

Abstract— Autonomous control of small and micro air

vehicles (SMAV) requires precise estimation of both vehicle

state and its surrounding environment. Small cameras, which

are available today at very low cost, are attractive sensors

for SMAV. 3D vision by video and laser scanning has distinct

advantages in that they provide positional information

relative to objects and environments, in which the vehicle

operates, that is critical to obstacle avoidance and mapping

of the environment. This paper presents work on real-time

3D vision algorithms for recovering motion and structure

from a video sequence, 3D terrain mapping from a laser

range finder onboard a small autonomous helicopter, and

sensor fusion of visual and GPS/INS sensors.

I. INTRODUCTION

One of the critical capabilities for making a small- and

micro-air vehicle (SMAV) autonomous and useful is the

precise estimation of the SMAV states (pose and position)

and 3D mapping of its surrounding environment. Among

many sensors for these purposes, 3D vision by video and

laser scanning has distinct advantages. Unlike navigational

sensors (such as GPS and gyro) that provide information of

only the vehicle’s own motion with respect to the inertial

frame, vision can provide information relative to the

environment – how close the vehicle is to an obstacle or

whether there are moving objects in the environment. Unlike

GPS, which does not work in the shadow of satellite

visibility, vision works in a cluttered urban environment or

even indoors. At the same time, camera images are view

dependent, tend to be noisy, and require a substantial amount

of processing in order to extract useful information from

them.

This paper presents a set of robust real-time vision

algorithms suitable for the purpose of structure from motion

vision, with video from a small low-cost AUV on-board

camera. Also presented is the environmental mapping

system that integrates a large number of 3D slice data

obtained by a small helicopter which autonomously flies over

and scans a terrain or an urban area with an on-board laser

scanner.

II. AUV VISION ARCHITECTURE

On-board real-time active vision, when combined with the

other inertial sensors and GPS, and glued by adaptive

model-based robust control, makes the UAV self-sufficient

and capable of agile maneuvering in a cluttered complex 3D

environment. At the moment we work with two types of air

vehicles: a micro fixed-wing University of Florida air

vehicle, shown in Figure 1 (a), that has a single video camera,

and a small Yamaha R50-based autonomous helicopter [8],

shown in Figure 1(b), that has a camera, GPS, gyros, and a

laser scanner.

(a) (b)

Figure 1. (a) University of Florida fixed wing micro air vehicle,

(b) YamahaR50-based autonomous helicopter

Figure 2 shows the overall architecture of a real-time 3D

vision system that we have been developing for these

vehicles.

Camera
Feature detection
and tracking (2D)

Vision-based
3D motion

and structure

Vehicle
state

Laser
scanner

Vehicle centric
3D mapping

Global 3D
scene mapping

GPS/INS
navigation

system

Figure 2 : Overview of vision system. Vision-based motion estimation

and navigation system provides the vehicle state (pose and position).

Laser scanner collects the range data, which are integrated into a

global 3D map using the precise estimate of vehicle state. The laser 3D

map is also fused with the image texture as well as the 3D estimation

from vision based estimation.

The sensory input to the system includes 1) video stream(s)

captured from the on-board single or multiple cameras, 2)

positional and inertial motion sensor data from GPS and

gyros, and 3) three-dimensional slices of the environment

Real-Time and 3D Vision for

Autonomous Small and Micro Air Vehicles

Takeo Kanade, Omead Amidi, Qifa Ke

Robotics Institute, Carnegie Mellon University

Pittsburgh PA, USA

below, obtained by an on-board laser scanner.

We design the real-time vision module to be capable to

work for itself, if necessary, considering the cases where the

vehicle is too small to carry other sensors (true for the

moment with University of Florida vehicle), or in situations

when other sensor is not available temporarily (such as GPS

in a shadow).

The real-time 3D vision module consists of three sub

modules: feature selection, feature tracking, and structure

from motion. With these, both 3D structure of the scene

(position and shape of obstacles) and vehicle’s own motion

(position and pose) are recovered from the input video. It

must work robustly to cope with low-quality video, and in

real time with minimum latency to be usable for control. The

laser scanner’s output is used at this moment only for

mapping purposes, not for navigation. As the vehicle flies,

the sensor scans the terrain below, and obtains a sequence of

three-dimensional slices or profiles. The data are converted

into a common coordinate frame to create a 3D map of the

terrain.

III. VISION-BASED 3D MOTION ESTIMATION FOR UAV

Real-time 3D vision can estimate from the video of an

on-board camera the vehicle state (position and pose), as well

as 3D of surrounding environment. This task has been

studied extensively in the field of computer vision as the

structure from motion (SFM) problem. For its use for small

and micro air vehicle control, however, there are two critical

differences that make the SFM solution far more difficult

than typical off-line SFM applications, such as scene

modeling from video and motion recovery for image-based

rendering. Firstly, the input videos are of lower quality.

On-board cameras tend to have lower resolution and to be

noisy. Secondly, unlike the computer graphics applications,

videos are not taken by design, and therefore they include

large motion or motion blur due to fast motion, or degenerate

motions that may make some solution methods singular.

Thirdly, the process must give the best solution using the

images up to that point in time; unlike off-line applications,

“future” images cannot be used.

The key to successful use of SFM for small and micro air

vehicle control is to make the SFM processes robust to these

difficulties. The SFM process includes feature detection,

feature tracking, and reconstruction.

Feature Detection and Tracking

Feature tracker finds where the features, defined in the

previous frames, have moved to in the current frame. In order

to define “good” features to track, a tracking method has to

be defined first. Given a feature point (x,y) in the current

image I, we want to estimate its position in the next image I'.

According to [4], we use a small window centered at (x,y) in

the first image I. Assuming that the corresponding region

has the same appearance, the tracking algorithm finds the

displacement d = (dx, dy) by minimizing the following L2

norm:

[]2
),(

),,(),,(minarg

),(minarg),(

∑
∈

∆+++−=

=

Wyx

yx

yxyx

ttdydxItyxI

ddJdd
(1)

Assuming small displacement d, the linear closed-form

solution [4] (so-called Lucas-Kanade feature tracking

algorithm) is:
1−=d H b (2)

where

(,) (,)

(,) (,)

(,)

(,)

x x x y
x y W x y W

y x y y
x y W x y W

x t
x y W

y t
x y W

I I I I

I I I I

I I

I I

∈ ∈

∈ ∈

∈

∈

=

−

=
−

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑

∑

∑

H

b

 (3)

and Ix, Iy, and It are spatial-x, spatial-y and time derivatives of

image. While simple, this technique is known to be efficient

and works well in most situations.

Feature Point Selection

Equation 2, which needs to be solved for tracking the

feature motion d, suggests the property that a “good” feature

must possess. For equation 2 to be stable in the presence of

noises, we must select a feature point (an image template W)

whose corresponding 2x2 matrix H is stably invertible. In

other words, the two singular values
1λ and

2λ of H should

be large and sufficiently close to each other [5, 6]. So, we

define the “goodness” of a window to be

),(21 λλλ min= (4)

Our feature selection process is quite simple: for each

pixel of a current frame, the Hessian matrix H is computed

using the 7x7 window. Features are selected at the local

maximums of λ , such that they are separated by at least 7

pixels from each other.

Dealing with illumination change

The L2 norm that Lucas-Kanade tracker uses assumes that

corresponding pixels in different images have the same

appearance. In real life, such an assumption may not hold

due to imaging noises, lighting change and view change.

In our implementation, we first smooth the images with

Gaussian filtering to reduce noise level. We also model

lighting change using a scale-and-offset model for each

corresponding point:

btaI +),,(ζξ (5)

The cost function thus becomes:

[]
(,)

2
() (, ,) (, ,)

x y W

J d aI t b I x y t tξ ζ
∈

= + − + ∆∑ (6)

Here a and b are assumed constant inside each window, but is

different for different feature points. We can still

simultaneously solve the four unknowns (dx, dy, a, b) using

least squared estimation similar to equation 2. We notice

that the introduction of a and b makes the linear system in

Eq.(2) more unreliable. For such reason we scale the affine

motion parameters m and lighting-related parameters a and b

respectively to make the system in Eq.(2) reliable.

Dealing with Large Motion

In equation 2, it is assumed that the pixel movement d is

small. We use the following techniques to deal with large

motion in real life:

• Image pyramid. We construct a three-level Gaussian image

pyramid. Each level of the pyramid effectively doubles the

range of pixel movement that our system can handle.

• 2D affine motion model. When the motion is large, the

translational model (dx,dy) may not be sufficient to model the

pixel movements inside the small window. We use 2D affine

motion model where the 2D motion is described by six

parameters to account for rotation, scaling, shearing, and

translation.

• Progressive model refinement. We use a simple

translational motion model at the highest (coarsest) level,

and affine motion model at the lowest (finest) level. This

helps stabilize the estimate.

• Motion prediction. We use simple Kalman filtering to

predict the position of each feature point at current image.

 (a)

 (c) (d)

Figure 3.1: Combined tracker. (a): The green points are reliable trackers by

template registration, and are used as landmarks. The pink square is tracked by

establishing the graph relationship with the landmarks. (c) and(d): two snapshots

of the tracking using combined tracker. The red points are lost trackers in LK

algorithm, but salvaged by the combined tracker.

Combined Tracker

The Lucas-Kanade tracker uses template registration.

Another type of tracker uses point matching. In point

matching, feature points are detected in both images. For

each point in the first image, its best corresponding point in

second image is found by exhausted search within some

predefined search window. The point matching method is

more robust to noise but it often gives ambiguous

correspondences (one-to-many correspondences). We use a

new scheme that combines template registration and point

matching. In our scheme, feature points that are reliably

tracked by Lucas-Kanade algorithm are marked as

landmarks. Other feather points that can not be reliably

tracked by Lucas-Kanade are referenced by the landmarks in

its neighborhood. Their correspondences in the second

image are searched by simple graph matching approach. See

Figure 3.1 for an illustration of the combined tracker.

(a)

(b)

Feature 3: Tracking results (input image size 360x240). The green

dots are selected feature points. (a): Tracking using the original

Lucas-Kanade algorithm; (b): Tracking using our extension to

Lucas-Kanade. The red circle shows some example feature points

that are tracked well in our system, but are not handled well using

the original Lucas-Kanade tracker.

(a) (b)

Feature 3.3: Tracking results after five frames (input image

size 360x240): (a) selected feature points in first frame; (b):

tracked points in the 5th frame using the original Lucas-kanade

algorithm; (c): tracked points in the 5th frame using our

extension to Lucas-Kanade. Our extension tracks much more

feature points successfully.

(c)

 Search
window

I I´

?

Tracking results

The feature tracker that has implemented all of the previous

extension was test applied to a video sequence taken from a

real flying micro-AUV and from the same camera attached to

a car navigating on the ground. It performs well despite the

large image distortion, frequent lighting change, and large

image motion.

Figure 3.2 shows two snapshots of tracking results,

comparing classical Lucas-Kanade tracker with the extended

one; the latter has eliminated most of erroneous tracking.

Figure 3.3 shows tracked points across five frames. As can

be seen our extension to the original Lucas-Kanade

algorithm tracks more features successfully.

The feature tracker monitors the quality of tracking results

of each feature by means of the value of J and the property of

H. It discards a feature once it is found to be no longer easy to

track well. New feature points are generated from the current

frame to keep the total number of active features above a

certain number.

Two-Frame Motion Estimation

From the 2D correspondences of the tracked features, the

SFM algorithm estimates the relative motion of the vehicle.

For UAV real-time control application, the SFM solution

must provide the camera (i.e., vehicle) motion from the most

recent image frames.

 Let us denote a 3D point in the scene corresponding to the

i-th feature as Mi = (Xi, Yi, Zi)
T. Here we use the first

camera's coordinate frame as the world coordinate frame.

The point Mi is projected to the first image as an image point

mi = (xi, yi, 1)T. Also, let us assume that the camera moves by

rotation R and translation r. In the second camera’s

coordinates, the same point appears as Mi'= (Xi', Yi', Zi')
T and

it is projected to the second image as m'i = (x'i, y'i, 1)T.

For simplicity, let us assume that the camera is calibrated,

(i.e., the camera intrinsic parameters are known). Then these

entities are related to each other by

1

1

i i

i

i i

i

i i

Z

Z

=

′ ′=

′ = +

m M

m M

M R M r

 (7)

The two-frame SFM estimates the relative camera pose (R,t)

between two camera positions, and the 3D point positions in

the coordinate frame of the first camera.

The basic solution of the problem is as follows. From

equation 7 we have:

(0i i
′ × =m r R)m (8)

where × is the 3-vector cross product. The 3×3 matrix E = r

× R is the so-called Essential matrix in computer vision.

Given 8 or more pairs of feature point correspondences, we

can compute f (i.e., E) using the linear Eight Points algorithm

[3]. Equation 8 can be rewritten as:

8 9 0 || 1s.t.× = =A f f || (9)

Here f contains the 9 parameters of matrix E. The solution f

is the null space of A, i.e., the eigenvector of A
T
A

corresponding to its smallest eigenvalue. In principle, if more

than 8 correspondences are available, then we have a

least-squared solution, and once we have E, we can factorize

it into rotation R and translation r .

Detecting Unreliable Estimation

The basic algorithm presented above works well as long as

feature tracking results are good and the camera motion

contains a large translational component |r|.

Outliers in feature tracking come both from gross errors

and from feature points on moving objects. Since

least-squared technique is sensitive to outliers, we use the

RANSAC algorithm to detect the outliers and estimate the

Essential matrix.

Dealing with a case where the camera translation is too

small is far more difficult. In the extreme case, when the

camera undergoes only rotation, the eight-point algorithm

outputs a random translational vector r. Using the amount of

2D motion is not enough to detect such degeneracy, since

there are indeed large 2D motions when the camera

undergoes even only rotation.

For the no-translation case, the 8-point algorithm outputs

random estimation to r, but still outputs correct rotation

estimation (see appendix for a simple proof). Therefore the

degeneracy can be handled by the following method:

1) Estimate the camera rotation using 8-point algorithm.

2) Transfer the feature points M in the first camera to the

second camera by Mt = R M.

3) Compute ∆r = M'- Mt , where M' in the second frame

is the correspondence of M in the first frame. The

displacement ∆r characterizes the amount of parallax

about the point M. If the camera translation is zero,

then ∆r will be zero, too.

4) If all of the points have small |∆r|, then we declare

degenerate camera motion. In such a case, we only

update the camera orientation, and wait until there are

enough points with large |∆r| for the estimation of

camera translation.

The second degenerate case is when the rank of AT
A (a 9x9

matrix) is less than 8. We can prove that if camera translation

is zero, then the rank of AT
A is no more than 7. Since the

essential matrix is the one-dimensional null space of AT
A, it

requires the rank of AT
A be 8 for a reliable estimation of f,

i.e., the essential matrix. Therefore, if the last two smallest

eigen values of A
T
A are similar, that signals unreliable

estimation of translation, but still outputs the camera rotation.

Figure 4.1: A snapshot of our system. (a): image source view; (b)

tracker view shows 2D image motion trajectory; (c) detected

outliers, larger pink squares are moving objects, and small red

dots are missing tracks; (d) the final vehicle trajectory and 3D of

feature points recovered. This video is a real video taken from an

actual micro air vhecle.

(a)
(b)

(c) (d)

Long Sequence SFM by Merging Multiple Two-Frame SFM

The above two-frame SFM is applied whenever the 2D

features have sufficient motion in the image sequence. Since

we can only recover the translational direction, the depth of

the 3D point is defined up to an unknown scale. To unify the

3D scales from multiple two-frame reconstructions, we need

to merge the 3D structures multiple SFM reconstructions by

finding the scale among them. Such scale estimation is

critical in a long-sequence SFM. For this purpose, previous

work relies on either initial two-frame SFM reconstruction

[1] or “reliable” feature track [2]. It is desirable to avoid such

critical dependence on particular information that may or

may not correct.

Suppose that we have N points in the scene whose current

3D positions are Mi, i=1, 2, ..., N in the reference world

coordinate frame, and that we denote their corresponding

positions in the coordinate frame of the current image

(obtained from two-frame SFM estimation) by M'i. For each

point Mi we can estimate the scale according to

Then the scale s between the two reconstructions is:

Here wi is the weight for point Mi based on reconstruction

reliability, which depends on camera configuration and depth

of Mi:

Here ρ is a robust function, is the angle between the two rays

cast from the camera centers to the 3D point in the scene, and

ri is the intensity residual from 2D tracking. In such a

weighting scheme, a reliably tracked point closer with more

parallax in image plane will receive larger weight. Due to

noise and/or outliers in the 3D estimation, the above

estimation could be un-reliable, too, if done naively. We use

LMedS [10] to initialize the estimation, and then use a

weighting algorithm to derive the final maximum likelihood

estimation; points with large reconstruction variance or near

the direction of the camera translation receive less weight.

Results of Vision based 3D motion estimation

Figure 4.1 shows an example output of our system

consisting of feature detector, tracker and SFM. The system

runs in real-time with a standard 2-GHz single-CPU PC.

Images from the camera are fed to the system and are

displayed in view (a). The tracking results are displayed in

(b), where yellow dots are newly generated feature points in

the current frame. View (c) shows the outliers as well: pink

squares indicate moving objects (the car and the moving

light), and red points that are considered missed

(disappeared) during the tracking. The recovered camera

motion is displayed in (d).

Figure 4.2: Verification by ground truth from motion capture

system: (a) the scene model; (b) one view of the motion capture

system; (c) camera trajectory from motion capture system; (d)

camera trajectory from our vision system.

(a) (b)

(c) (d)

To verify our system, we use a motion capture system to

capture the motion of the camera. The motions output from

the motion capture system are very accurate and can be used

as ground truth to verify the camera motions recovered by

our system. Figure 4.2 shows the verification result. Figure

4.2(a) shows the scene model. We use the same camera as

the one used in MAV vision system. The camera is attached

to a stick and moved by hand to simulate the MAV motion.

Figure 4.2(b) shows a snapshot of the captured motion and

3D recovered by motion captured system. Figure 4.2(c)

shows the motion trajectory output by motion capture system.

Figure 4.2(d) shows the camera trajectory recovered by our

3D vision system. It can be seen from (c) and (d) that our

vision system recovers good camera motion trajectory.

IV. SCENE MAPPING BY LASER SCANNER FROM A SMALL

UAV PLATFORM

A laser ranger finder is an effective sensor to map the

three-dimensional environment from a small UAV platform,

when combined with precise estimates of vehicle’s position

and pose. The map information is in turn used for three

purposes: automatic target recognition to extract the location

of potential targets; feature recognition algorithms to classify

the scene and identify features such as buildings, roads, and

bridges; visual odometry to maintain high quality

navigational updates in the event of GPS disruption.

Autonomous Helicopters

We have been developing vision-based autonomous

helicopters [8]. The current fleet consists of three mid-sized

(~3m long) unmanned helicopters. On-Board systems

include: a state estimator (integrating GPS/IMU/vision),

flight controller (capable of accurate (~0.2m) hovering and

tested for autonomous forward flight (up to 40 Knots and~30

degree bank angle), laser scanner (900 nm, 120 m range, 12

KHz frequency) with optics for calibrated color sensing,

actuated pan-tilt camera system (Sony DXC-9000), and

multi-CPU computing for general purpose vision algorithms.

The demonstrated capabilities so far include: 1) unmanned

take off and landing, 2) 3D terrain mapping that was

deployed in NASA’s Haughton-Mars expedition (1998) [7],

surveying the US Airways flight crash site (Sept, 2001), and

mapping the MOUT site at Fort Polk for the DARPA

Perceptor Program, 3) vision-based locating of a 10-cm

diameter pack on the ground and retrieving it from the air by

visually servoing a magnet at the end of strings to reach it

(winner of 1997 Unmanned Aerial Robotics Competition by

perfectly completing the task), 4) forward scouting the

obstacles and holes by 3D laser vision for autonomous

ground vehicles, and 5) pointing a laser to a target at 100m

away at precision <50cm.

Color Sensors

Laser Pulse

Red, Green, Blu

Spatial Sensitivity (R,G,B)

Scan Motor

Scan Mirror

Mirror Angle

Encoder

Scan Mirror spins

at 20 Hz.

Cold Mirror:

 Reflects VIS

 Transmitts IR

Laser Spot

Figure 5: Color sensing combined with range sensing. Color optics

is co-axially aligned with the laser path so that color and range

information is automatically registered.

range

color

Laser

Spinning mirror

On-board Scanner

A helicopter with an onboard scanner flies over and scans the

terrain. The range finder on board is a pulse-based (1ns)

time-of-flight sensor (LADAR) with one-axis scanning

mirror, collecting up to 6000 range data per second with raw

range precision of 2cm.

In addition to the range measurement, our sensor can also

measure the color of the surface [10]. As shown in Figure 5, a

high-sensitivity color sensor is optically aligned with the

laser path so that the color information (the sun light

reflected by the surface) is measured simultaneously.

Figure 6 State estimation by GPS/INS integration. The blue line is the

GPS position measurement. The red curve is the integrated state estimate

while the green curve is the ground truth.

Helicopter State Estimation

Robust and precise state estimation is among the most

important capabilities for UAV’s. “Robust” refers to the high

level of dependability that is required for successful

low-altitude flying. The state estimator must be tolerant of

sensor failures and be intelligent in managing available

resources to maintain relative state at all times.

Our existing complete state estimation capability uses an

on-board inertial measurement unit (Litton LN-200) and

GPS receiver (NovAtel RT2 dual-band carrier-phase),

magnetic compass (KVH), and laser altimeter (Yamaha). The

on-board computing runs our custom-built inertial

navigation system software. The system implements a

latitude-longitude mechanization and fuses inertial and GPS

data using a 13th order Kalman Filter. The filter updates

position, velocity, pose, and sensor parameters such as

accelerometer biases modeled as stochastic processes.

The performance of the system is evaluated by ground truth

sensors and has been verified when used with a GPS receiver

as a direct position input (not satellite raw pseudo-range).

Figure 6 shows an example. The blue (jagged) graph is GPS

data, the green is ground-truth position measured by strapped

down transducers and the red is the resolved position

estimate of the helicopter. Note the high accuracy of the

predicted position after each GPS sample.

Figure 7: (a) Terrain mapping result by an autonomous helicopter displayed as

a 3D elevation map; (b) comparing this with USGS orthophoto of the same site

demonstrate the precision achived.

(a) (b)

Map Generation

The raw LADAR sensor, combined with the forward motion

of the helicopter, collects a set of terrain profiles, each of

which is sensed along the flight path. A swath of terrain up to

200 m wide (and any length) is covered in a single pass.

Larger areas are scanned by systematic flying patterns that

completely cover the area. The collected data are transformed

into a single rectified coordinate system (geodesic or certain

task-oriented coordinates), using the precise knowledge of

pose and position estimate – the output of the state estimator.

Figure 7 shows one such result of mapping [9]. A test site is

approximately 300m x 300m, and contains an asphalt road

surrounding an open field with two large buildings and trees

surrounding the area. The flight at this site was

approximately 5 minutes in duration, and produced over 2.5

million 3D data points. A digital elevation map (figure 7(a))

with a 0.5m-square grid spacing was generated from the scan

data. The intensity of each pixel indicates the average

elevation measured for that location. Figure 7(b) shows a

side-by-side comparison of this image with the USGS

orthophoto. Ground truth measurements have verified the

spatial accuracy of < 10 cm in all three axes.

Figure 8 shows another more recent example: (a) color

image captured by the range sensor’s color sensor, (b) range

map (color coded – red to blue for high to low), and (c)

perspective view.

(a) (b)

(c)

Figure 8: Another example of terrain mapping

V. SENSOR FUSION FOR STATE ESTIMATION

The real-time motion (and scene) recovery method in

section III was purely vision-based to be used for

micro-UAV, and the state estimator of the small autonomous

helicopter in section IV was mainly GPS/INS-based.

The two sources of information, vision and GPS/INS, for

air vehicle state estimation are complementary. For example,

we can intuitively see the following. Distinguishing between

small rotation and small translation is extremely difficult

from images alone, because with a limited field of view a

yaw rotational motion can appear virtually the same as a

lateral translation. This ambiguity can be resolved by fusing

gyro sensors to counteract image ambiguity. We can see this

in the equations of the two-frame SFM. If the rotation is

available from other sensors, we can use it to transfer the

feature points in the first image to the second image, and then

compute the 2D parallax ∆m=Projection-of(∆M). The

camera translational direction can be estimated as the focus

of expansion (FOE) via the intersection of all parallax vector

∆m. Such intersection can be estimated reliably in a

maximum likelihood framework because of a large amount

of redundancy (estimating two parameters with many

parallax vectors). Likewise, certain knowledge of translation

will help stabilize the computation of rotation.

Figure 9: Comparison and integration of multi-sensor fusion for

state estimation

(a) Comparison of vision-based state estimation and GPS/INS based

state estimation: Red dashed – vision, Blue-solid –GPS/INS

(b) Fusion of vision and inertial sensor: red dashed – inertial sensor

integration only, green – inertial plus vision

On the other hand, estimating a large motion by integrating

inertial sensor output over a period is prone to drift

(especially at slow speed), but vision can provide a good

estimate as it ensures a long baseline. Further, while GPS

provides stable geodesic position information, it can suffer

from intermittent loss of measurement due to a shadow or

jamming problem. The vision-based position estimation can

sustain the state estimation.

We have performed preliminary experiments on

comparing and fusing the GPS/INS-based state estimator and

the vision-based estimator (visual odometer) in an

autonomous helicopter – the particular program for visual

odometer in this experiment is an older program than the one

presented above.

Figure 9 (a) shows comparison of the output of the visual

odometer’s position (solid) with GPS-based position

(dashed) while flying diagonally forward and backward.

Figure 9 (b) shows the comparison of velocity estimation

between simple integration of inertial sensor (dashed) and

fusion of gyro and vision (green) while it is hovering. The

results shown demonstrate promise for sensor fusion

approach.

VI. CONCLUSION

Small and micro autonomous UAV’s (SMUAV’s) have

great potential for various applications. Real-time 3D vision

is a critical and integral part of such SMUAV’s.

References
[1] P. A. Beardsley, A. Zisserman, and D. W. Murray. Sequential updating

of projective and affine structure from motion. International Journalon

Computer Vision, 23:235–259, June 1997.

[2] A. Chiuso, P. Favaro, H. Jin, and S. Soatto. Structure from motion

causally integrated over time. IEEE Trans. on Pattern Analysis and

Machine Intelligence, 24(4):523–535, April 2002.

[3] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer

Vision, Cambridge University Press, 2000.

[4] B.D. Lucas and T. Kanade. An iterative image registration technique

with an application to stereo vision. In IJCAI81, pages 674–679, 1981.

[5] Jianbo Shi and Carlo Tomasi. Good features to track. In CVPR’94.

[6] Carlo Tomasi and Takeo Kanade. Detection and tracking of point

features.Technical Report CMU-CS-91-132, Carnegie Mellon

University,1991.

[7] P.Lee, “The Haughton-Mars Project: Study of the Haughton Crater –

Devon Island, Canadian High Arctic Viewed as a Mars Analog”,

NASA Technical Report.

[8] O. Amidi, T. Kanade, and R. Miller, "Vision-based Autonomous

Helicopter Research at Carnegie Mellon Robotics Institute" 、

Proceedings of Heli Japan ‘98. Gifu, Japan April 1998

[9] R. Miller and O. Amidi, “3D Site Mapping with the CMU Autonomous

Helicopter”, Proc. 5th International Conferenece on Intelligent

Autonomous Systems (IAS-5), June 1998

[10] R. Miller, “Modeling System for Small Autonomous Helicopters”,

PhD Thesis Dissertation, The Robotics Institute, Carnegie Mellon

University, Pittsburgh, Pennsylvania 15213, Spring 2002.

[11] Z.Y. Zhang, "Determining the epipolar geometry and its uncertainty:A

review," International Journal of Computer Vision, vol. 27, pp.

161--195, March 1998

