
Real-time aerial image mosaicing

Tom Botterill1, Steven Mills2, Richard Green3

1Geospatial Research Centre, University of Canterbury, Christchurch 8041, NZ.
2Areograph Ltd, 90 Crawford St, Dunedin, NZ.

3Department of Computer Science, University of Canterbury, Christchurch 8041, NZ.
Email: tom.botterill@grcnz.com

Abstract

This paper describes a scheme for seamlessly stitching together images captured from an aerial platform,

in real-time, in order to provide an operator with a larger field-of-view. Both recent images, and images

from earlier in a flight are used. To obtain real-time performance several of the latest computer vision

techniques are applied: firstly the Bag-of-Words image representation allows overlapping images to be

found efficiently, and provides cheap wide-baseline correspondences between them. Secondly the BaySAC

robust estimation framework allows images to be registered efficiently from a prior motion model combined

with large numbers of potential matches between cheap image patch descriptors. Thirdly an efficient

seam-placement algorithm allows the rendering of a visually attractive mosaic. Results are presented on

a sequence of high-resolution images captured from a microlight.

Keywords: Image mosaicing, image stitching, Bag-of-Words, BaySAC, wide baseline registration

1 Introduction

Image mosaicing is the process of joining overlap-
ping images together to form a larger image, hence
enlarging a cameras’ field-of-view. One application
for this is to increase the field-of-view of a camera
streaming images back from an aerial platform,
such as an aeroplane or UAV (Unmanned Aerial
Vehicle), without the additional cost, and in the
case of a UAV lens weight and/or bandwidth re-
quirements of capturing larger images in the first
place. This aids an operator by keeping features of
interest in view for longer.

This paper describes our scheme for real-time mo-
saicing of aerial images. High-resolution images are
stitched together around the latest image, provid-
ing a seamless wide-angle view of the surround-
ing area, in real-time. Three innovations make
this possible: firstly actively searching for adjoin-
ing images using the Bag-of-Words (BoW) algo-
rithm, enabling the use of both recent images and
images from earlier in the flight. Secondly, per-
spective transformations between images are com-
puted by combining correspondences provided by
BoW with the BaySAC framework, which allows
efficient outlier removal while incorporating a prior
motion model where available. Thirdly, an efficient
shortest-path algorithm that finds visually unob-
trusive seams between frames enables a seamless
mosaic to be rendered. No previous scheme has
had this capability to generate large seamless mo-

saics in real-time.

This paper is organised as follows: Section 2 de-
scribes the latest contemporary mosaicing techniques
and their limitations; Section 3 describes our more
efficient approach, Section 4 presents experimental
results; and Section 5 discusses these results.

2 Background

There has been extensive research into image mo-
saicing; the review papers by Szeliski [1] and Zitová
and Flusser [2] describe this literature in detail.
Many of these methods however make assumptions
that are not true for aerial images, or are compu-
tationally expensive batch processes for producing
massive Google-Earth-style mosaics, so in this sec-
tion we will concentrate on those techniques that
are most likely to be suitable for real-time mosaic-
ing of aerial imagery.

Zitová and Flusser [2] identify four stages that most
image mosaicing and registration processes have in
common. These are:

1. Feature detection Salient elements of each
image are identified and located.

2. Feature matching Correspondences between
features are established, typically by compar-
ing feature descriptors.

978-1-4244-9631-0/10/$26.00 2010 IEEE

3. Transform estimation The correspondence
between features is used to determine a trans-
form that maps one image to the other.

4. Image Composition The images are trans-
formed and aligned with one another. Some
form of interpolation is often applied to blend
the images.

In general to align two images of the same scene
the images must be mapped onto a model of the 3D
surface shown. Examples of this include the offline
processes used to generate mosaics used in appli-
cations such as Google Earth1 or Microsoft Photo-
synth2, and incremental procedures which are not
currently practical in real-time, but eventually aim
to produce mosaic-based 3D maps of a robot’s envi-
ronment, such as the underwater mapping scheme
by [3]. For images from an aerial platform how-
ever, we can generally assume that the ground is
approximately planar, i.e. it is viewed from suffi-
cient distance that relative depth variation is low
and parallax is small. This allows a much simpler
model to be used: two images of a planar surface
captured through a pinhole camera are related by
a perspective transformation: if two images each
show the same plane, then there is a homography
(3 × 3 matrix) H such that for all x in the first
image and x′ in the second image (represented in
homogeneous coordinates), Hx = x′.

For many mosaicing applications a simpler model
is appropriate: for a rotating camera at a fixed
location (all points are on the plane at infinity), a
simple 2D translation and 1D rotation is sufficient
to align two images. For a strictly down-pointing
camera on an aerial platform a similarity transform
(rotation, translation and scale) is sufficient. For
a camera with a small field-of-view the perspec-
tive transformation may be approximated with an
affine transformation: Ax + t = x′ for a 2 × 2
transformation matrix A and 2D translation t.

2.0.1 Feature detection and matching

The first stage in estimating the transformation
between two images is to find matches between
features in one image and the same features in
the other image. These features are usually points
within each image chosen to be localisable and
repeatable, such as Harris Corners [4] or SIFT’s
Difference-of-Gaussian blobs [5]. A descriptor vec-
tor describing the area around each feature is then
extracted, for example a SIFT feature or just a
simple image patch [1]. Possible matches between
these descriptors are then found, for example by
pairwise comparison.

1http://earth.google.com
2http://photosynth.net

2.0.2 Transform estimation

Given at least four point correspondences we can
estimate a perspective transform via the Discrete
Linear Transform, or DLT [6, Section 4.1]. This
least squares method reduces the effects of noise in
the image measurements. Least-squares solutions
are, however, susceptible to being corrupted by
outliers, which are common amongst correspon-
dences due to repeated similar-looking features and
because of moving objects in the scene. To over-
come this Random Sample and Consensus (RANSAC)
approaches are commonly used [7]. RANSAC works
by repeatedly selecting small random subsets of
correspondences (hypothesis sets) from which to
compute candidate solutions. Each candidate so-
lution is compared with the entire data set until
a solution compatible with a large number of cor-
respondences is found. These are assumed to be
inliers, and a least-squares solution is computed
from this inlier set.

One mosaicing scheme closely following this pat-
tern is the scheme described by [8] for producing
panoramic photographs. SIFT features are used
to firstly to identify which frames overlap, then
RANSAC is used to compute perspective trans-
forms between these overlapping images. Image
boundaries are blended together with a multi-scale
blur to smooth edges in areas of low detail, while
preserving structure in areas of higher detail. While
results are visually impressive, performance is far
from real-time, taking several minutes to mosaic
10 images.

Similar schemes include the system by [9], which
matches SURF features between microscope slides
to produce one image of a larger sample, however
despite the simple motion model this still requires
tens of seconds per frame; and the system by [10]
which registers batches of images using RANSAC,
producing impressive globally consistent mosaics,
although not in real-time, partly due to the expen-
sive optimisation needed to ensure globally consis-
tent transforms.

An alternative to feature-based image matching is
to directly align the images to one another, by us-
ing correlation across entire images to estimate the
transformation between them. Nielsen et al. [17]
use a Fourier transform to calculate the correlation
between images from a camera spinning about the
vertical axis, and render a cylindrical mosaic at
30Hz, however this simple model has predictable
motion with only one DOF (the camera orienta-
tion), and generates a mosaic of fixed size. Simi-
larly [18] find similarity transforms between pairs
of aerial images by brute-force search, however this
takes 88 seconds per 256× 256 frame due to direct
alignment’s complexity exponential in the number

of parameters in the model being fitted, and hence
we do not consider a direct approach feasible for
a real-time system where perspective effects are
significant.

As is the case of visual SLAM, features can be
tracked from one frame to the next, for example
in the scheme described by [19], which stitches
together images captured by a stationary rotating
camera to produce a spherical mosaic. A Kalman
filter and a model of the camera rotation predicts
the region of a future frame in which each tracked
feature will lie. This approach works well at high
frame-rates, however at lower frame-rates or during
rapid image motion large regions must be searched
for each feature, making this approach consider-
ably more costly and error-prone than a wide-baseline
approach, and in addition a wide-baseline approach
is still needed if images from earlier passes are to
be registered. In aerial images large image motion
often occurs due to camera rotation, and it is more
desirable to use available bandwidth for boosting
the total area imaged, rather than for transmit-
ting large numbers of almost-entirely overlapping
images, making tracking unsuitable for our appli-
cation.

2.0.3 Image composition

Once transforms between images have been com-
puted a mosaic can be rendered by choosing one
image, then warping every other image to the same
coordinate frame. However the two images will
rarely line up exactly, due to a combination of
small errors remaining in the transform estimate,
uncorrected lens distortion, and intensity variation
between images. In the case of aerial images the
fact that the ground is not exactly planar adds to
this misalignment. A näıve approach to compo-
sition, laying each image over the existing mosaic
results in visible and potentially distracting arte-
facts due to straight edges in the image (such as
roads and boundaries) being broken at the join,
and the new straight edges appearing along borders
(Figure 1). Two common solutions to this problem
are firstly to hide seams by interpolating between
overlapping images, or secondly to choose seams
minimising visual discontinuities.

A variation of the first approach is used by [8],
which successfully hides seams, although moving
objects or poor alignment can result in multiple
images of objects appearing (‘ghosting’). A similar
approach could be feasible in real-time. Alter-
natively Levin, Zomet, et al. [11, 12] estimate a
final mosaic by minimising a cost function based
on image gradient similarities, however at several
minutes per-frame this would not be feasible for a
real-time application.

The second approach is to place a seam between

images chosen to be visually inconspicuous. This
seam should cut natural edges in the images at
places where they line up (or ideally not at all
if possible). Various methods for finding optimal
graph-cuts minimising dissimilarity functions be-
tween pixels [13, 14] or segments [15] have been
proposed, however these methods are currently far-
from practical in real-time. An alternative ap-
proach is to use Dijkstra’s algorithm to find the
seam (path) where the difference between the two
images is minimised [16]; this efficient approach is
feasible for real-time processing.

In summary, while numerous mosaicing schemes
have been proposed, most are targeted at produc-
ing extensive, globally consistent mosaics and are
unsuitable for real-time processing. Those systems
that do run in real time assume camera motion
models inappropriate for aerial images.

3 Video mosaicing in real-time

The previous section described contemporary ap-
proaches to image mosaicing, and their limitations.
In this section we describe our new scheme for
real-time aerial image mosaicing, RT-AIM, which
follows the same basic pattern as many existing
schemes, but uses the latest computer vision algo-
rithms to enable real-time performance.

The following sections describe the individual com-
ponents of RT-AIM: firstly Section 3.1 describes
the BoW image representation and how it is used
both to find adjoining frames, and to find corre-
spondences between images; Section 3.2 describes
how these correspondences are used for image reg-
istration; and Section 3.3 describes how seams be-
tween registered images are found, and how we
efficiently render a seamless mosaic. Full source
code, and an example video, are available online
at http://hilandtom.com/tombotterill.

3.1 Feature description and the Bag-

of-Words image representation

To extract image features in real-time we use sim-
ple descriptors based on image patches centred on
corners from the FAST corner detector [20]. The
highest-scoring FAST corners are chosen subject to
a minimum separation constraint (to ensure geom-
etry is well conditioned). For large, high-resolution
images patches sampled from across large patches
of the image provide more distinctiveness than smaller
patches; typically patches sized 66 × 66 pixels are
down-sampled to 11×11. Extracting FAST corners
from a 800× 600 image takes 30 milliseconds, and
extracting 450 patch descriptors and adding them
to a hierarchical BoW database takes typically 4
milliseconds per frame, allowing every frame to be

indexed (Figure 2). In order to register images
from earlier passes, when features were viewed at
different orientations, patches are rotated so that
the intensity gradient of each patch is in the same
direction, in a similar manner to SURF descrip-
tors [21]. In aerial images from approximately down-
pointing cameras, the changes in perspective and
scale between images is usually small, so perspective-
invariant descriptors such as SURF or SIFT are
not necessary, and anyway are too computation-
ally expensive to extract from large images in real-
time [20, 22].

The BoW algorithm represents each image as a set
of descriptors that it contains. Each descriptor is
quantised to the nearest of a set of representative
descriptors (a ‘dictionary’ of ‘image words’) that
they contain, enabling fast comparisons between
pairs of images–images with many ‘image words’
in common are likely to show the same place. The
BoW image representation is widely used to aid
robot positioning by ‘active loop-closure detection’;
i.e. for detecting when a robot visits somewhere it
knows. For mosaicing we use it to recognise when
two images have substantial overlap, so that they
may be registered.

The BoW implementation used is based on the
scheme described by [23]. This uses a hierarchical
dictionary allowing fast indexing of images, and a
heuristic similarity measure based on word occur-
rence statistics. In addition a speeded-up approx-
imate clustering scheme allows the dictionary to
be re-created on-the-fly, ensuring the dictionary is
representative of the images viewed without any
need for prior training [24].

Once images are represented as a BoW, we can find
the most similar matches from earlier in the flight.
To find all available images in the vicinity of the
latest frame we recurse over the images similar to
these matches (including the previous frame). We
then attempt to compute a transformation with
each of the top few matches. Note that finding
overlapping images using a BoW database is hugely
faster than approaches based on matching descrip-
tors between all image pairs (for example [8]), and
no navigation data is necessary to find these matches.

3.1.1 Correspondences from the Bag-of-Words

algorithm

A feature visible in two frames normally results in
each frames’ BoW representation containing the
same corresponding image word. Usually there are
several of a particular word in two images; all possi-
ble pairs can be considered as candidate matches.
In this case we directly compare all pairs of de-
scriptors, and take all pairs where each descriptor
matches the other significantly more closely than
it matches any other. When a set of N descriptors

appears similar to many (M) in the other image all
possible matches are considered as potential corre-
spondences. These ‘N − M correspondences’ are
common in ‘self-similar’ environments with repeat-
ing structures. Finding correspondences in this
way is very cheap, taking around 8ms per pair
of frames, but typically over 80% of the matches
found by a considerably slower brute-force search
are found.

3.2 Computing relative positions

For aerial images we assume that the ground is
approximately planar, and hence images can be
aligned with a perspective transformation (the affine
approximation is not sufficiently accurate—alignment
errors of about 5% are typical). Other schemes
use the RANSAC framework and DLT to estimate
transformations (Section 2.0.2), however RANSAC
performs poorly when outlier rates amongst cor-
respondences are high, as it cannot take into ac-
count prior information about correspondences’ re-
liability. Instead of RANSAC we use the BaySAC
framework [25]. In BaySAC each hypothesis set
chosen is the one most likely to contain only in-
liers, based on data points’ prior inlier probabil-
ities and conditional on the hypothesis sets that
have failed to lead to good models (presumably
because they were contaminated by outliers). The
advantages of this approach are firstly to find the
correct model in fewer iterations, and secondly to
find inliers amongst a large number of low-quality
N − M matches without degrading performance.
Large numbers of inliers are desirable to minimise
errors caused by small or poorly-conditioned inlier
sets. This is important when mosaicing aerial im-
ages as there is often only a small overlap between
pairs of consecutive images; this leads to initially
high outlier rates, and often poorly conditioned ge-
ometry when matched features lie only in a narrow
strip of the image.

To assign prior probabilities to correspondences
the following assumptions are made: firstly, with-
out any knowledge of the camera’s motion, the
prior probabilities of each point in an image cor-
rectly matching any point in the other image are
uniform (with probability p). Therefore if point i
in one image is matched to Mi points in the other
image, the probability of each of the Mi candidate
correspondences being in the inlier set I is P (i ∈
I) = p/Mi, and these probabilities are disjoint
(each point can be matched to only one other).

Secondly, when we are registering consecutive frames
(at times t and t + 1) we can use information from
the transformation found between frames t−1 and
t, Ht−1,t to predict the locations of each feature
in image t + 1. The assumption here is that the
velocity at time t is a good initial estimate for the

velocity at time t+1; a good assumption for fixed-
wing aerial platforms. In addition we can estimate
the acceleration of image features3. Probabilities
of correspondences being inliers can now be up-
dated to incorporate the following motion model
using Bayes theorem: given a correspondence be-
tween two points i = (xi,x

′

i) we assume that if i is
an inlier, x′

i is distributed normally about Ht−1,txi

with standard deviation s pixels (about 150 pixels
works well), and if i is an outlier x′

i is distributed
uniformly over the image. This gives i the following
p.d.f.:

f(i) = f((xi,x
′

i)) (1)

=

{

φ(0,s2)(x
′

i − Ht−1,txi) i ∈ I

1/A i /∈ I

where φ is the 2D normal p.d.f. with each compo-
nent i.i.d. with mean 0 and variance s2, and A is
the image area.

P (i ∈ I|Ht−1,t) (2)

=
f(i|i ∈ I)P (i ∈ I)

P (i ∈ I)f(i|i ∈ I) + P (i /∈ I)f(i|i /∈ I)

When N − M correspondences are used, the fact
that each point in one image matches to at most
one in the other must also be considered:

P (j ∈ I|j incompatible with i) (3)

= P (j ∈ I)
1 − P (i ∈ I|Ht−1,t)

1 − P (i ∈ I)

The perspective transformation from BaySAC is
further refined using top-down outlier-removal [26]:
a transformation is fitted to all inlier correspon-
dences, then the error in each correspondence is re-
computed, allowing more inliers to be found while
potential outliers are removed. This is iterated
several times. Note that the BoW database will
occasionally find incorrect matches, but in this case
BaySAC will fail to find a transformation, allowing
the rejection of these matches.

3.3 Rendering seamless mosaics

We have implemented three alternative strategies
for image composition: firstly images are simply
warped into the frame of a single image, produc-
ing a mosaic very rapidly but with obvious seams
remaining. Secondly a simple interpolation scheme
combines overlapping images with weights in pro-
portion to each pixel’s distance from the frame’s

3As with single camera incremental structure-from-
motion this is not quite the same as modeling the accelera-
tion of the camera, as image feature motion depends on the
plane’s altitude as well as its velocity, so an uninformative
value should be used that suitable for any height the plane
is likely to fly.

centre. Thirdly we find cuts between pairs of im-
ages that minimise the total squared difference be-
tween the two frames along the cut, using Dijk-
stra’s algorithm, as described by [16]. This third
option is most successful at eliminating artefacts
in both man-made and natural environments (Fig-
ure 1); however a search over all paths through
the image is costly. Instead we sub-sample the
area to be searched and find a path at this courser
resolution. This path is usually visually accept-
able, especially at higher frame-rates when it is
only briefly visible.

3.4 Optimisations for real-time opera-

tion

Figure 2: Breakdown of execution time—one 1000 ×

1000 mosaic containing an average of 6.8 frames is

rendered and displayed per-frame.

A typical breakdown of computation times is shown
in Figure 2; times are computed on a desktop com-
puter with a 3GHz Intel Core 2 Duo processor.
Once optimised no particular areas dominate, how-
ever many optimisations were necessary to achieve
this performance, in particular to speed-up image
warping. To warp one image into another, we
predict where the source image will map to in the
destination image, then iterate over an appropriate
area in the destination image, calculating where
in the source image each pixel should come from.
Only the nearest source pixel is considered. To
make this work in real-time the following optimisa-
tions were necessary: firstly, while in general a per-
spective transform is computed, often the elements
H3,1 and H3,2 are close to zero (i.e. the transform
is approximately affine), and are exactly zero for
one image in each rendered mosaic. In this case
a slightly faster affine warp is applied. Secondly,
if H3,1 is not too large, the division needed to
compute the source pixel location can be approx-
imated with a binomial expansion: each source
pixel location is given by (x′

s, y
′

s) = (xs/ts, ys/ts)
where (xs, ys, ts) = H−1(xd, yd, 1). Given t−1

s at

(xd, yd), t′
−1
s at (xd + 1, yd) is given by

t′
−1
s = ((H−1)3,1(x + 1) + (H−1)3,2y + 1)−1

= t−1
s (1 + (H−1)3,1t

−1
s)−1

≈ t−1
s (1 − (H−1)3,1t

−1
s) (4)

(a) No seam removal (b) Interpolation between images (c) Optimal seam between images

Figure 1: Simply warping images over each other leads to visible seams and broken edged when images do not quite

align (a). The seams are successfully hidden by interpolating between frames, but artefacts around man-made

straight edges still occur (b). An optimal seam between images usually removes both kinds of artefact (c).

Thirdly, four-channel images are used, so that each
three-byte RGB triple is aligned with a 32-bit word,
allowing faster copying of pixels throughout the
program despite the increase in memory required.
It may be possible to improve performance using
SIMD instructions or to carry out some processing
on the GPU, however no single optimisation would
greatly affect the performance.

The only parts of out scheme with complexity in-
creasing with time are querying the BoW database,
and re-building the dictionary. BoW queries have
complexity linear in the number of images, although
in practice the cost of these queries is negligible for
up-to tens of thousands of images. Re-building the
dictionary has complexity log-linear in the number
of images, however this is only necessary while the
environment keeps changing in appearance. Even-
tually a dictionary suitable for all environments
likely to be encountered will be found.

4 Results

We have tested RT-AIM with an aerial image se-
quence from a down-pointing Canon 400D cam-
era attached to a microlight. 3220 images sized
800 × 532 and covering farmland, forest, coastline
and urban areas were captured at 2.8Hz, then pro-
cessed sequentially to produce a video-mosaic sized
1200 × 1000 (Figure 3). One mosaic is generated
for every frame, and a frame-rate of 6.2 Hz is main-
tained, with each mosaic containing an average of
8 images, often including frames from earlier in the
flight.

Table 1 shows that BaySAC with a simple prior
probability model is no more successful than RANSAC
at finding transformations, but finds considerably
larger inlier sets, as it makes use of N − M corre-
spondences. However when a prior motion model
(MM) is used, BaySAC clearly outperforms RANSAC,
enabling transformations to be found 80% of the
time, compared with 69% of the time for RANSAC.

The motion model particularly helps during rapid
motion when image overlap is small and a low pro-
portion of potential correspondences are correct.
As a result mosaics rendered when BaySAC is used
contain an average of 8 frames, compared with 5.2
frames when using RANSAC.

For higher frame-rate video, images sized 320×212
can be mosaiced at 20Hz. Alternatively a larger
1440×2000 video-mosaic, filling two computer mon-
itors, is rendered at 3.6Hz, still faster than images
were captured. Towards the corners of this mo-
saic however images are warped with accumulated
sequences of several transformations, and become
distorted in places. In future we will investigate
optimising transformations across multiple images
in order to prevent this.

5 Conclusions

A mosaicing scheme has been described that en-
ables the mosaicing of images captured from an
aerial platform, hence providing a larger field-of-
view for the operator. Images from throughout the
flight are registered and stitched together seam-
lessly in real-time. This real-time performance is
enabled by the following four key implementation
choices: firstly expensive invariant descriptors are
not necessary for aerial images; simple oriented im-
age patches chosen around FAST corners provide
good distinctiveness at a fraction of the cost. Sec-
ondly, in order to robustly match sufficient num-
bers of features between frames, the BaySAC frame-
work is used, which reduces costs compared to con-
ventional RANSAC and enables an accurate per-
spective transformation to be found from large num-
bers of poor-quality correspondences. Thirdly the
BoW algorithm allows images near to the current
frame to be found from throughout the flight, and
in addition provides cheap wide-baseline correspon-
dences between pairs of frames. Finally, an effi-
cient optimal cut-finding algorithm applied to sub-

(a)

(b)

(c)

Figure 3: Mosaicing succeeds in a wide range of environments, including difficult visually sparse and self-similar

regions. (b) and (c) include images from earlier passes, found by BoW.

Table 1: Success at finding transformations between image pairs from a stream of 3220 images with different

parametrisations, terminating after 250 iterations.

Method Av. # iterations % Success # inliers on success
BaySAC+MM 172 80% 67
BaySAC 193 69% 73
RANSAC+N − M 245 23% 76
RANSAC+no N − M 209 69% 53

sampled images, together with an optimised image
warping procedure allow large mosaics to be ren-
dered and displayed at 6Hz, over twice the framer-
ate at which images were captured.

References

[1] Szeliski, R.: Image alignment and stitching:
A tutorial. Technical Report MSR-TR-2004-92,
Microsoft Research (2006)

[2] Zitová, B., Flusser, J.: Image registration meth-
ods: A survey. Image and Vision Computing 21

(2003) 977–1000

[3] Johnson-Roberson, M., Pizarro, O., Williams,
S.B., Mahon, I.: Generation and visualiza-
tion of large-scale three-dimensional reconstruc-
tions from underwater robotic surveys. J. Field
Robotics 27 (2010) 21–51

[4] Harris, C., Stephens, M.: A combined corner and
edge detection. In: Proc. The Fourth Alvey Vision
Conference. (1988) 147–151

[5] Lowe, D.G.: Object recognition from local scale-
invariant features. In: ICCV (1999)

[6] Hartley, R., Zisserman, A.: Multiple View Geom-
etry in Computer Vision. Second edn. Cambridge
University Press (2003)

[7] Fischler, M.A., Bolles, R.C.: Random sample
consensus: a paradigm for model fitting with
applications to image analysis and automated
cartography. Commun. ACM 24 (1981)

[8] Brown, M., Lowe, D.G.: Automatic panoramic
image stitching using invariant features. Int. J.
Computer Vision 74 (2007) 59–73

[9] Rong, W., Chen, H., Liu, J., Xu, Y., Haeusler, R.:
Mosaicing of microscope images based on surf. In:
Proc. IVCNZ (2009)

[10] Turkbeyler, E., Harris, C.: Building aerial
mosaics II. In: Proc. Electromagnetic Remote
Sensing Defence Technology Conf. (2009)

[11] Levin, A., Zomet, A., Peleg, S., Weiss, Y.:
Seamless image stitching in the gradient domain.
In: Proc. ECCV (2004) 377–389

[12] Zomet, A., Levin, A., Peleg, S., Weiss, Y.: Seam-
less image stitching by minimizing false edges.
Trans. Image Process 15 (2006)

[13] Agarwala, A., Dontcheva, M., Agrawala, M.,
Drucker, S., Colburn, A., Curless, B., Salesin,
D., Cohen, M.: Interactive digital photomontage.
ACM Trans. Graphics 23 (2004)

[14] Kolmogorov, V., Zabih, R.: What energy func-
tions can be minimized via graph cuts? Trans.
PAMI 26 (2004) 147–159

[15] Gracias, N., Gleason, A., Negahdaripour, S.: Fast
image blending using watersheds and graph cuts.
In: Proc. BMVC (2006) 469–478

[16] Davis, J.: Mosiacs of scenes with moving objects.
In: Proc. CVPR. (1998) 354–360

[17] Nielsen, F., Andre, A., Tajima, S.: Real-time
spherical videos from a fast rotating camera. In:
ICIAR (2008) 326–335

[18] Tegolo, D., Valenti, C.: A näıve approach to
compose aerial images in a mosaic fashion. In:
Proc. ICIAP (2001) 512–516

[19] Civera, J., Davison, A.J., Magalln, J.A., Montiel,
J.M.M.: Drift-free real-time sequential mosaicing.
Int. J. CV 81 (2009) 128–137

[20] Rosten, E., Drummond, T.: Machine leaning for
high-speed corner detection. ECCV (2006)

[21] Tuytelaars, T., Gool, L.V.: Matching widely
separated views based on affine invariant regions.
Int. J. Computer Vision 59 (2004)

[22] Cummins, M., Newman, P.: Highly scalable
appearance-only SLAM - FAB-MAP 2.0. In:
Proc. Robotics: Science and Systems (2009)

[23] Nistér, D., Stewénius, H.: Scalable recognition
with a vocabulary tree. In: CVPR (2006)

[24] Botterill, T., Mills, S., Green, R.: Speeded-
up Bag-of-Words algorithm for robot localisation
through scene recognition. In: IVCNZ (2008)

[25] Botterill, T., Mills, S., Green, R.: New
conditional sampling strategies for speeded-up
RANSAC. In: Proc. BMVC (2009)

[26] Rousseeuw, P.J., Leroy, A.M.: Robust regression

and outlier detection. Wiley (1987)

