use a dataset of raw, rather

than previously compressed, images for codec evaluation.

Compressing an image introduces artifacts with a bias par-

ticular to the codec used, which results in a more favorable

RD curve if it compressed again with the same codec. See

the appendix for a plot demonstrating this effect.

Codecs. We compare against commercial compression

techniques JPEG, JPEG 2000, WebP, as well as recent ML-

based compression work by Toderici et al. (2016)2, Theis

et al. (2016)3, Ballé et al. (2016)4, and Johnston et al.

(2017)3 in all settings in which results are available. We

also compare to BPG5 (4:2:0 and 4:4:4) which, while not

widely used, surpassed all other codecs in the past. We

use the best-performing configuration we can find of JPEG,

JPEG 2000, WebP, and BPG, and reduce their bitrates by

their respective header lengths for fair comparison.

Performance evaluation. For each image in each test

set, each compression approach, each color space, and for

the selection of available compression rates, we recorded

(1) the BPP, (2) the MS-SSIM (with components weighted

appropriately for the color space), and (3) the computation

times for encoding and decoding.

It is important to take great care in the design of the per-

formance evaluation procedure. Each image has a separate

RD curve computed from all available compression rates

for a given codec: as Ballé et al. (2016) discusses in detail,

different summaries of these RD curves lead to disparate

results. In our evaluations, to compute a given curve, we

sweep across values of the independent variable (such as

bitrate). We interpolate each individual RD curve at this in-

dependent variable value, and average all the results. To en-

sure accurate interpolation, we sample densely across rates

for each codec.
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