Real-Time, All-Frequency Shadows in Dynamic Scenes

Thomas Annen!* Zhao Dong! Tom Mertens?” Philippe Bekaert? Hans-Peter Seidel' Jan Kautz**
'MPI Informatik 2Hasselt University 3University College London
Germany tUL - IBBT, EDM, Belgium UK

Figure 1: A fully dynamic animation of a dancing robot under environment map lighting rendered at 29.4 fps without any precomputation.
Incident radiance is approximated by 30 area light sources (256 x 256 shadow map resolution each).

Abstract

Shadow computation in dynamic scenes under complex illumina-
tion is a challenging problem. Methods based on precomputation
provide accurate, real-time solutions, but are hard to extend to dy-
namic scenes. Specialized approaches for soft shadows can deal
with dynamic objects but are not fast enough to handle more than
one light source. In this paper, we present a technique for rendering
dynamic objects under arbitrary environment illumination, which
does not require any precomputation. The key ingredient is a fast,
approximate technique for computing soft shadows, which achieves
several hundred frames per second for a single light source. This
allows for approximating environment illumination with a sparse
collection of area light sources and yields real-time frame rates.

Keywords: soft shadows, convolution, environment maps

1 Introduction

Real-time, photo-realistic rendering of computer-generated scenes
requires a high computational effort. One of the main bottlenecks
is visibility determination between light sources and receiving sur-
faces, especially under complex lighting such as area light sources
or environment maps.

Recent methods for rendering soft shadows from area lights oper-
ate in real-time, but either tend to be too intricate and expensive for
rendering multiple light sources [Guennebaud et al. 2006; Guen-
nebaud et al. 2007; Schwarz and Stamminger 2007], or break down

*e-mail: {tannen, dong, hpseidel } @mpi-inf.mpg.de
Te-mail: {tom.mertens, philippe.bekaert} @uhasselt.be
fe-mail: j.kautz@cs.ucl.ac.uk

for detailed geometry [Assarsson and Akenine-Moller 2003]. Fur-
thermore, these methods usually do not support environment map
lighting. Other algorithms based on precomputation [Sloan et al.
2002] are good at reproducing shadows from environment maps in
static scenes, but have difficulties with fully dynamic objects, de-
spite recent progress [Ren et al. 2006].

The goal of our work is to enable real-time, all-frequency shadows
in completely dynamic scenes and to support area light sources as
well as environment lighting. The key contribution is a very fast
method for rendering plausible soft shadows. It requires only a
constant-time memory lookup, thereby enabling us to render soft
shadows at hundreds of frames per second for a single area source.
Environment-lit scenes can be rendered from a collection of ap-
proximating area light sources. Even though shadows are only ap-
proximate, the results are virtually indistinguishable from reference
renderings, but are produced at real-time frame rates.

2 Related Work

Soft Shadows A complete review of existing shadow algorithms
is beyond the scope of this article and we refer the reader to Woo
et al. [Woo et al. 1990]. We restrict our discussion to soft shadow
techniques. A variety of real-time soft shadowing techniques have
been proposed over the past decade [Hasenfratz et al. 2003]. Most
of them build on traditional techniques for rendering hard shadows.
The classic shadow volume method [Crow 1977] was extended
to soft shadows [Assarsson and Akenine-Moller 2003]. Unfortu-
nately, this approach relies on silhouette information and requires
frequent frame buffer access, which makes it less suitable for scenes
with rich geometry. Methods based on shadow mapping [Williams
1978] scale better with scene size, since a sampling-based scene
representation is employed, which is obtained by rasterizing all ob-
jects from the light source’s view. Early work on shadow map-
ping extensions borrow ideas from image-based rendering to effi-
ciently average hard shadows [Chen and Williams 1993; Agrawala
et al. 2000]. In more recent work [Atty et al. 2006; Guennebaud
et al. 2006], researchers have transferred ideas from classical dis-
continuity meshing [Stewart and Ghali 1994; Drettakis and Fiume
1994] to the shadow mapping domain. Such techniques compute a
shadow value as the fraction of coverage of blocker geometry pro-
jected back onto the area light. To maintain high performance, the
shadow map is used as a piecewise constant approximation of the
blocker geometry which may yield either incorrect occluder fusion
or light leaking. The work by Guennebaud et al. [2007] and bit-

mask soft shadows [Schwarz and Stamminger 2007] remove some
of these problems, but increase the algorithmic complexity or com-
putation time. Other methods make crude approximations to soft
shadows in order to gain performance [Brabec and Seidel 2002;
Wyman and Hansen 2003; Chan and Durand 2003]. These heuris-
tics may produce results that deviate significantly from the actual
physically-based solution. We also build on simplifications, yet the
visual error is almost unnoticeable.

Convolution Soler and Sillion [1998] propose an image-based
shadow algorithm based on convolution. Convolutions can be com-
puted efficiently, even for large penumbrae. Soler and Sillion do not
employ a depth buffer and therefore require an explicit notion of
blockers and receivers, and cannot directly support self-shadowing.
We apply a similar convolution in the context of shadow mapping,
which naturally allows for self-shadowing. Variance shadow maps
[Donnelly and Lauritzen 2006] and convolution shadow maps [An-
nen et al. 2007] support fixed convolution kernels. The result can
be computed in constant time by using mipmapping or summed
area tables (SAT) [Crow 1984]. However, fixed kernels cannot re-
produce important visual effects such as hard contact shadows. A
recent version of variance shadow maps [Lauritzen 2007] simulates
penumbrae more accurately by varying the kernel size based on the
average blocker depth, similar to Fernando [2005]. Unfortunately,
the cost of computing this average defeats the purpose of constant
cost convolution, as it requires brute-force sampling of the shadow
map. An important advantage of our approach is that this step can
be carried out in constant time as well.

Precomputation and Simplificiation = Precomputed radiance
transfer [Sloan et al. 2002] calculates and stores an illumination-
invariant light transport solution off-line and uses it for real-time
relighting. The scene is assumed to be static and storage demands
aggressive compression, which may introduce artifacts such as blur-
ring. Even though these limitations have been alleviated [Ng et al.
2003; Zhou et al. 2005; Sloan et al. 2005], it remains challenging to
support fully dynamic scenes with arbitrary illumination. Shadow
computation for dynamic scenes can be accelerated by simplifying
the geometry. Ren et al. [2006] approximate dynamic objects us-
ing a sphere hierarchy, whereas Kautz et al. [2004] use a two-level
mesh hierarchy. These methods only support model deformation,
and assume that object topology remains static.

Environment Map Sampling Agarwal et al. [2003] proposed an
efficient point sampling strategy for environment maps, in the con-
text of ray tracing. This was later accelerated [Ostromoukhov et al.
2004]. However, all of these techniques are limited to point sam-
ples. Similar to Arbree et al. [2005] we employ an environment
sampling strategy based on extended light sources. We approximate
an environment with a collection of square light sources, whereas
Arbree et al. use disk-shaped sources.

3 Plausible Soft Shadows Using Convolution

Rendering soft shadows for area light sources is challenging. Our
goal is to render several area light sources in real-time without hav-
ing to sacrifice visual quality. We argue that computing penumbrae
at full physical accuracy is intractable in this case. Instead, reduc-
ing shadow accuracy slightly enables us to achieve very high frame
rates while keeping the visual error at a minimum.

‘We build on convolution-based methods which simulate penumbrae
by filtering shadows depending on the configuration of blocker, re-
ceiver, and light source [Soler and Sillion 1998; Fernando 2005].
These methods are approximate in general, but produce an exact
solution if the light source, blocker, and receiver are planar and
parallel [Soler and Sillion 1998]. Fortunately, deviating from this
geometric configuration still produces plausible results.

The advantage of computing shadows using convolution is two-
fold: it is compatible with image-based representations, in particu-
lar shadow mapping [Williams 1978] and thus scales well to scenes
with a high polygon count. Second, convolutions can be computed
efficiently using the Fourier transform [Soler and Sillion 1998], or
even in constant time if the shadows have been prefiltered using
mipmaps or summed area tables [Lauritzen 2007].

However, applying convolution to shadow maps in order to pro-
duce soft shadowing is not trivial. The size of the convolution ker-
nel needs to be estimated based on the blocker distance [Soler and
Sillion 1998], but when multiple blockers at different depths are
involved there is no single correct blocker distance. To get a rea-
sonable approximation of blocker depth, we compute the average
depth of the blockers over the support of the filter. This approach
was taken by Fernando [2005] as well as Lauritzen [2007]. Unfor-
tunately, estimating this average is expensive since it (seemingly)
requires averaging depths from the shadow map in a brute force
fashion. The strength of our technique is that it allows for both effi-
cient filtering of the shadows as well as efficient computation of the
average blocker depth. Both of these operations can be expressed
with the same mathematical framework, and will be described in
Section 3.1.

The main visual consequence of the average blocker depth approx-
imation is that the penumbra width may not be estimated exactly
(it is correct for the parallel-planar configuration described above
though). We show that this approximation does not produce of-
fensive artifacts, and even closely approximates the ground truth
solution. Figure 2 presents an overview of our soft shadow method
and will be detailed in the following section.

3.1 Convolution Soft Shadows

As indicated above, soft shadows can be rendered efficiently
through shadow map filtering and we therefore build on Convo-
lution Shadow Maps (CSM) [Annen et al. 2007]. As will be shown,
CSM can be extended to also compute the average blocker depth,
which is required to estimate penumbra widths. We also introduce
extensions that allow us to safely reduce the approximation order to
further push rendering performance.

Review In order to keep the discussion self-contained, we briefly
review CSM. Let x € R? be the world-space position of a screen-
space pixel and the point p € R? represents the corresponding 2D
position of a shadow map pixel. The shadow map itself encodes
the function z(p), which represents the depth of the blocker that is
closest to the light source for each p, and d(x) is the distance from
x to the light source.

We define the shadow function s(), which encodes the shadow test,
as:

$(%) = £(d(x) 2(p)) = {(1) e
If the function f() is expanded into a separable series:
1a(5),2(p) = L (6B, @

we can spatially convolve the result of the shadow test through pre-
filtering:

[w f(d(x),z)] ()
N
~ ;ai (d(x)) [w=Bi](p), 3)

sf(x)

Initial filter size]

Filter shadow test

Final filter size

(a) Intersection with SM (b) Average z computation

(c) Move SM to average z (d) Filter shadow test

Figure 2: An overview of our soft shadow method. First, an initial filter size is determined according to the cone defined by the intersection
of the area light source, the shadow map plane, and the current receiver point (a). This filter size (green) is used to fetch the z,4,¢ value from
the prefiltered average z-textures. We then virtually place the shadow map plane at the z,,, and determine the final filter width (red) for soft
shadow computation as shown in (c). In the last step, the incoming visibility value is looked up from the CSM texture (d).

where the basis images B; are prefiltered with the kernel w, which in
practice is achieved through mipmapping each B;(p) or computing
summed area tables [Crow 1984]. At run-time, one only needs to
weight the prefiltered basis images by a;(d(x)) and sum them up.

3.2 Estimating Average Blocker Depth

The above prefiltering of the shadow test results allows us to apply
convolutions to soften shadow boundaries. However, for real soft
shadows the size of the convolution kernel needs to vary based on
the geometric relation of blockers and receivers [Soler and Sillion
1998]. We follow Fernando [2005] and use the average depth value
Zavg of all blockers that are above the current point x to adjust the
size of the kernel.

Estimating the average blocker depth appears to be a very expen-
sive operation. The obvious solution of sampling a large number of
shadow map texels in order to compute the average depth value z4yg
is very costly, and achieving good frame rates for large convolution
kernels is not only difficult [Fernando 2005] but also counterpro-
ductive for constant time filtering methods [Donnelly and Lauritzen
2006; Annen et al. 2007; Lauritzen 2007].

The key insight into making this step efficient is that this selective
averaging can be expressed as a convolution and can therefore be
rendered efficiently. To see this, let us first compute a simple local
average of the z-values in the shadow map:

Zavg (x)= [Wavg * Z} (p)- 4)

Here, wayg is a (normalized) averaging kernel. However, we only
want to average values that are smaller than d(x). Let us therefore
define a “complementary” shadow test f:

(&)

fld(x),z(p)) = {3) iiiﬁii Zg;

which returns 1 if the shadow map z-value z(p) is smaller than the
current depth d(x), and 0 otherwise. We can now use this function
to “select” the appropriate z samples by weighting them:

[Wavg * [f(d(x)vz) X Z]] (p)
[Wavg * f_(d(X),Z)] (p) '

(6)

Zavg(X) =

The denominator normalizes the sum such that it remains an av-
erage and is simply equal to the complementary filtered shadow

lookup: 1 —sy(x). For the numerator we can approximate the prod-
uct of the complementary shadow test and z using the same expan-
sion as used in regular CSM:

N
fld(x),2)z=Y ai(d(x))B;(z(p))z(p)- @)

Here, coefficients g; are coefficients and B; basis images for f. We
can now approximate the average as:

Zavg(X) =

We will therefore compute new basis images [Ei (z(p))z(p)] along-
side the regular CSM basis images. We refer to this new approach
for computing the average blocker depth as CSM-Z. See the ap-
pendix for a full derivation of the convolution formula for zyg.

Initializing Average Depth Computation When we want to es-
timate or approximate the penumbra size for a given camera sample
we have to do this by finding the area over the shadow map over
which we will perform the z,,, computation. A first idea is to in-
tersect the frustum formed by the camera sample x in 3D and the
virtual area light source geometry with the shadow map plane (as
depicted in Figure 2(a)). Unfortunately, there is no clear definition
of such a plane, as the shadow map itself only represents a height
field and does not have a certain plane location. We have found
the near plane to work well for all our results. However, an itera-
tive procedure is possible where one re-adjusts the location after an
initial z4y¢ has been found.

3.3 CSM Order Reduction

Annen et al. [2007] propose to expand f using a Fourier series. Un-
fortunately, this series is prone to ringing artifacts and the shadows
at contact points may appear too bright unless a high order approx-
imation is used as shown in Figure 3(a). We propose two changes
that allow us to reduce the order significantly. First, we notice that
with appropriate scaling, shifting, and subsequent clamping, ring-
ing can be avoided completely. Figure 3 illustrates this. Scaling and
shifting f(d,z) such that ringing only occurs above 1 and below 0
is shown in (c). Whenever the function f(d,z) is reconstructed we
clamp its result to [0, 1], avoiding any visible artifacts (d).

A second problem with a low order series is that the slope of the re-
constructed shadow test is not very steep when (d —z) ~ 0, as can

12 12 oM
1Y A CSM16terms 1

[

0.5 1

-1 -0.5 0.5 1 -1 -0.5

0 0
(d-2) (d-2)

(a) CSM 4 and 16 terms (b) CSM vs CSM-Z

P —

1= regular

-1 -05 0.5 1 1 -05 0 0.5 1

0
(d-2) (d-2)

(d) Final Clamp

(c) Shift and Scale

Figure 3: Fourier series expansion. (a) depicts the difference be-
tween a 16- and 4-term reconstruction. (b) CSM and CSM-Z are
exactly opposite to each other. Ringing suppression is possible with
appropriate scaling and shifting (c), followed by clamping the func-
tion to [0, 1] (d).

be seen in Figure 3(d), and yields shadows that are too bright near
contact points. A simple solution is to apply a non-linear transfor-
mation G(v) = v to the filtered shadow value sy(x) with p > 1.
This tends to darken the shadows and thus hides light leaking. If
p = 1, nothing changes. On the downside, darkening also removes
smooth transitions from penumbra regions, so we want to only ap-
ply it where necessary. When d(X) — zavg(p) is small, we know
that x is near a contact point where leaking will likely occur. For-
tunately, this is also where penumbrae should be hard anyway. We
therefore compute an adaptive exponent p based on this difference:

p=1+ Aexp(—B (d(x) —zag(p)))- ©)

A controls the strength of the darkening, and B determines the max-
imal distance of z4g from the receiver point for which darkening is
applied to. Figure 4 shows this effect for a varying parameter B.

é B=20.0

ﬁ B=10.0
‘ T
Sharpening disabled -

Figure 4: An illustration of the impact of sharpening parameters A
and B. A is fixed to 30.0, whereas B is set to 5.0, 10.0, and 20.0
showing how B changes the spatial extend of the sharpening.

4 Illumination with Soft Shadows

4.1 Rendering Prefiltered Soft Shadows

Generating soft shadows with our new algorithm is similar to ren-
dering anti-aliased shadows [Annen et al. 2007]. First, the scene is
rasterized from the center of the area light source and the z-values
are written to the shadow map. Based on the current depth map two
sets of images are produced: the Fourier series basis and its com-
plementary basis images multiplied by the shadow map z-values.

@ -@ »| Normalization

[Average z] [Prefiltered visibility]

SM

[Stage 1: Initial filter size | [Stage 2: Initial filter size || Stage 3: Final filter size |

Figure 5: Convolution soft shadows pipeline. Stage 1 reconstructs
a prefiltered z4yg. The z4yg is passed to the 2nd stage for normaliza-
tion. Thereafter, the final filter size is computed as described in 2(c),
and the visibility is evaluated by a regular CSM reconstruction.

After we have generated both data structures, we can run the pre-
filter process. Note that when the convolution formula from Eq. 8
is evaluated using a Fourier series, it also requires prefiltering the
shadow map due to the constant factor when multiplying £() by
z(p) (see appendix). In our implementation, we support image
pyramids (mipmaps) and summed-area-tables. Other linear filter-
ing operations are applicable as well. When filtering is complete,
we start shading the scene from the camera view and employ con-
volution soft shadows for high-performance visibility queries. An
overview of the different steps is given in Figure 5.

For each camera pixel we first determine an initial filter kernel
width as previously shown in Figure 2(a) to estimate the level of
filtering necessary for the pixel’s 3D position and feed this to stages
one and two. Stage one reconstructs the average blocker depth
based on the prefiltered CSM-Z textures and the prefiltered shadow
map, which is then passed to the second stage for normalization.
After normalization, the final filter kernel width f,, is adjusted ac-
cording to the spatial relationship between the area light source and
the current receiver. In particular, the triangle equality tells us the

filter width: f,, = % . (d;ﬂ -Zn, Where A is the area light source
avg

width, d is the distance from x to the light source, and z, is the
light’s near plane. The filter width f;, is then mapped to the shadow
map space by dividing it by 2 -z, - tan(fa%). A final lookup into the
CSM textures yields the approximate visibility we wish to compute
for the current pixel.

All three stages together require only six RGBA and one depth tex-
ture access (for a reconstruction order M = 4).

4.2 Generation of Area Lights for Environment Maps

We propose the following greedy algorithm for decomposing an
environment map into a number of area light sources. We assume
the environment map to be given as a cube map and proceed by
decomposing each cube map face separately.

The process works directly in the 2D domain of the cube map face.
We first find the pixel with the largest amount of energy and create a
preliminary 1 x 1 area light for it. We then iterate over all four sides
of the area light and try to enlarge each side by one pixel. The area
light is enlarged if the ratio between the amount of energy E .,
that would be added to the light by enlarging it and the amount of
energy E,, that the enlarged area light would emit is larger than
a given threshold 7. We repeat this enlargement process until none
of the four sides can be enlarged, or the area light covers the com-
plete cube map face. After the enlargement process has stopped,

a) b) c) d) e)
H - ' - .
f g h) i) i)

Figure 6: Fitting area lights to a cube map face. We first fita 1 x 1
area light to the brightest pixel (a). In turn, we try to enlarge the
area light at each side until a stopping criteria is reached (b)-(e).
We remove the energy for this area light (but leave some amount to
blend it with the area around it) (f), and continue with fitting more
area lights (g)-(i), until we have area lights covering the whole face.

we remove the energy of this portion of the cube map face but leave
a residual amount of energy to enable better fits in later iterations
and create the final area light for it. The residual amount equals
the average amount of energy adjusted to the size of the area. We
then continue with fitting more area lights until we have covered
the whole cube map face. Figure 6 illustrates the process. Note that
our method may produce overlapping area lights. The parameter ¢
determines the total number of light sources fitted to each cube map
face. Examples are shown in the results section.

5 Limitations and Discussion

Failure Cases Our technique shares the same failure cases as
PCF-based soft shadowing [Fernando 2005]. We assume that
all blockers have the same depth within the convolution ker-
nel (essentially flattening blockers), similar to Soler and Sillion’s
method [1998]. This assumption is more likely to be violated for
larger area lights. Nevertheless, shadows look qualitatively similar
to the reference rendering, as shown in see Figure 7. The use of a
single shadow map results in incorrect shadows for certain geome-
tries. This problem is commonly referred to as “’single silhouette
artifacts”, which we share with many other techniques [Assarsson
and Akenine-Moller 2003; Guennebaud et al. 2006].

Average Z Computation Computing the average z-value as de-
scribed is prone to inaccuracies due to the approximations intro-
duced by CSM-Z and CSM. These possible inaccuracies may lead
to visible artifacts due to the division by 1 —s(x). Care must be
taken to use the very same expansion for CSM-Z and CSM in order
to avoid such artifacts.

Ringing Suppression Our proposed ringing suppression using
scaling and shifting followed by clamping does indeed reduce ring-
ing and improves shadow darkness near contact points, but also
sharpens shadows slightly as can be seen in Figure 9. However,
this process is necessary to keep frame rates high as it allows the
use of fewer terms in the expansion and the differences are barely
noticeable. See the comparisons in the results section, all of which
are rendered using ringing suppression.

Mipmaps vs. Summed Area Tables The quality that our
method can achieve depends on the prefiltering process. Mipmaps
are computationally inexpensive, but their quality is inferior com-
pared to SATs as they re-introduce aliasing again at higher mipmap
levels. However, SAT's require more storage due to the need to use
floating point textures [Hensley et al. 2005] especially when using
many area lights. In the case of multiple area lights, as used for
environment mapping, artifacts are masked and mipmapping is a
viable option. Figure 8 compares both solutions.

Textured Light Sources Our method cannot handle textured
light sources directly as the prefiltering step cannot be extended to
include textures. Instead, we decompose complex luminaires such
as environment maps into uniform area lights.

Rectangular Area Lights Rectangular lights are supported,
which is especially easy when using SATs. They can also be used
in conjunction with mipmapping if the GPU supports anisotropic
filtering. The aspect ratio of the area lights is limited by the maxi-
mum anisotropy the GPU allows. The increased cost of anisotropic
filtering might warrant the use of several square area lights instead.
The fitting process described in the last section can be modified to
fit square area lights instead of rectangular ones. In fact, this is what
we have used for our results.

BRDFs We do not support integrating the BRDF across the light
source domain, similar to most other fast soft shadowing tech-
niques. However, for environment map rendering we do evaluate
the BRDF in the direction of the center of each area light and weight
the contribution accordingly.

6 Results

In this section we report on the quality and performance of our
method. Our technique was implemented in DirectX 10 and all
results were rendered on a Dual-Core AMD Opteron with 2.2GHz
using an NVIDIA GeForce 8800 GTX graphics card. Our perfor-
mance timings are listed in Table 1.

Area Lights

SMType | 1 [10 [20 [40
MM: 128> | 258 fps 48 fps 28 fps 18 fps
MM: 2562 | 228 fps 44 fps 25 fps 15 fps
MM: 5122 | 189 fps 38 fps 20 fps 13 fps
MM: 1K2 | 110 fps 24 fps 5 fps -
SAT: 1287 | 128 fps 15 fps 8.8 fps -
SAT: 256% | 110 fps 13 fps 7.5 fps -
SAT: 5122 | 89 fps 11 fps 6.0 fps -
SAT: 1K | 52 fps 3 fps 1.5 fps -

Table 1: Frame rates for the Buddha scene with 70k faces from Fig-
ure 10, rendered using reconstruction order M = 4. For many lights
and high resolution shadow maps, our method may require more
than the available texture memory (reported as missing entries).

The first result shown in Figure 7 compares the shadow quality
of several different algorithms to a reference rendering. We ana-
lyze two situations in particular, large penumbrae and close-contact
shadows (see close-ups). Shadows rendered with our new tech-
nique are very close to the reference, bitmask soft shadows per-
form slightly better at contact shadows and backprojection methods
tend to overdarken shadows when the depth complexity increases.
Percentage closer soft shadows produce banding artifacts in larger
penumbra regions due to an insufficient number of samples.

The overall performance of our technique and its image quality de-
pend on the choice of prefiltering, the number of area lights, and
the individual light’s shadow map size. The next results illustrate
the impact of these individual factors.

We begin with a side-by-side comparison between mipmap- and
SAT-based soft shadows in Figure 8. Mipmaps produce less accu-
rate results compared to summed-area-tables for rendering single
lights due to aliasing artifacts. For complex lighting environments,
however, shadows from many light sources are averaged, which
makes mipmapping artifacts less noticeable (Fig. 10 and 11).

(a) Ground Truth (Ray-Traced)

(d) Percentage Closer Soft Shadows (18 fps)

(b) Our Method — SAT 4 Terms (60 fps)

(e) Backprojection (41 fps)

(f) Bitmask Soft Shadows (19 fps)

Figure 7: Shadow quality comparison of several methods (SM was set to 512 x 512, scene consists of 212K faces): ray-tracing (a), our
method using SATs — 4 terms (b) and 16 terms (c), percentage closer soft shadows [Fernando 2005] (d), backprojection [Guennebaud et al.

2006] (e), and bitmask soft shadows [Schwarz and Stamminger 2007] (f).

Figure 8: The difference in filter quality when using a summed-
area-table (left) and a mipmap (right). Successive down sampling
with a 2 x 2 box-filter introduces aliasing at higher mipmap levels.

Figure 9 illustrates the influence of the reconstruction order and
sharpening. We render a foot bone model of high depth complexity
and demonstrate the effect of the sharpening function G(). While
contact shadows (toe close-up) are darkened and slightly sharper
than the results rendered with M = 16, their larger penumbra areas
are not influenced, which maintains the overall soft shadow quality.

Figure 10 shows the influence of the number of light sources used
for approximating the environment map. Below the renderings we
show the fitted area light sources and a difference plot. Rendering
with 30 lights (Fig. 10(d)) already looks quite similar to the ref-
erence but some differences are noticeable. With 45 area lights,
the differences to the reference are significantly reduced and the re-
sult is visually almost indistinguishable. This example illustrates
that mipmapping produces adequate results, while offering a more
than threefold speedup compared to summed-area tables (see Fig-
ure 11). The reference images in Figure 10 and 11 have been gen-

M=16 M=4 sharpening off M=4 sharpening on

Figure 9: Influence of reconstruction order M and sharpening. The
close-ups show that shadow darkening is restricted to contact points
whereas larger penumbra areas remain unaffected and smooth.

erated with 1000 environment map samples [Ostromoukhov et al.
2004] using ray tracing. Figure 11 also compares brute force GPU-
based shadow rendering with 500 samples, which achieves a much
slower frame rate compared to our method.

Figure 12 shows that our method can easily deal with complex
geometry while delivering high quality renderings. The closeups

L

Dillerences

30 Area Lights

RNL Envmap
Differences
Diflerences

iR

(a) RT SMs (b) 60 ALs, ¢ = 0.035 (9.8 fps) (c) 45 ALs, t = 0.025 (14.1 fps) (d) 30 ALs, ¢ = 0.015 (18.4 fps)

Figure 10: Comparison between ray-tracing 1000 point lights (a), our technique with mipmaps using 60 (b), 45 (c), and 30 (d) area light
sources. Each image shows the environment map with the the fitted light sources in green. SM resolution was set to 256 x 256.

(a) Ray-Tracing (b) SAT 30 ALs, 7.5 fps (c) Mipmap 30 ALs, 25.4 fps (d) GPU SMs, 1.4 fps

Figure 11: In this figure we compare our rendering results with 30 ALs (St.Peters Basilica EM) against ray-tracing 1000 point lights and
standard GPU-based shadow mapping. (a) ray-tracing, (b) our technique with SATSs (c), our technique with mipmaps, and (d) GPU-based
shadow mapping which achieves similar quality (500 shadow maps). SM resolution was set to 256 x 256.

volution, which does not require explicit multiple samples and can
therefore be carried out in constant time. It is fast enough to ren-
der many area light sources simultaneously. We have shown that
environment map lighting for dynamic objects can be incorporated
by decomposing the lighting into a collection of area lights, which
are then rendered using our fast soft shadowing technique. The effi-
ciency of our algorithm is in part due to some sacrifices in terms of
accuracy. However, our new soft shadow method achieves plausible
results, even though they are not entirely physically correct.

As future work, we intend to explore the use of area lights for indi-
rect illumination, which could be an important step toward interac-
tive global illumination for fully dynamic scenes.

Figure 12: A very complex model illuminated by 1 AL with varying

light source sizes from left (small) to right (large). Acknowledgements

show how shadows soften as the area light size is increased. To We thank Kun Xu and the Graphics and Geometric Computing
capture fine geometric details we used a 1K x 1K shadow map. Group at Tsinghua University for providing the robot 3D anima-

tion sequence, Michael Schwarz for the bitmask- and backprojec-
Concerning memory consumption, mipmaps (SATs) with M =4 re- tion soft shadow demo, and Thomas Luft for providing the leaf
quire two 8bit (32bit) RGBA textures for storing the CSM and two model from Figure 12. Thanks to Paul Debevec for his light probes
16bit (32bit) RGBA textures for storing the CSM-Z basis values. (http://www.debevec.org) and to the Stanford University Computer

Graphics Laboratory for the happy Buddha model. The model from
Figure 8 was generated by ’Sculpture Generator 1’ by Carlo H.

7 Conclusions and Future Work Séquin, UC Berkeley. Part of the research at EDM is funded by
the European Regional Development Fund and the Flemish govern-
We have presented an efficient soft shadow algorithm that enables ment, and part of the research at UCL is funded by EPSRC (grant

rendering of all-frequency shadows in real-time. It is based on con- EP/E047343/1).

Appendix

Our z,,, computation uses the Fourier series [Annen et al. 2007] to approximate fY()
and yields the following:

M
Fld(),2(p)) ~ 1+2k2 L sinex (@)~ <(p)] 10)
=1 Sk

with ¢, = (2k — 1). Then the convolution from Eq. 8 becomes:

M
Zavg (X) A2 ﬁ,(x) [Wavg * (% +Z’1 % sin [cr (d(x) 7z)]> z](p)

o1 [Wavg * Iy 2 fsin (crd(x)) (Wavg *zc08(ckz)) —
S Togm Mt o b % avg ¥ 2 2

oM
o Z cos (cxd (X)) (Wavg *zsin(cez)) | (p)- (11)
=1

This means there is an additional basis image containing z/2 values (basically corre-
sponding to a shadow map, see Figure 5), which needs to be filtered.

References

AGARWAL, S., RAMAMOORTHI, R., BELONGIE, S., AND
JENSEN, H. W. 2003. Structured Importance Sampling of En-
vironment Maps. ACM Trans. Graph. 22, 3, 605-612.

AGRAWALA, M., RAMAMOORTHI, R., HEIRICH, A., AND
MoLL, L. 2000. Efficient Image-Based Methods for Render-
ing Soft Shadows. In Proc. of SIGGRAPH 2000, 375-384.

ANNEN, T., MERTENS, T., BEKAERT, P., SEIDEL, H.-P., AND
KauTz, J. 2007. Convolution Shadow Maps. In Rendering
Techniques 2007 (Proc. of EGSR), 51-60.

ARBREE, A., WALTER, B., AND BALA, K. 2005. Pre-Processing
Environment Maps for Dynamic Hardware Shadows. Tech. rep.,
Dept. of Computer Science, Cornell University.

ASSARSSON, U., AND AKENINE-MOLLER, T. 2003. A
Geometry-Based Soft Shadow Volume Algorithm Using Graph-
ics Hardware. ACM Trans. Graph. 22, 3, 511-520.

ATTY, L., HOLZSCHUCH, N., LAPIERRE, M., HASENFRATZ, J.-
M., HANSEN, C., AND SILLION, F. 2006. Soft Shadow Maps:
Efficient Sampling of Light Source Visibility. Computer Graph-
ics Forum 25, 4.

BRABEC, S., AND SEIDEL, H.-P. 2002. Single Sample Soft Shad-
ows Using Depth Maps. In Graphics Interface 2002, 219-228.

CHAN, E., AND DURAND, F. 2003. Rendering Fake Soft Shadows
with Smoothies. In Rendering Techniques 2003 (Proc. of EGSR),
208-218.

CHEN, S., AND WILLIAMS, L. 1993. View Interpolation for Image
Synthesis. In Proc. of SIGGRAPH ’93, 279-288.

CRrow, F. 1977. Shadow Algorithms for Computer Graphics. Com-
puter Graphics (Proc. of SSIGGRAPH ’77) (July), 242-248.

Crow, F. C. 1984. Summed-Area Tables for Texture Mapping.
Computer Graphics (Proc. of SIGGRAPH '84), 207-212.

DONNELLY, W., AND LAURITZEN, A. 2006. Variance Shadow
Maps. In Proc. of SI3D ’06, 161-165.

DRETTAKIS, G., AND FIUME, E. 1994. A Fast Shadow Algorithm
for Area Light Sources Using Backprojection. In SIGGRAPH
'94, 223-230.

FERNANDO, R. 2005. Percentage-Closer Soft Shadows. In ACM
SIGGRAPH 2005 Sketches, 35.

GUENNEBAUD, G., BARTHE, L., AND PAULIN, M. 2006. Real-
time Soft Shadow Mapping by Backprojection. In Rendering
Techinques 2006 (Proc. of EGSR), 227-234.

GUENNEBAUD, G., BARTHE, L., AND PAULIN, M. 2007. High-
Quality Adaptive Soft Shadow Mapping. Computer Graphics
Forum (Proc. of Eurographics 2007) 26, 3 (Sept.).

HASENFRATZ, J.-M., LAPIERRE, M., HOLZSCHUCH, N., AND
SILLION, F. 2003. A Survey of Real-Time Soft Shadows Algo-
rithms. Computer Graphics Forum 22, 4, 753-774.

HENSLEY, J., SCHEUERMANN, T., SINGH, M., AND LASTRA,
A. 2005. Interactive Summed-Area Table Generation for Glossy
Environmental Reflections. In ACM SIGGRAPH 2005 Sketches,
34.

KAuTzZ, J., LEHTINEN, J., AND AILA, T. 2004. Hemispherical
Rasterization for Self-Shadowing of Dynamic Objects. In Ren-
dering Techniques 2004 (Proc. of EGSR), 179-184.

LAURITZEN, A. 2007. Summed-Area Variance Shadow Maps. In
GPU Gems 3, H. Nguyen, Ed.

NG, R., RAMAMOORTHI, R., AND HANRAHAN, P. 2003. All-
Frequency Shadows Using Non-linear Wavelet Lighting Ap-
proximation. ACM Trans. Graph. 22, 3, 376-381.

OSTROMOUKHOV, V., DONOHUE, C., AND JODOIN, P.-M. 2004.
Fast Hierarchical Importance Sampling with Blue Noise Proper-
ties. ACM Trans. Graph. 23, 3, 488-495.

REN, Z., WANG, R., SNYDER, J., ZHoU, K., L1U, X., SUN,
B., SLOAN, P.-P., BAO, H., PENG, Q., AND GUO, B. 2006.
Real-Time Soft Shadows in Dynamic Scenes using Spherical
Harmonic Exponentiation. ACM Trans. Graph. 25, 3, 977-986.

SCHWARZ, M., AND STAMMINGER, M. 2007. Bitmask Soft Shad-
ows. Computer Graphics Forum (Proc. of Eurographics 2007)
26, 3 (Sept.), 515-524.

SLOAN, P.-P., KAUTZ, J., AND SNYDER, J. 2002. Precomputed
Radiance Transfer for Real-Time Rendering in Dynamic, Low-
Frequency Lighting Environments. ACM Trans. Graph. 21, 3,
527-536.

SLOAN, P.-P., LUNA, B., AND SNYDER, J. 2005. Local, De-
formable Precomputed Radiance Transfer. ACM Trans. Graph.
24,3, 1216-1224.

SOLER, C., AND SILLION, F. 1998. Fast Calculation of Soft
Shadow Textures Using Convolution. In Proc. of SIGGRAPH
’98, 321-332.

STEWART, A. J., AND GHALI, S. 1994. Fast Computation of
Shadow Boundaries Using Spatial Coherence and Backprojec-
tions. In Proc. of SIGGRAPH ’94,231-238.

WILLIAMS, L. 1978. Casting Curved Shadows on Curved Sur-
faces. Computer Graphics (Proc. of SIGGRAPH ’78) (August),
270-274.

W00, A., POULIN, P., AND FOURNIER, A. 1990. A Survey of
Shadow Algorithms. IEEE Computer Graphics & Applications
10, 6, 13-32.

WYMAN, C., AND HANSEN, C. 2003. Penumbra Maps: Approxi-
mate Soft Shadows in Real-Time. In Rendering Techniques 2003
(Proc. of EGSR), 202-207.

ZHou, K., Hu, Y., LIN, S., Guo, B., AND SHUM, H.-Y. 2005.
Precomputed Shadow Fields for Dynamic Scenes. ACM Trans.
Graph. 24, 3, 1196-1201.

