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Abstract

Background: Prosthetic joint infections are clinically difficult to diagnose and treat. Previously, we demonstrated
metagenomic sequencing on an Illumina MiSeq replicates the findings of current gold standard microbiological
diagnostic techniques. Nanopore sequencing offers advantages in speed of detection over MiSeq. Here, we report a
real-time analytical pathway for Nanopore sequence data, designed for detecting bacterial composition of prosthetic joint
infections but potentially useful for any microbial sequencing, and compare detection by direct-from-clinical-
sample metagenomic nanopore sequencing with Illumina sequencing and standard microbiological diagnostic
techniques.

Results: DNA was extracted from the sonication fluids of seven explanted orthopaedic devices, and additionally from
two culture negative controls, and was sequenced on the Oxford Nanopore Technologies MinION platform. A specific
analysis pipeline was assembled to overcome the challenges of identifying the true infecting pathogen, given high
levels of host contamination and unavoidable background lab and kit contamination.
The majority of DNA classified (> 90%) was host contamination and discarded. Using negative control filtering thresholds,
the species identified corresponded with both routine microbiological diagnosis and MiSeq results. By analysing sequences
in real time, causes of infection were robustly detected within minutes from initiation of sequencing.

Conclusions: We demonstrate a novel, scalable pipeline for real-time analysis of MinION sequence data and use of this
pipeline to show initial proof of concept that metagenomic MinION sequencing can provide rapid, accurate diagnosis for
prosthetic joint infections. The high proportion of human DNA in prosthetic joint infection extracts prevents full genome
analysis from complete coverage, and methods to reduce this could increase genome depth and allow antimicrobial
resistance profiling. The nine samples sequenced in this pilot study have shown a proof of concept for sequencing and
analysis that will enable us to investigate further sequencing to improve specificity and sensitivity.
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Background
Infection remains a feared and devastating complication

of orthopaedic implant surgery. It occurs in up to 2%

of prosthetic joint replacements [1] and may present

several years after implantation [2]. Recent studies in

England of joint revisions undertaken for infection

report an increase in prevalence for both knee and hip

revisions between 2003 and 2014 (2.5-fold and 7.5-fold

and 2.3-fold and 3.0-fold increase following primary

and revision knee and hip replacements respectively

[3, 4]). It has been estimated that in the USA, there

will be more than 65,500 infected joint replacements

per year by 2020 [5]. Improvements in speed and ac-

curacy of diagnosis may improve outcomes following

revision surgery by allowing more targeted therapy.

PJI diagnosis can be challenging as infections may be

associated with biofilms that colonise the orthopaedic

devices [6], with a small but potentially problematic
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number caused by fastidious or slow-growing organisms

that are not detectable by culture or from patients who

have received prior antibiotics. Although culture of multiple

periprosthetic tissue (PPT) samples remains the gold stand-

ard for microbial detection, it is relatively insensitive, with

only approximately 65% of causative bacteria detected even

when multiple PPT samples are collected [7–9].

Development of molecular methods, such as 16 s rRNA

sequencing, can be more sensitive in detection of PJI [10].

An alternative is the use of metagenomic shotgun sequen-

cing that can detect full bacteria genomes directly from a

sample. Sequencing directly from samples can provide

accurate diagnostic information for PJIs when compared to

laboratory culture and can also detect additional organisms

[11, 12] and potentially provide additional information such

as presence of antimicrobial resistance genes [12].

Using third generation sequencing technology, developed

by Oxford Nanopore Technologies (ONT) and Pacific Bio-

sciences (PacBio), longer read lengths in faster turnarounds

are possible. The ONT MinION potentially could allow

analysis to be conducted in real-time with obvious ad-

vantages to clinical diagnosis of infection. Examples of

metagenomic pathogen studies using MinION include

viral detection from serum [13] and bacteria from urines

[12]. These previous studies have shown proof-of- principle

for direct from sample clinical sequencing using ONT

MinION. However, PJI sequencing has a further chal-

lenge of high human DNA contamination which require

specific laboratory preparation and bioinformatic analyses

to overcome. A previous study using ONT MinION se-

quencing to identify pathogens within highly human DNA

contaminated pleura effusion samples used 16 s rDNA

sequencing [14]. This proved quick identification was pos-

sible in high host DNA samples but could not provide fur-

ther genomic information.

Here we describe proof-of-principle for the use of

ONT MinION sequencing for the diagnosis of PJI when

compared to standard microbiological culture and Illumina

sequencing. We describe an analysis work-flow that differ-

entiates between predicted infection species and back-

ground contamination and can be run during sequencing

for real-time species detection.

Methods

Samples

Samples used in this study were collected by the Bone

Infection Unit at the Nuffield Orthopaedic Centre (NOC)

in Oxford University Hospitals (OUH), UK, as previously

described [11]. Nine samples previously assessed by Illu-

mina MiSeq sequencing were chosen for further analysis by

ONT MinION sequencing. Samples were chosen from the

remaining DNA extracts that had sufficient DNA to either

be sequenced directly, or amplified and sequenced, and to

represent a range of disparate species and compositions.

DNA preparation and sequencing

Libraries were prepared for sequencing on an Oxford

Nanopore MinION (Oxford Nanopore Technologies

(ONT)) using genomic DNA previously extracted from

sonication fluid samples [11]. Samples 259, 312, 335,

352 and 354 were prepared using the 1D genomic DNA

by ligation protocol (SQK-LSK108) (ONT). Samples

229, 249, 506 and 509 had insufficient DNA for this

protocol so were prepared using either a PCR-based

protocol for low input genomic DNA with modified

primers (DP006_revB_14Aug2015), followed by rapid se-

quencing adapter ligation (ONT) (sample 229) or the 1D

low input genomic DNA with PCR protocol (SQK-LSK108)

(ONT) (samples 249, 506 and 509). Briefly, the protocols

comprise DNA end-repair and dA-tailing (NEBNext Ultra

II End Repair/dA-Tailing Module, New England Biolabs

(NEB), Ipswich, MA, USA) followed by purification using

AMPure XP solid phase reversible immobilisation (SPRI)

beads (Beckman Coulter, High Wycombe, UK); Sequencing

adapter ligation (Blunt/TA Ligase Master Mix, NEB)

followed by additional SPRI bead purification. For the

samples with insufficient DNA requiring PCR amplifi-

cation, additional steps between end-repair and sequen-

cing adapter ligation included; PCR adapter ligation

(Blunt/TA Ligase Master Mix, NEB) followed by SPRI

bead purification; PCR amplification (Phusion High Fidelity

PCR Master Mix, NEB) with 18 cycles (samples 229 and

249) or 24 cycles (samples 506 and 509) followed by add-

itional SPRI bead purification. Samples were sequenced on

FLO-MIN105 (v.R9) (sample 229) or FLO-MIN106 (v.R9.4)

(all other samples) SpotON flowcells.

PCR analysis of sample 354a

Quantitative real-time PCR (q-PCR) was performed for

sample 354a to determine relative amounts of both

Arcanobacterium haemolyticum and Fusobacterium nucle-

atum DNA in the original sonication fluid genomic DNA

extract. qPCR was performed on a Stratagene MX3005P

QPCR System (Agilent Technologies, Santa Clara, CA,

USA) using Luna Universal Probe qPCR Master Mix

(New England Biolabs, Ipswich, MA, USA). For A. hae-

molyticum, primers and probe were designed to target

the phospholipase D gene: forward primer ATGTACGAC

GATGAAGACGCG (previously published, [15]), reverse

primer TTGATTGCGTCATCGACACT, probe [6FAM]-

TTGGTAGTGCGGCTGCTGCGCC-[TAM]. For F.

nucleatum, primers and probe were designed to target the

nusG gene: forward primer CAGCAACTTGTCCTTCTT

GATCC, reverse primer CTGGATTTGTAGGAGTTGG

TTC, probe [6FAM]-AGACCCTATTCCTATGGAAGAG

GAAGAAGTA-[TAM]. Reactions were performed in

20 μl with 2ul of template DNA, 0.4 μM of each primer

and 0.2 μM of the probe. Cycling conditions were an ini-

tial denaturation at 95 °C for 1 min, followed by 40 cycles
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of 95 °C denaturation for 15 s and 60 °C extension for

30 s. Genomic DNA, extracted from cultures of A. haemo-

lyticum (Type Strain NCTC 8452) and F. nucleatum sub-

species vincentii (Type Strain ATCC 49256), was diluted

to 100,000 genome copies per μl then serially diluted to

10 genome copies per μl and used to create copy number

standard curves for both species. Negative controls, re-

placing template DNA with water, were also performed.

All reactions were performed in triplicate.

Bioinformatics analysis

We assembled an analysis pipeline for detection of bacterial

pathogens using ONT MinION sequencing of orthopaedic

device infections. The pipeline includes filtering steps for

the genetic sequence data that have been tuned on

seven positive samples with known infections and two

culture negative samples.

The analysis was performed within a Nextflow workflow

[16] with the software contained within a Singularity [17]

image generated from a Docker repository [18]. This

workflow and software are available for public use, [19],

with our intention for the analysis to be reproducible or

replicable with other datasets on most systems.

The workflow, CRuMPIT, has three major compo-

nents, as shown in Fig. 1. The first monitors the output

of a MinION device or devices and creates batches of

fast5 files (default 1000) as they are written to a storage

drive location, Fig. 1 (a,b). The second receives the fast5

files and uses a Nextflow workflow that basecalls data to

be classified and aligns them to specific reference se-

quences with results pushed to a database, Fig. 1(c).

Thirdly, analysis results including species identified, are

determined and continually updated as the run pro-

gresses, Fig. 1(d).

During the progression of this project, ONT have re-

leased several different software applications for basecal-

ling, with each version improving accuracy [20]; we used

the most up to date and reliable version at the time of se-

quencing. Basecalling from the fast5 files used different

versions of either Metrichor (dragonet), MinKNOW-Live

or ONTAlbacore, Table 1. Fastq files were generated from

the Metrichor or MinKNOW basecalled fast5 files using

fast5watcher.py (commit b88e14a) [21] for downstream

analysis. Albacore is now used as the basecaller within the

CRuMPIT workflow, with sequences basecalled directly to

fastq files for analysis. Experimental use of Guppy (ONT

developer access required, version 0.3.0) as a basecaller

was performed to compare speeds. An additional Pore-

chop [22] (v0.2.3) step for de multiplexing barcodes was

added for use with Guppy.

To minimise spurious read classifications caused by re-

peat regions, sequences within the fastq files were separated

based on molecular complexity, with only high complexity

reads analysed further. Complexity was calculated using a

a

b

c

de

Fig. 1 Diagram of analysis process. a MinION sequencing using MinKNOW (runs outside of CRuMPIT). b Fast5 files are detected and submitted as
batches for the Nextflow workflow. c Nextflow workflow which is contained within a singularity image and can be distributed across a cluster
(SLURM used here) or on a local machine. d Run analysis using data pushed to a MongoDB database, this can be conducted separately on any
machine with network access to the database. Each component (green or blue rounded rectangle) of CRuMPIT can be run independently from
the same or different networked computers, (e) or the entire process can be run from a single program. Square rectangles represent programs,
some of which are within python wrappers. Arrows represent direction of data transfer within the workflow or between componants
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dust score threshold of seven with prinseq-lite-0.20.4 [23]

which removes reads containing sequences consisting only

of homopolymer, dipolymer and triploymer repeats.

Centrifuge [24] was used to classify sequencing reads

to a taxonomic identifier. We used Centrifuge instead of

Kraken [25] for this analysis because the initial starting

match uses kmers of length 16, which is more suited to

the Nanopore error profile compared to Kraken where

databases are built with a default kmer size of 31. Addition-

ally, the Centrifuge indexes require significantly less storage

and memory compared to Kraken. A Centrifuge index [24]

was constructed using bacterial and viral genomes down-

loaded from NCBI RefSeq as of 03-March-2017, and the

human reference genome (GRCh38). Low complexity re-

gions with a dust score greater than 20 in the reference

sequences were masked using dustmasker (v 1.0.0, NCBI).

Alternatively, the precompiled “P_compressed_b + v + h”

available to download from the Centrifuge authors was also

used, yielding very similar results to our database. We used

our database for this analysis because it is a more recent

and complete dataset. However, for ease of reproducibility,

the precompiled databases can also be used.

Sequences with a taxonomic id, or a descendant, that

belonged to a list of bacterial reference genome sequences

downloaded from NCBI RefSeq, were mapped using mini-

map2 [26] (v2.2-r409). To be considered for detection,

bacterial species were first classified by Centrifuge with a

score of 150 or greater with over 10% of the classified bac-

terial bases. The score of 150 was chosen as a suitable cut-

off after several thresholds were tested, Additional file 1:

Figure S1. To remove spurious hits and background lab

contamination, species were reported if they accounted

for over 10% of the classified bacterial bases by Centrifuge

which also removed the majority of negative control hits,

Additional file 2: Figure S2. Alternatively, a read number

threshold could have been chosen, however the margin of

proportional read numbers was deemed too narrow be-

tween positive samples and negative controls. Therefore, a

further mapping step was added to validate the Centrifuge

classification.

To be confirmed as a positive the mapped reads required

a mapping quality score (mapq) of 50 or above and had to

account for greater than 1% of the classified bacterial bases.

Mapq 50 was used to ensure high quality alignments and

helped to remove any remaining indiscriminate alignments,

Additional file 3: Figure S3. The 1% bases threshold was

used after plotting bases over reads for positive samples

and negative controls, Additional file 4: Figure S4. However,

if a detection species meets these criteria, the mapped reads

can have any Centrifuge score and are included in further

analysis. Therefore, more reads can be included if mapping

provides satisfactory alignment over Centrifuge classifica-

tion. This filtering method was tuned to remove all hits

from the negative controls but leave as many validated

positive detection species reads as possible. It is there-

fore a heuristic method and can be tuned with greater

power when more samples have been processed.

The entire workflow was run in Nextflow [16] with the

software contained inside a Singularity [17] image. This has

enabled the entire pipeline to run on a distributed cluster

(SLURM [27]) with the flexibility to run on other platforms

including locally on a single computer. A SLURM cluster

was setup and used to handle the high computational de-

mands of basecalling with Albacore, with the remaining

pipeline requiring less computer time to complete. The

cluster setup was built from a head node and four worker

nodes with a total of 21 worker cores. Centrifuge was only

run on two of the nodes, each with at least 16gb of mem-

ory. The workflow can be run in real time and detect new

fast5 files from a MinION sequencing run, process them

and push the data to a MongoDB database for analysis.

Results

Sample composition after analysis

Nine samples previously sequenced with an Illumina MiSeq

were sequenced using the Oxford Nanopore MinION plat-

form. Seven samples were extracted from bacterial culture

positive sonication fluid. The remaining two samples, ex-

tracted from culture negative sonication fluid, were used as

negative controls. Between 0.2 and 2.8 gigabases were base-

called for each sequencing run, with read lengths averaging

between 500 bp and 1.7 kb (Table 2).

The majority of classified reads were human, Table 2,

with a range of 80% to 97% of bases in the sequenced

culture positive samples coming from host contamin-

ation. A range of 0.04% to over 6% of bases were classi-

fied as bacterial by Centrifuge in the culture positive

samples, Table 2.

Our analysis workflow identified one or more bacterial

species per sample, with the exception of the two culture

negative samples, 509a and 506a (Table 3). One sample,

354a, was polymicrobial, with Enterococcus faecalis, Arca-

nobacterium haemolyticum and Fusobacterium nucleatum

identified. Two species of the same genus, Bacillus cereus

Table 1 Nanopore basecallers and versions used for each sample

Sample Basecaller Software version

229a Metrichor (dragonet) 1.22.4

249a MinKNOW-Live-Basecalling 1.4.3

259a MinKNOW-Live-Basecalling 1.3.30

312a Metrichor (dragonet) 1.23.0

335a Metrichor (dragonet) 1.23.0

352a MinKNOW-Live-Basecalling 1.1.21

354a MinKNOW-Live-Basecalling 1.1.20

509a ONT Albacore Sequencing Software 1.1.0

506a ONT Albacore Sequencing Software 1.1.0
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and Bacillus thuringiensis, were identified in sample

352a. All other samples had only a single bacterial spe-

cies identified.

The results from ONT MinION sequencing correspond

with previously published analysis of the same samples by

conventional microbiology culture and metagenomic Illu-

mina MiSeq sequencing, Table 2 [11]. A notable difference

between the two molecular analyses can be seen in sample

352a, where ONT MinION sequencing enabled species

level detection. The Illumina short read sequencing identi-

fied Bacillus spp. only (agreeing with the corresponding

culture results) whereas ONT MinION sequencing identi-

fied two species from the Bacillus cereus group: Bacillus

cereus and Bacillus thuringiensis. It is worth noting that

speciation within the Bacillus cerus group is problematic

as species within this group share a high level of genome

sequence identity [28]. Further investigation would be

required to determine whether both species are actually

present in this sample.

Another difference observed between the two sequencing

techniques is in sample 354a, and concerns the relative

abundance of sequencing reads/bases for the multiple spe-

cies classified in this polymicrobial sample. The Illumina

MiSeq sequencing identified A. haemolyticum as the most

abundant species, at 72% of bacterial reads, with F. nuclea-

tum representing 7% of bacterial reads. However, ONT

MinION sequencing classified very similar base numbers

for both F. nucleatum and A. haemolyticum (493,717

and 547,413 bases respectively) We speculated that this

observed difference in proportions of reads for the F.

nucleatum and A. haemolyticum was caused by plat-

form sequencing bias, possibly as a result of variable

genome GC content: The A. haemolyticum genome is

54% GC, compared to 27% for F. nucleatum. We used

Table 2 Oxford nanopore technologies MinION sequencing yields and basic details and breakdown of centrifuge classification

Total Mean Median Low complexity Human Bacteria

Sample Bases Reads read length read length bases reads bases reads bases reads

229a 204,346,556 124,218 1645.06 1745 113,836 69 198,972,861 117,821 1,692,097 914

249a 723,925,562 585,098 1237.27 1006 403,668 370 563,888,189 411,612 44,502,912 34,773

259a 1,057,865,247 600,291 1762.25 1321 390,209 289 949,663,786 502,426 512,827 312

312a 1,121,119,742 1,004,818 1115.74 674 1,905,423 1044 1,038,235,876 882,763 30,426,198 14,948

335a 2,847,687,425 1,717,810 1657.74 1171 2,835,054 1362 2,783,128,118 1,605,466 1,388,748 989

352a 803,638,340 986,867 814.33 609 567,656 630 669,796,136 752,022 459,779 579

354a 706,380,170 945,929 746.76 596 680,560 848 570,485,740 717,662 2,151,551 2443

509a 2,740,060,527 4,940,241 554.64 439 16,355,839 24,413 1,199,779,866 1,352,438 6,240,425 2628

506a 2,451,399,949 4,700,013 521.57 431 20,014,343 23,631 1,161,796,584 1,671,726 4,705,919 2139

Bacteria, Human with a centrifuge score greater than 150, and total reads including unclassified reads. Samples 509a and 506a are culture negatives and used as

negative controls. Results are after removing low complexity reads

Table 3 Species detected after read classification and reference genome alignment in CRuMPIT

Sample ONT minion species TaxID Mapped reads (% of
identified bacterial)

Mapped bases (% of
identified bacterial)

Sonication species Tissue culture
species

MiSeq reads
(% of bacterial)

229a Staphylococcus aureus 1280 815 (89) 1,912,820 (113) S. aureus S. aureus 6038 (98)

249a Cutibacterium acnes 1747 23,500 (68) 29,443,269 (66) P. acnes P. acnes 108,940 (100)

259a Staphylococcus epidermidis 1282 155 (50) 223,611 (44) S. epidermidis S. epidermidis 749 (86)

312a Citrobacter koseri 545 11,629 (78) 24,631,203 (81) C. koseri C. koseri 221,516 (95)

335a Morganella morganii 582 613 (62) 515,991 (37) M. morganii M. morganii 3555 (94)

352a Bacillus thuringiensis 1428 41 (7) 27,026 (6) Bacillus species Bacillus species 1109 (86*)

Bacillus cereus 1396 119 (21) 85,627 (19)

354a Arcanobacterium haemolyticum 28,264 584 (24) 547,413 (25) A. haemolyticum 11,182 (72)

Fusobacterium nucleatum 851 529 (22) 493,717 (23) 1156 (7)

Enterococcus faecalis 1351 225 (9) 223,665 (10) E. faecalis E. faecalis 1173 (8)

506a Non detected No growth No growth Non detected

509a Non detected No growth No growth Non detected

Samples 509a and 506a are culture negatives and used as negative controls, no bacterial species were detected after filtering thresholds were used. Species

detected from sonication fluid, tissue culture and MiSeq sequence analysis using Kraken. Adapted from [11]. (*) indicates % of bacterial reads taken from the

Bacillus cereus group level (taxonomic id of 86,661)
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qPCR to test our hypothesis, and investigate which

platform represents an estimate of genome abundance

of these two species that is closest to the original DNA

extract from sample 354a. qPCR results detected ap-

proximately equal copy numbers of both A. haemolyti-

cum and F. nucleatum genomes in the original DNA

extract, suggesting that ONT MinION sequencing has

given a more accurate representation of species abun-

dance in sample 354a, Table 4. However, standard devi-

ations were high therefore further investigation will be

needed to confirm this.

Real time analysis

Using the ONT MinION platform, it was possible to

analyse sequences in real-time, and predict the species

composition of culture positive samples minutes after

data acquisition. Samples containing a larger yield of

bacterial DNA, such as 354a and 249a, produced several

hundred kilobases of sequences within the first two of

hours, Fig. 2a, b. Samples with lower yields, such as 352a,

produced less sequence data, with several kilobases gener-

ated in the first 2 hours, Fig. 2c. For all the species identi-

fied that passed the analysis thresholds, however, the

sequences generated after data acquisition were consistent

with the species identified by traditional culture methods

and MiSeq sequencing, Fig. 3. Each batch analysed within

the Nextflow workflow took between four and fifteen

minutes to process using a single core, depending on

which node the job was submitted to, Additional file 5:

Figure S5a. Therefore, real-time in this context needs

to include this bioinformatics analysis time, the majority

of which is basecalling. Encouragingly, basecalling speed

was improved dramatically by using Guppy and utilising

the graphics card of a single local PC, Additional file 5:

Figure S5b. This enabled CRuMPIT analysis to be fully

conducted on a single computer and time to detection

more than halved.

Discussion

Here we demonstrate proof-of-principle that long-read

sequencing using the ONT MinION can detect bacterial

infections from DNA extracted directly from sonication

fluid samples, and potentially do so within minutes of

starting sequencing. If DNA extraction techniques can

be similarly optimised, these technologies have the po-

tential to make intra-operative diagnosis of the causes of

specific infections possible. This would allow both local

and systemic antibiotics to be targeted to the causative

organisms in prosthetic joint infections, starting at the

time of surgery.

Analysis of the MinION data indicates concordance with

the current gold standard laboratory culture and also

Illumina short-read sequencing. In addition, we present

a new analytical tool, CRuMPIT, which automates analysis

of MinION data in this setting, and could be applied by

other researchers and clinicians. By using negative controls

we were able to determine signatures of background con-

tamination - a challenge to diagnostic metagenomic inter-

pretation [11, 29]. The thresholds and scores used within

our bioinformatics workflow were determined after sequen-

cing two negative controls that allow us to create heuristic

thresholds to remove background sequences from kit con-

tamination and false positives without masking the infec-

tion species. It will be important to determine the limits of

detection for bacterial DNA in high host contaminated

samples. Future studies will involve sequencing more

samples and-spiked in references so refined threshold

scores can be determined. This can be done as before

with a Youden Index and J-statistic [11]. Sensitivity and

specificity of MinION cannot be determined from this

study and therefore further, more extensive studies are

required before use in a routine diagnostic microbiology

laboratory can be recommended.

Although we were able to predict each species present

within the sequenced samples, the vast majority of DNA

sequenced was human, from host contamination, despite

efforts to reduce this in the laboratory preparation. De-

pletion of host DNA contamination will facilitate greater

pathogen genome sequencing coverage but this con-

tinues to present challenges as the numbers of bacterial

cells in joint infections is low [7] in relation to human

cells. Previous studies with ONT MinION on direct clin-

ical samples have used samples with relatively high con-

centrations of bacteria in urine [30] (compared to PJI

samples) or moderate to high viral titres in blood [13].

The MinION has also been used for metagenomics in

environmental samples [31]. However, reduction of hu-

man DNA could allow better genotyping, transmission

Table 4 qPCR results

Species Std curve RSq Efficiency Replicate CT Copies Average ± Std Dev

Arcanobacterium haemolyticum 0.991 89.20% 1 29.12 2356 3214 ± 965

2 28.72 3028

3 28.19 4258

Fusobacterium nucleatum 0.999 86.00% 1 28.93 4269 3421 ± 1304

2 30.22 1919

3 29.01 4075
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a

b

c

Fig. 2 Cumulative bases classified by Centrifuge and minimap2 reference alignment over the first few hours of sequencing on the MinION. Each
marker on the plots represents a new sequence classified. Times are on the day of sequencing and taken from the read timestamp and doesn’t
include bioinformatic time. Three samples shown showcasing the best and worst performers. a Sample 354a containing three different species.
b Sample 249a containing Cutibacterium acne. c Sample 352a containing two different Bacillus species
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a

b

c

Fig. 3 (See legend on next page.)
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analysis and antimicrobial resistance gene prediction as

the proportion of bacterial DNA increases. Currently,

this depends on laboratory development to reduce the

number of human cells in samples rather than down-

stream bioinformatic analysis.

The sequencing yields here were low compared to

other ONT MinION sequencing yields sequenced within

the same lab (data not shown). DNA read lengths se-

quenced in this project are also relatively short, with the

average under 1 kilobase, where mean read lengths can

be expected over 10 kilobases with this method. This is

likely due to the DNA extraction methods used, as they

were optimised for MiSeq sequencing. However, of the

four samples processed by PCR due to low DNA con-

centration, there was variation in read length and depth

ranging from highest to lowest.

There are known biases for organisms associated with

GC content in using PCR-based methods for sample prep-

aration [32] and with Illumina metagenomic data [33]. We

found some evidence that MinION sequencing may better

reflect the relative abundance of pathogen DNA in polymi-

crobial infections, as it appeared less prone to GC biases

than Illumina MiSeq short-read sequencing.

Detection of the species was possible within minutes

of the sequencing run starting, and this includes the

time required to process the sequencing data, with base-

calling being the biggest bottleneck. The fast5 file batch

size has an effect on turnaround time and reducing

batch sizes is preferable for longer reads that take more

time to basecall. We have tested the pipeline on a single

PC and on a SLURM cluster on the same network as the

computers running the MinION sequencers, enabling us

to scale to the rate of sequencing and basecall with

greater throughput than we could with a single machine,

and analyse multiple sequencing runs in parallel.

A limitation of this study was seen in runs where reads

were live basecalled with the MinKNOW basecaller: the

runs produced data too quickly for the system to keep

up. Retrospective basecalling was not possible at the

time and the skipped reads have since been discarded.

Therefore, in future studies using Albacore, as is the

case with the most recent two sequencing runs (506a

and 509a), we expect the average DNA yields to in-

crease, which will aid species classification and potential

genome completion.

The ONT MinION sequencing process has undergone

continual development with substantial improvements

since this project began. Therefore, we have used three

different basecallers, Metrichor, MinKNOW and Albacore,

for converting the raw signal or event data to DNA se-

quences. It is possible to rebasecall some of this data, but as

we no longer have access to some sample raw data files, we

cannot rebasecall all the samples. Also, as this would not

reflect the real-time analysis carried out, we have not reba-

secalled all samples with the same software version. Future

studies should continue to use the most accurate, current,

and efficient basecaller for real-time analysis. Furthermore,

as ONT routinely updates protocols and computational

tools, the impact on clinical diagnostics would need to be

constantly evaluated and tested to achieve and maintain

accreditation.

Although analysis of the sequencing is close to real-time,

the DNA extraction and library preparation takes several

hours, with 1D ligation preparation currently taking ap-

proximately 70 min or PCR amplification taking 150 mins.

There are rapid library preparation kits available, however

we feel the sequencing yield is currently too low for these

to be a viable route to detection of pathogens directly from

samples, particularly in samples with high host contamin-

ation. In addition, future studies will need to replicate sam-

ples to show this process is reproducible. This project was a

proof of concept, but to be cost effective in the future, mul-

tiplexing of samples, smaller cheaper flowcells or reusable/

washable flowcells may need to be employed.

Conclusions
The study shows reliable detection of infection species

composition in prosthetic joint infections using ONT

MinION sequencing. This represents proof of concept

for utilising real time ONT MinION sequencing for PJI

diagnostics. The speed of detection indicates that this

technology has the potential to deliver results to the

clinician in a timelier manner than traditional microbio-

logical methods. Reduction of diagnostic time could have

a significant positive influence on patient outcome, allow-

ing prompt, targeted antimicrobial therapy.

The development of a reproducible workflow, as de-

scribed in this study, has potential use for any clinical sam-

ple metagenomic ONT MinION sequencing, not just

sonication fluids. The software used for analysis is provided

[19] and can be installed and run locally or in a distributed

cluster to scale with throughput. The controlling and

analysis of the workflow is written in a python3 wrapper

that relies on open source tools including, pysam [34],

Biopython [35], Pandas [36], Matplotlib [37], ETE3 toolkit

[38] and Numpy [39].

(See figure on previous page.)
Fig. 3 Percentage of mapped bases (minimap2) to total centrifuge classified bacterial bases over the first two hours of sequencing. As with Fig. 2,
each marker on the plots represents a new sequence classified. Times are on the day of sequencing. Three samples shown showcasing the best
and worst performers. a Sample 354a containing three different species. b Sample 249a containing Cutibacterium acne. c Sample 352a containing two
different Bacillus species
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Additional files

Additional file 1: Figure S1. Bases classified total or target over
centrifuge score. Each sample has two lines of the same colour. The top
line is total bacterial bases identified by centrifuge over the score threshold
used. The second lower line is the validated detected species/infection for
the sample (Target). As the score threshold increases, the number of total
classified bases reduces at a great rate than the target bases, until a plateau
and diminishing returns at approximately 150. (PDF 15 kb)

Additional file 2: Figure S2. Each species identified by centrifuge
showing total bases over number of reads as proportions of total
bacterial bases and total bacterial reads respectively. Species detections
below the 0.1 proportion (i.e. less than 10%) of bases threshold are dots
and species detections above the 0.1 proportion threshold are crosses.
Culture negative controls are red and Culture negative positive samples
are blue. (PDF 25 kb)

Additional file 3: Figure S3. Indiscriminate(indis) read and discriminate(dis)
mapping qualities. Quality scores taken from mapping all reads to a reference
with minimap2. Discriminate scores are from reads that have passed through
the pipeline filtering thresholds and are determined to be reads specific to the
reference. The indiscriminate are other reads that were likely to be host and/or
contamination. (PDF 12 kb)

Additional file 4: Figure S4. Each species identified by minimap2
mapping showing total bases over number of reads as proportions of
total bacterial bases (centrifuge) and total bacterial reads (centrifuge)
respectively. Species detections below the 0.1 proportion (i.e. less than
1%) of bases threshold are dots and species detections above the 0.01
proportion threshold are crosses. Culture negative controls are red and
Culture negative positive samples are blue. Shows shortened axis of
below threshold hits. (PDF 13 kb)

Additional file 5: Figure S5. Batch job duration times in minutes
sample report taken from Nextflow. Using sample 354a as a representative for
the bioinformatic analysis. (A) Batches were run over a heterogeneous SLURM
cluster with variable node CPU speeds affecting Albacore performance. (B)
Batches were run on a single machine with an Nvidia GTX 1050ti graphics
card using guppy v0.3.0 for basecalling. (PDF 280 kb)
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