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Abstract

Hidden Markov models (HMM’s) have been used
prominently and successfully in speech recogni-
tion and, more recently, in handwriting recogni-
tion. Consequently, they seem ideal for visual
recognition of complex, structured hand gestures
such as are found in sign language. We describe
two experiments that. demonstrate a real-time
HMM-based system for recognizing sentence level
American Sign Language (ASL) without explic-
itly modeling the fingers. The first experiment
tracks hands wearing colored gloves and attains
a word accuracy of 99%. The second experiment
tracks hands without gloves and attains a word
accuracy of 92%. Both experiments have a 40
word lexicon.

Introduction
While there are many different types of gestures, the
most structured sets belong to the sign languages. In
sign language, each gesture already has assigned mean-
ing, and strong rules of context and grammar may be
applied to make recognition tractable.

To date, most work on sign language recognition
has employed expensive wired "datagloves" which the
user must wear (Takahashi ~: Kishino 1991). In addi-
tion, these systems have mostly concentrated on finger
signing, in which the user spells each word with fin-
ger signs corresponding to the letters of the alphabet
(Dorner 1993). However, most signing does not involve
finger spelling but instead, gestures which represent
whole words, allowing signed conversations to proceed
at about the pace of spoken conversation.

In this paper, we describe an extensible system
which uses one color camera to track hands in real time
and interprets American Sign Language (ASL) using
Hidden Markov Models (HMM’s). The hand track-
ing stage of the system does not attempt a fine de-
scription of hand shape; studies of human sign readers
have shown that such detailed information is not nec-
essary for humans to interpret sign language (Poizner,
Bellugi, & Lutes-Driscoll 1981; Sperling et al. 1985).
Instead, the tracking process produces only a coarse
description of hand shape, orientation, and trajectory.

The hands are tracked by their color: in the first ex-
periment via solidly colored gloves and in the second,
via their natural skin tone. In both cases the resultant
shape, orientation, and trajectory information is input
to a HMM for recognition of the signed words.

Hidden Markov models have intrinsic properties
which make them very attractive for sign language
recognition. Explicit segmentation on the word level is
not necessary for either training or recognition (Starner
et al. 1994). Language and context models can be ap-
plied on several different levels, and much related de-
velopment of this technology has already been done by
the speech recognition community (Huang, Ariki, 
Jack 1990). Consequently, sign language recognition
seems an ideal machine vision application of HMM
technology, offering the benefits of problem scalabil-
ity, well defined meanings, a pre-determined language
model, a large base of users, and immediate applica-
tions for a recognizer.

American Sign Language (ASL) is the language 
choice for most deaf people in the United States. ASL’s
grammar allows more flexibility in word order than
English and sometimes uses redundancy for emphasis.
Another variant, English Sign Language, has more in
common with spoken English but is not in widespread
use in America. ASL uses approximately 6000 gestures
for common words and finger spelling for communica-
tion of obscure words or proper nouns.

Conversants in ASL may describe a person, place,
or thing and then point to a place in space to store
that object temporarily for later reference (Sperling
el al. 1985). For the purposes of this experiment,
this aspect of ASL will be ignored. Furthermore, in
ASL the eyebrows are raised for a question, relaxed for
a statement, and furrowed for a directive. While we
have also built systems that track facial features (Essa,
Darrell, & Pentland 1994), this source of information
will not be used to aid recognition in the task addressed
here.

While the scope of this work is not to create a user in-
dependent, full lexicon system for recognizing ASL, the
system should be extensible toward this goal. Another
goal is real-time recognition which allows easier exper-
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imentation, demonstrates the possibility of a commer-
cial product in the future, and simplifies archiving of
test data. "Continuous" sign language recognition of
full sentences is necessary to demonstrate the feasibil-
ity of recognizing complicated series of gestures. Of
course, a low error rate is also a high priority. For

Table 1: ASL Test Lexicon

part of speech vocabulary
pronoun I, you, he, we, you(pl), they
verb want, like, lose, dontwant, dontlike,

love, pack, hit, loan
noun box, car, book, table, paper, pants,

bicycle, bottle, can, wristwatch,
umbrella, coat, pencil, shoes, food,
magazine, fish, mouse, pill, bowl

adjective red, brown, black, gray, yellow

this recognition system, sentences of the form "per-
sonal pronoun, verb, noun, adjective, (the same) per-
sonal pronoun" are to be recognized. This sentence
structure emphasizes the need for a distinct grammar
for ASL recognition and allows a large variety of mean-
ingful sentences to be generated randomly using words
from each class. Table 1 shows the words chosen for
each class. Six personal pronouns, nine verbs, twenty
nouns, and five adjectives are included making a total
lexicon of forty words. The words were chosen by pag-
ing through (Humphries, Padden, & O’Rourke 1990)
and selecting those which would generate coherent sen-
tences when chosen randomly for each part of speech.

Machine Sign Language Recognition

Attempts at machine sign language recognition have
begun to appear in the literature over the past five
years. However, these systems have generally con-
centrated on isolated signs and small training and
test sets. Tamura and Kawasaki demonstrate an
early image processing system which recognizes 20
Japanese signs based on matching cheremes (Tamura
& Kawasaki 1988). (Charayaphan & Marble 1992)
demonstrate a feature set that distinguishes between
the 31 isolated ASL signs in their training set (which
also acts as the test set). More recently, (Cui & Weng
1995) have shown an image-based system with 96%
accuracy on 28 isolated gestures.

(Takahashi & Kishino 1991) discuss a user depen-
dent Dataglove-based system that recognizes 34 of the
46 Japanese kana alphabet gestures using a joint an-
gle and hand orientation coding technique. The test
user makes each of the 46 gestures 10 times to provide
data for principle component and cluster analysis. A
separate test set is created from five iterations of the
alphabet by the user, with each gesture well separated
in time. (Murakami & Taguchi 1991) describe a simi-

lar Dataglove system using recurrent neural networks.
However, in this experiment a 42 static-pose finger al-
phabet is used, and the system achieves up to 98%
recognition for trainers of the system and 77% for users
not in the training set. This study also demonstrates a
separate 10 word gesture lexicon with user dependent
accuracies up to 96% in constrained situations.

Use of Hidden Markov Models in

Gesture Recognition

While the continuous speech recognition community
adopted HMM’s many years ago, these techniques are
just now accepted by the vision community. An early
effort by (Yamato, Ohya, & Ishii 1992) uses discrete
HMM’s to recognize image sequences of six different
tennis strokes among three subjects. This experiment
is significant because it uses a 25x25 pixel quantized
subsampled camera image as a feature vector. Even
with such low-level information, the model can learn
the set of motions and recognize them with respectable
accuracy. (Darrell & Pentland 1993) dynamic time
warping, a technique similar to HMM’s, to match the
interpolated responses of several learned image tem-
plates. (Schlenzig, Hunter, & :lain 1994) use hidden
Markov models to recognize "hello," "good-bye," and
"rotate." While Baum-Welch re-estimation was not
implemented, this study shows the continuous gesture
recognition capabilities of HMM’s by recognizing ges-
ture sequences. Recently, (Wilson & Bobiek 1995) ex-
plore incorporating multiple representations in HMM
frameworks.

Hidden Markov Modeling

While a substantial body of literature exists on HMM
technology (Baum 1972; Huang, Ariki, & :lack 1990;
Rabiner & :luang 1986; Young 1993), this section
briefly outlines a traditional discussion of the algo-
rithms. After outlining the fundamental theory in
training and testing a discrete HMM, this result is
then generalized to the continuous density case used in
the experiments. For broader discussion of the topic,
(Huang, Ariki, & :lack 1990; Starner 1995) are recom-
mended.

A time domain process demonstrates a Markov prop-
erty if the conditional probability density of the current
event, given all present and past events, depends only
on the jth most recent events. If the current event de-
pends solely on the most recent past event, then the
process is a first order Markov process. While the or-
der of words in American Sign Language is not truly
a first order Markov process, it is a useful assumption
when considering the positions and orientations of the
hands of the signer through time.

The initial topology for an HMM can be determined
by estimating how many different states are involved
in specifying a sign. Fine tuning this topology can be
performed empirically. While different topologies can
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be specified for each sign, a four state HMM with one
skip transition was determined to be sufficient for this
task (Figure 1).

Figure 1: The four state HMM used for recognition.

There are three key problems in HMM use: evalua-
tion, estimation, and decoding. The evaluation prob-
lena is that given an observation sequence and a model,
what is the probability that the observed sequence was
generated by the model (Pr(O[A)) (notational 
from (Huang, Ariki, & Jack 1990))? If this can 
evaluated for all competing models for an observation
sequence, then the model with the highest probability
can be chosen for recognition.

Pr(O]A) can be calculated several ways. The naive
way is to sum ttle probability over all the possible state
sequences in a xnodel for the observation sequence:

T

Pr(OlA) = ~ I-[ as,_,s,bs,(O,)
allS t=l

However, this method is exponential in time, so the
more efficient forward-backward algorithm is used in
practice. Tile following algorithm defines the forward
variable a and uses it to generate Pr(O[A) (Tr are 
initial state probabilities, a are the state transition
probabilities, and b are the output probabilites).

¯ o1(i) ----- 7ribi(O1), for all states i (if ieSi, 7ri -~ 1._1_.ni1

otherwise ,’ri = 0)

¯ Calculating a0 along the time axis, for t = 2, ..., T,
and all states j, compute

at(j) = [E at_l(i)aij]bj(Ot)
i

¯ Final probability is given by

ieSF

The first step initializes the forward variable with the
initial probability for all states, while the second step
inductively steps the forward variable through time.
The final step gives the desired result Pr(OIA), and it
can be shown by constructing a lattice of states and
transitions through time that the computation is only
order O(N~T). Tile backward algorithm, using a pro-
cess similar to the above, can also be used to compute
Pr(O[A) and defines the convenience variable/?.

The estimation problem concerns how to adjust A
to maximize Pr(OlA) given an observation sequence
O. Given an initial model, which can have flat prob-
abilities, the forward-backward algorithm allows us to

evaluate this probability. All that remains is to find a
method to improve the initial model. Unfortunately,
an analytical solution is not known, but an iterative
technique can be employed.

Using the actual evidence from the training data, a
new estimate for the respective output probability can
be assigned:

T
~t=l 7,(J)

where 7t(i) is defined as the posterior probability 
being in state i at time t given the observation sequence
and the model. Similarly, the evidence can be used to
develop a new estimate of the probability of a state
transition (5~j) and initial state probabilities (~).

Thus all the components of model (A) can be re-
estimated. Since either the forward or backward al-
gorithm can be used to evaluate Pr(O]~) versus the
previous estimation, the above technique can be used
iteratively to converge the model to some limit. While
the technique described only handles a single obser-
vation sequence, it is easy to extend to a set of ob-
servation sequences. A more formal discussion can
be found in (Baum 1972; Huang, Ariki, & Jack 1990;
Young 1993).

While the estimation and evaluation processes de-
scribed above are sufficient for the development of an
HMM system, the Viterbi algorithm provides a quick
means of evaluating a set of HMM’s in practice as well
as providing a solution for the decoding problem. In
decoding, the goal is to recover the state sequence given
an observation sequence. The Viterbi algorithm can be
viewed as a special form of the forward-backward al-
gorithm where only the maximum path at each time
step is taken instead of all paths. This optimization
reduces computational load and allows the recovery of
the most likely state sequence. The steps to the Viterbi
are

¯ Initialization. For all states i, 51(i) = ~ribi(O1);
= 0

¯ Recursion. From t = 2 to T and for all
states j, St(j) = Maxi[St_l(i)aij]bj(Ot); Ct(j) 
argmaxi [5t-1 ( i) aij 

¯ Termination. P = Max~sF[ST(S)]; ST 
argmaxscs~ [ST(S)]

¯ Recovering the state sequence. From t = T - 1 to 1,
=

In many HMM system implementations, the Viterbi
algorithm is used for evaluation at recognition time.
Note that since Viterbi only guarantees the maximum
of Pr(O,SIA) over all state sequences S (as a result
of the first order Markov assumption) instead of the
sum over all possible state sequences, the resultant
scores are only an approximation. However, (Rabiner
& Juang 1986) shows that this is often sufficient.
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So far the discussion has assumed some method of
quantization of feature vectors into classes. However,
instead of using vector quantization, the actual prob-
ability densities for the features may be used. Baum-
Welch, Viterbi, and the forward-backward algorithms
can be modified to handle a variety of characteristic
densities (Juang 1985). In this context, however, the
densities will be assumed to be Gaussian. Specifically,

1 e ½(o,_I,D,o}- ffo,_t,j)-

Initial estimations of p and o- may be calculated by
dividing the evidence evenly among the states of the
model and calculating the mean and variance in the
normal way. Whereas flat densities were used for the
initialization step before, the evidence is used here.
Now all that is needed is a way to provide new es-
timates for tile output probability. We wish to weight
the influence of a particular observation for each state
based on the likelihood of that observation occurring
in that state. Adapting the solution from the discrete
case yields

ET=I 7,(j)O,
fiJ = ET=I 7,(J)

and
ET=I 7,(j)(O, fi j)(O, - fl a’)’

dj =
E~=l 7,(J)

For convenience, pj is used to calculate o~j instead of
the re-estimated/£j. While this is not strictly proper,
the values are approximately equal in contiguous it-
erations (Huang, Ariki, & Jack 1990) and seem not
to make an empirical difference (Young 1993). Since
only one stream of data is being used and only one
mixture (Gaussian density) is being assumed, the al-
gorithms above can proceed normally, incorporating
these changes for the continuous density case.

Tracking Hands in Video

Previous systems have shown that, given some con-
straints, relatively detailed models of the hands can
be recovered from video images (Dorner 1993; Rehg
& Kanade 1993). However, many of these constraints
conflict with recognizing ASL in a natural context, ei-
ther by requiring simple, unchanging backgrounds (un-
like clothing); not allowing occlusion; requiring care-
fully labelled gloves; or being difficult to run in real
time.

In this project we have tried two methods of hand
tracking: one, using solidly-colored cloth gloves (thus
simplifing the segmentation problem), and two, track-
ing the hands directly without aid of gloves or mark-
ings. Figure 2 shows the view from the camera’s per-
spective in the no-gloves case. In both cases color
NTSC composite video is captured and analyzed at 320
by 243 pixel resolution. On a Silicon Graphics Indigo
2 with Galileo video board we can achieve a constant

5 frames per second, while using a Silicon Graphics
200MHz Indy workstation we were able to track the
hands at 10 frames per second.

In the first method, the subject wears distinctly col-
ored cloth gloves on each hand (a yellow glove for the
right hand and an orange glove for the left) and sits
in a chair facing the camera. To find each hand ini-
tially, the algorithm scans the image until it finds a
pixel of the appropriate color. Given this pixel as a
seed, the region is grown by checking the eight near-
est neighbors for the appropriate color. Each pixel
checked is considered part of the hand. This, in effect,
performs a simple morphological dilation upon the re-
sultant image that helps to prevent edge and lighting
aberrations. The centroid is calculated as a by-product
of the growing step and is stored as the seed for the
next frame. Given the resultant bitmap and centroid,
second moment analysis is performed as described in
the following section.

Figure 2: View from the tracking camera.

In the second method, the the hands were tracked
based on skin tone. We have found that all human
hands have appro~mately the same hue and satura-
tion, and vary primarily in their brightness. Using this
information we can build an a priori model of skin
color and use this model to track the hands much as
was done in the gloved case. Since the hands have the
same skin tone, "left" and "right" are simply assigned
to whichever hand is leftmost and rightmost. Process-
ing proceeds normally except for simple rules to handle
hand and face ambiguity described in the next section.

Feature Extraction and Hand

Ambiguity
Psychophysical studies of human sign readers have
shown that detailed information about hand shape is
not necessary for humans to interpret sign language
(Poizner, Bellugi, & Lutes-Driscoll 1981; Sperling el
al. 1985). Consequently, we began by considering only
very simple hand shape features, and evolved a more
complete feature set as testing progressed (Starner et
aL 1994).

Since finger spelling is not allowed and there are few
ambiguities in the test vocabulary based on individual
finger motion, a relatively coarse tracking system may
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be used. Based on previous work, it was assumed that
a system could be designed to separate the hands from
the rest of the scene. Traditional vision algorithms
could then be applied to the binarized result. Aside
from the position of the hands, some concept of the
shape of the hand and the angle of the hand relative
to horizontal seemed necessary. Thus, an eight element
feature vector consisting of each hand’s x and y posi-
tion, angle of axis of least inertia, and eccentricity of
bounding ellipse was chosen. The eccentricity of the
bounding ellipse was found by determining the ratio of
the square roots of the eigenvalues that correspond to
the matrix

b/~ e
where a, b, and c are defined as

a= / ~ (x~)2dxtdy’,

b=/~i x~y~dx’dy~

c= f f,(y’)2dx’dy’
dJI

(xt and y~ are the x and y coordinates normalized to
the centroid)

The axis of least inertia is then determined by the
major axis of the bounding ellipse, which corresponds
to the primary eigenvector of the matrix (Horn 1986).
Note that this leaves a 180 degree ambiguity in the an-
gle of the ellipses. To address this problem, the angles
were only allowed to range from -90 to +90 degrees.

When tracking skin tones, the above analysis helps
to model situations of hand ambiguity implicitly.
When a hand occludes either the other hand or the
face, color tracking alone can not resolve the ambiguity.
Since the face remains in the same area of the frame, its
position Call be determined and discounted. However,
the hands move rapidly and occlude each other often.
When occlusion occurs, the hands appear to the above
system as a single blob of larger than normal mass
with significantly different moments than either of the
two hands ill tile previous frame. In this implemen-
tation, each of the two hands is assigned the moment
and position information of the single blob whenever
occlusion occurs. While not as informative as track-
ing each hand separately, this method still retains a
surprising amount of discriminating information. The
occlusion event is implicitly modeled, and the com-
bined position and moment information are retained.
This method, combined with the time context provided
by hidden Markov models, is sufficient to distinguish
between many different signs where hand occlusion oc-
curs.

Training an HMM network
When using HMM’s to recognize strings of data such
as continuous speech, cursive handwriting, or ASL sen-
tences, several methods can be used to bring context

to bear in training and recognition. A simple con-
text modeling method is embedded training. While
initial training of the models might rely on manual
segmentation or, in this case, evenly dividing the evi-
dence among the models, embedded training trains the
models in situ and allows model boundaries to shift
through a probabilistic entry into the initial states of
each model (Young 1993).

Generally, a sign can be affected by both the sign
in front of it and the sign behind it. For phonemes
in speech, this is called "co-articulation." While this
can confuse systems trying to recognize isolated signs,
the context information can be used to aid recognition.
For example, if two signs are often seen together, rec-
ognizing the two signs as one group may be beneficial.

A final use of context is on the word or phrase level.
Statistical grammars relating the probability of the co-
occurrence of two or more words can be used to weight
the recognition process. Grammars that associate two
words are called bigrams, whereas grammars that as-
sociate three words are called trigrams. Rule-based
grammars can also be used to aid recognition.

Experimentation
Since we could not exactly recreate the signing condi-
tions between the first and second experiments, direct
comparison of the gloved and no-glove experiments is
impossible. However, a sense of the increase in error
due to removal of the gloves can be obtained since the
same vocabulary and sentences were used in both ex-
periments.

Experiment 1: Gloved-hand tracking
The glove-based handtracking system described ear-
lier worked well. Occasionally tracking would be lost
(generating error values of 0) due to lighting effects,
but recovery was fast enough (within a frame) that
this was not a problem. A 5 frame/see rate was main-
tained within a tolerance of a few milliseconds. How-
ever, frames were deleted where tracking of one or both
hands was lost. Thus, a constant data rate was not
guaranteed. This hand tracking process produced an
eight-element feature vector (each hand’s x and y po-
sition, angle of axis of least inertia, and eccentricity of
bounding ellipse) that was used for subsequent model-
ing and recognition.

Of the 500 sentences collected, six were eliminated
due to subject error or outlier signs. In general, each
sign was 1 to 3 seconds long. No intentional pauses
were placed between signs within a sentence, but the
sentences themselves were distinct.

Initial estimates for the means and variances of the
output probabilities were provided by iteratively us-
ing Viterbi alignment on the training data (after ini-
tially dividing the evidence equally amoung the words
in the sentence) and then recomputing the means and
variances by pooling the vectors in each segment. En-
tropic’s Hidden Markov Model "ToolKit (HTK) is used
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Table 2: Word accuracy of glove-based system

ezperiment training set independent
lest set

grammar 99.5% (99.5%) 99.2% (99.2%)
no 92.0% (97%) 91.3% (96%)

grammar (D=9, S=67, (D=I, S=16,
I=121, N=2470) I=26, N=495)

as a basis for this step and all other HMM model-
ing and training tasks. The results from the initial
alignment program are fed into a Baum-Welch re-
estimator, whose estimates are, in turn, refined in em-
bedded training which ignores any initial segmenta-
tion. For recognition, HTK’s Viterbi recognizer is used
both with and without a strong grammar based on the
known form of the sentences. Contexts are not used,
since a similar effect could be achieved with the strong
grammar given this data set. Recognition occurs five
times faster than real time.

Word recognition accuracy results are shown in Ta-
ble 2; the percentage of words correctly recognized is
shown in parentheses next to the accuracy rates. When
testing on training, all 494 sentences were used for both
the test and train sets. For the fair test, the sentences
were divided into a set of 395 training sentences and
a set of 99 independent test sentences. The 99 test
sentences were not used for any portion of the train-
ing. Given the strong grammar (pronoun, verb, noun,
adjective, pronoun), insertion and deletion errors were
not possible since the number and class of words al-
lowed is known. Thus, all errors are vocabulary sub-
stitutions when the grammar is used (and accuracy is
equivalent to percent correct). However, without the
grammar, the recognizer is allowed to match the obser-
vation vectors with any number of the 40 vocabulary
words in any order. Thus, deletion (D), insertion (I),
and substitution (S) errors are possible. The absolute
number of errors of each type are listed in Table 2.
The accuracy measure is calculated by subtracting the
number of insertion errors from the number of correct
labels and dividing by the total number of signs. Note
that, since all errors are accounted against the accuracy
rate, it is possible to get large negative accuracies (and
corresponding error rates of over 100%). Most inser-
tion errors correspond to signs with repetitive motion.

Analysis

The 0.8% error rate of the independent test set shows
that the HMM topologies are sound and that the mod-
els generalize well. With such low error rates, little can
be learned by analyzing the remaining errors.

However, the remaining 8.7% error rate (based on
accuracy) of the "no grammar" experiment better in-
dicates where problems may occur when extending the
system. Without the grammar, signs with repetitive

or long gestures were often inserted twice for each ac-
tual occurrence. In fact, insertions caused more errors
than substitutions. Thus, the sign "shoes" might be
recognized as "shoes shoes," which is a viable hypoth-
esis without a language model. However, a practical
solution to this problem is the use of context train-
ing and a statistical grammar instead of the rule-based
grammar.

Using context modeling as described before may sig-
nificantly improve recognition accuracy in a more gen-
eral implementation as shown by the speech and hand-
writing recognition communities (Starner et al. 1994).
While a rule-based grammar explicitly constrains the
word order, statistical context modeling would have a
similar effect while generalizing to allow different sen-
tence structures. In the speech community, such mod-
eling occurs at the "triphone" level, where groups of
three phonemes are recognized as one unit. The equiv-
alent in ASL would be to recognize "trisines" (groups
of three signs) corresponding to three words, or three
letters in the case of finger spelling. In speech recog-
nition, statistics are gathered on word co-occurence to
create "bigram" and "trigram" grammars which can
be used to weight the liklihood of a word. In ASL, this
might be applied on the phrase level. For example,
the random sentence construction used in the experi-
ments allowed "they like pill yellow they," which would
probably not occur in natural, everyday conversation.
As such, context modeling would tend to suppress this
sentence in recognition, perhaps preferring "they like
food yellow they," except when the evidence is partic-
ularly strong for the previous hypothesis.

Further examination of the errors made without the
grammar shows the importance of finger position in-
formation. Signs like "pack," "car," and "gray" have
very similar motions. In fact, the main difference be-
tween "pack" and "car" is that the fingers are pointed
down for the former and clenched in the latter. Since
this information is not available in the model, confu-
sion occurs. While recovering specific finger positions
is difficult with the current testing apparatus, simple
palm orientation might be sufficient to resolve these
ambiguities.

Since the raw screen coordinates of the hands were
used, the system was trained to expect certain gestures
in certain locations. When this varied due to subject
seating position or arm placement, the system could
become confused. A possible solution is to use position
deltas in the feature vector, as was done in the second
experiment.

Experiment 2: Natural skin tracking

The natural hand color tracking method maintained a
10 frame per second rate at 320x240 pixel resolution
on a 200Mgz SGI Indy. Higher resolution tracking
suffered from video interlace effects. While tracking
was somewhat noisier due to confusions with similarly-
colored background elements, lighting seemed to play
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a lesser role due to the lower specularity of skin com-
pared to the gloves. Since only one hand "blob" might
be expected at a given time, no frames were rejected
due to lack of tracking of a hand. Due to the sub-
ject’s increased familiarity with ASL from the first ex-
periment, the 500 sentences were obtained in a much
shorter span of time and in fewer sessions.

During review of this data set and comparison with
the earlier set of sentences, it was found that sub-
ject error and variability increased. In particular,
there was increased variability in imaged hand size
(due to changes in depth under perspective) and in-
creased variability in body rotation relative to the cam-
era. Ignoring these unintentional complications, 478 of
the sentences were correctly signed; 384 were used for
training, and 94 were reserved for testing.

Table 3: Word accuracy of natural skin system

experiment training set independent
test set

original 87.9% (87.9%) 84.7% (84.7%)
+ area 92.1% (92.1%) 89.2% (89.2%)

A + area 89.6% (89.6%) 87.2% (87.2%)
full 94.1% (94.1%) 91.9% (91.9%)

full-no 81.0% (87%) 74.5% (83%)
grammar (D=31, S=287, (D=3, S=76,

I=137, N=2390) I=41, N=470)

Word accuracies; percent correct in parentheses. The
first test uses the original feature set from the first

experiment. The second adds the area of the imaged
hand. The change in position of the hands replaces the

absolute position in the third test, and the final test uses
the full set of features: x, y, Ax, Ay, angle, eccentricity,
area, and length of the major eigenvector. All tests use
the grammar except for the last result which shows "no

grammar" for completeness.

In tile first experiment an eight-element feature vec-
tor (each hand’s x and y position, angle of axis of
least inertia, and eccentricity of bounding ellipse) was
found to be sufficient. However this feature vector does
not include all the information derived from the hand
tracking process. In particular, the hand area, the
length of the major axis of the first eigenvector, and
the change in x and y positions of the hand were not
used. In this second experiment these features were
added to help resolve the ambiguity when the hands
cross. In addition, the use of combinations of these
feature elements were also explored to gain an under-
standing of the their information content. Training
and recognition occurred as described previously. The
word accuracy results are summarized in Table 3; the
percentage of words correctly recognized is shown in
parentheses next to the accuracy rates.

Analysis

A higher error rate was expected for the gloveless sys-
tem, and indeed this was the case. The 8 element fea-
ture set (x, y, angle, and eccentricity for each hand)
was not sufficient for the task due to loss of information
when the hands crossed. However, the simple addition
of the area of each hand improved the accuracy signif-
icantly.

The subject’s variability in body rotation and po-
sition was known to be a problem with this data set.
Thus, signs that are distinguished by the hands’ posi-
tions in relation to the body were confused since only
the absolute positions of the hands in screen coordi-
nates were measured. To minimize this type of error,
the absolute positions of the hands can be replaced
by their relative motion between frames (Ax and Ay).
While this replacement causes the error rate to increase
slightly, it demonstrates the feasibility of allowing the
subject to vary his location in the room while signing,
removing another constraint from the system.

By combining the relative motion and absolute posi-
tion information with the angle, eccentricity, area, and
length of the major eigenvector, the highest fair test
accuracy, 91.9%, was reached. Without the context in-
formation provided by the grammar, accuracy dropped
considerably; reviewing the errors showed considerable
insertions and substitutions at points where the hands
crossed.

Discussion and Conclusion
~,¥e have shown an unencumbered, vision-based
method of recognizing American Sign Language (ASL).
Through use of hidden Markov models, low error rates
were achieved on both the training set and an indepen-
dent test set without invoking complex models of the
hands.

With a larger training set and context modeling,
lower error rates are expected and generalization to a
freer, user independent ASL recognition system should
be attainable. To progress toward this goal, the follow-
ing improvements seem most important:

¯ Measure hand position relative to each respective
shoulder or a fixed point on the body.

¯ Add finger and palm tracking information. This may
be as simple as counting how many fingers are visible
along the contour of the hand and whether the palm
is facing up or down.

¯ Use a two camera vision system to help disambiguate
the hands in 2D and/or track the hands in 3D.

¯ Collect appropriate domain or task-oriented data
and perform context modeling both on the trisine
level as well as the grammar/phrase level.

¯ Integrate explicit face tracking and facial gestures
into the feature set.

These improvements do not address the user inde-
pendence issue. Just as in speech, making a system
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which can understand different subjects with their own
variations of the language involves collecting data from
many subjects. Until such a system is tried, it is hard
to estimate the number of subjects and the amount of
data that would comprise a suitable training database.
Independent recognition often places new requirements
on the feature set as well. While the modifications
mentioned above may be initially sufficient, the devel-
opment process is highly empirical.

So far, finger spelling has been ignored. However,
incorporating finger spelling into the recognition sys-
tem is a very interesting problem. Of course, changing
the feature vector to address finger information is vital
to the problem, but adjusting the context modeling is
also of importance. With finger spelling, a closer paral-
lel can be made to speech recognition. Trisine context
occurs at the sub-word level while grammar modeling
occurs at the word level, However, this is at odds with
context across word signs. Can trisine context be used
across finger spelling and signing? Is it beneficial to
switch to a separate mode for finger spelling recogni-
tion? Can natural language techniques be applied, and
if so, can they also be used to address the spatial posi-
tioning issues in ASL? The answers to these questions
may be key to creating an unconstrained sign language
recognition system.
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