
    

Abstract— Autonomous control of small and micro air 

vehicles (SMAV) requires precise estimation of both vehicle 

state and its surrounding environment. Small cameras, which 

are available today at very low cost, are attractive sensors 

for SMAV. 3D vision by video and laser scanning has distinct 

advantages in that they provide positional information 

relative to objects and environments, in which the vehicle 

operates, that is critical to obstacle avoidance and mapping 

of the environment. This paper presents work on real-time 

3D vision algorithms for recovering motion and structure 

from a video sequence, 3D terrain mapping from a laser 

range finder onboard a small autonomous helicopter, and 

sensor fusion of visual and GPS/INS sensors. 

I.  INTRODUCTION 

One of the critical capabilities for making a small- and 

micro-air vehicle (SMAV) autonomous and useful is the 

precise estimation of the SMAV states (pose and position) 

and 3D mapping of its surrounding environment. Among 

many sensors for these purposes, 3D vision by video and 

laser scanning has distinct advantages.  Unlike navigational 

sensors (such as GPS and gyro) that provide information of 

only the vehicle’s own motion with respect to the inertial 

frame, vision can provide information relative to the 

environment – how close the vehicle is to an obstacle or 

whether there are moving objects in the environment. Unlike 

GPS, which does not work in the shadow of satellite 

visibility, vision works in a cluttered urban environment or 

even indoors.  At the same time, camera images are view 

dependent, tend to be noisy, and require a substantial amount 

of processing in order to extract useful information from 

them.    

This paper presents a set of robust real-time vision 

algorithms suitable for the purpose of structure from motion 

vision, with video from a small low-cost AUV on-board 

camera.  Also presented is the environmental mapping 

system that integrates a large number of 3D slice data 

obtained by a small helicopter which autonomously flies over 

and scans a terrain or an urban area with an on-board laser 

scanner. 
 

II. AUV VISION ARCHITECTURE 

On-board real-time active vision, when combined with the 

other inertial sensors and GPS, and glued by adaptive 

model-based robust control, makes the UAV self-sufficient 

and capable of agile maneuvering in a cluttered complex 3D 

environment. At the moment we work with two types of air 

vehicles: a micro fixed-wing University of Florida air 

vehicle, shown in Figure 1 (a), that has a single video camera, 

and a small Yamaha R50-based autonomous helicopter [8], 

shown in Figure 1(b), that has a camera, GPS, gyros, and a 

laser scanner.  

 

(a) (b)

Figure 1. (a) University of Florida fixed wing micro air vehicle,

(b) YamahaR50-based autonomous helicopter 

 

Figure 2 shows the overall architecture of a real-time 3D 

vision system that we have been developing for these 

vehicles.  
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Figure 2 : Overview of vision system. Vision-based motion estimation 

and navigation system provides the vehicle state (pose and position).  

Laser scanner collects the range data, which are integrated into a 

global 3D map using the precise estimate of vehicle state.  The laser 3D 

map is also fused with the image texture as well as the 3D estimation 

from vision based estimation. 

 

The sensory input to the system includes 1) video stream(s) 

captured from the on-board single or multiple cameras, 2) 

positional and inertial motion sensor data from GPS and 

gyros, and 3) three-dimensional slices of the environment 
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below, obtained by an on-board laser scanner.  

We design the real-time vision module to be capable to 

work for itself, if necessary, considering the cases where the 

vehicle is too small to carry other sensors (true for the 

moment with University of Florida vehicle), or in situations 

when other sensor is not available temporarily (such as GPS 

in a shadow).  

The real-time 3D vision module consists of three sub 

modules: feature selection, feature tracking, and structure 

from motion. With these, both 3D structure of the scene 

(position and shape of obstacles) and vehicle’s own motion 

(position and pose) are recovered from the input video. It 

must work robustly to cope with low-quality video, and in 

real time with minimum latency to be usable for control. The 

laser scanner’s output is used at this moment only for 

mapping purposes, not for navigation. As the vehicle flies, 

the sensor scans the terrain below, and obtains a sequence of 

three-dimensional slices or profiles.  The data are converted 

into a common coordinate frame to create a 3D map of the 

terrain.  

III. VISION-BASED 3D MOTION ESTIMATION FOR UAV  

 

Real-time 3D vision can estimate from the video of an 

on-board camera the vehicle state (position and pose), as well 

as 3D of surrounding environment. This task has been 

studied extensively in the field of computer vision as the 

structure from motion (SFM) problem. For its use for small 

and micro air vehicle control, however, there are two critical 

differences that make the SFM solution far more difficult 

than typical off-line SFM applications, such as scene 

modeling from video and motion recovery for image-based 

rendering. Firstly, the input videos are of lower quality. 

On-board cameras tend to have lower resolution and to be 

noisy. Secondly, unlike the computer graphics applications, 

videos are not taken by design, and therefore they include 

large motion or motion blur due to fast motion, or degenerate 

motions that may make some solution methods singular. 

Thirdly, the process must give the best solution using the 

images up to that point in time; unlike off-line applications, 

“future” images cannot be used. 

The key to successful use of SFM for small and micro air 

vehicle control is to make the SFM processes robust to these 

difficulties. The SFM process includes feature detection, 

feature tracking, and reconstruction. 

Feature Detection and Tracking  

Feature tracker finds where the features, defined in the 

previous frames, have moved to in the current frame. In order 

to define “good” features to track, a tracking method has to 

be defined first. Given a feature point (x,y) in the current 

image I, we want to estimate its position in the next image I'. 

According to [4], we use a small window centered at (x,y) in 

the first image I.  Assuming that the corresponding region 

has the same appearance, the tracking algorithm finds the 

displacement d = (dx, dy) by minimizing the following L2 

norm:  
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Assuming small displacement d, the linear closed-form 

solution [4] (so-called Lucas-Kanade feature tracking 

algorithm) is: 
1−=d H b                                 (2) 

 

where 

 

( , ) ( , )

( , ) ( , )

( , )

( , )

x x x y
x y W x y W

y x y y
x y W x y W

x t
x y W

y t
x y W

I I I I

I I I I

I I

I I

∈ ∈

∈ ∈

∈

∈

=

−

=
−

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑

∑

∑

H

b

                 (3) 

 

and Ix, Iy, and It are spatial-x, spatial-y and time derivatives of 

image. While simple, this technique is known to be efficient 

and works well in most situations.  
 

Feature Point Selection  
 

Equation 2, which needs to be solved for tracking the 

feature motion d, suggests the property that a “good” feature 

must possess. For equation 2 to be stable in the presence of 

noises, we must select a feature point (an image template W) 

whose corresponding 2x2 matrix H is stably invertible.  In 

other words, the two singular values 
1λ  and 

2λ of H should 

be large and sufficiently close to each other [5, 6].  So, we 

define the “goodness” of a window to be 

),( 21 λλλ min=                               (4) 

Our feature selection process is quite simple: for each 

pixel of a current frame, the Hessian matrix H is computed 

using the 7x7 window. Features are selected at the local 

maximums of λ , such that they are separated by at least 7 

pixels from each other. 

 

Dealing with illumination change 
 

The L2 norm that Lucas-Kanade tracker uses assumes that 

corresponding pixels in different images have the same 

appearance.  In real life, such an assumption may not hold 

due to imaging noises, lighting change and view change. 

In our implementation, we first smooth the images with 

Gaussian filtering to reduce noise level. We also model 

lighting change using a scale-and-offset model for each 

corresponding point: 

btaI +),,( ζξ                                   (5)  



 

 

 

The cost function thus becomes: 
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Here a and b are assumed constant inside each window, but is 

different for different feature points. We can still 

simultaneously solve the four unknowns (dx, dy, a, b) using 

least squared estimation similar to equation 2.   We notice 

that the introduction of a and b makes the linear system in 

Eq.(2) more unreliable.  For such reason we scale the affine 

motion parameters m and lighting-related parameters a and b 

respectively to make the system in Eq.(2) reliable. 
 

Dealing with Large Motion 
 

In equation 2, it is assumed that the pixel movement d is 

small. We use the following techniques to deal with large 

motion in real life: 

• Image pyramid. We construct a three-level Gaussian image 

pyramid.  Each level of the pyramid effectively doubles the 

range of pixel movement that our system can handle. 

• 2D affine motion model.  When the motion is large, the 

translational model (dx,dy) may not be sufficient to model  the 

pixel movements inside the small window.  We use 2D affine 

motion model where the 2D motion is described by six 

parameters to account for rotation, scaling, shearing, and 

translation. 

• Progressive model refinement.  We use a simple 

translational  motion model at the highest (coarsest) level, 

and affine motion model at the lowest (finest) level. This 

helps stabilize the estimate. 

• Motion prediction. We use simple Kalman filtering to 

predict the position of each feature point at current image. 
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                  (c)                  (d) 

 

Figure 3.1: Combined tracker.  (a): The green points are reliable trackers by 

template registration, and are used as landmarks.  The pink square is tracked by 

establishing the graph relationship with the landmarks. (c) and(d): two snapshots 

of the tracking using combined tracker. The red points are lost trackers in LK 

algorithm, but salvaged by the combined tracker. 

 

 

 

Combined Tracker 
 

The Lucas-Kanade tracker uses template registration.  

Another type of tracker uses point matching.  In point 

matching, feature points are detected in both images.  For 

each point in the first image, its best corresponding point in 

second image is found by exhausted search within some 

predefined search window.  The point matching method is 

more robust to noise but it often gives ambiguous 

correspondences (one-to-many correspondences).  We use a 

new scheme that combines template registration and point 

matching.   In our scheme, feature points that are reliably 

tracked by Lucas-Kanade algorithm are marked as 

landmarks.  Other feather points that can not be reliably 

tracked by Lucas-Kanade are referenced by the landmarks in 

its neighborhood.  Their correspondences in the second 

image are searched by simple graph matching approach.  See 

Figure 3.1 for an illustration of the combined tracker. 

        

 

(a) 

(b) 

Feature 3: Tracking results (input image size 360x240). The green 

dots are selected feature points. (a): Tracking using the original 

Lucas-Kanade algorithm; (b): Tracking using our extension to 

Lucas-Kanade.  The red circle shows some example feature points 

that are tracked well in our system, but are not handled well using 

the original Lucas-Kanade tracker. 

 
 

  

   
(a) (b) 

Feature 3.3: Tracking results after five frames (input image 

size 360x240): (a) selected feature points in first frame; (b): 

tracked points in the 5th frame using the original Lucas-kanade 

algorithm; (c): tracked points in the 5th frame using our 

extension to Lucas-Kanade.  Our extension tracks much more 

feature points successfully.

(c) 
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Tracking results 
 

The feature tracker that has implemented all of the previous 

extension was test applied to a video sequence taken from a 

real flying micro-AUV and from the same camera attached to 

a car navigating on the ground. It performs well despite the 

large image distortion, frequent lighting change, and large 

image motion.  

Figure 3.2 shows two snapshots of tracking results, 

comparing classical Lucas-Kanade tracker with the extended 

one; the latter has eliminated most of erroneous tracking.  

Figure 3.3 shows tracked points across five frames.  As can 

be seen our extension to the original Lucas-Kanade 

algorithm tracks more features successfully. 

The feature tracker monitors the quality of tracking results 

of each feature by means of the value of J and the property of 

H. It discards a feature once it is found to be no longer easy to 

track well.  New feature points are generated from the current 

frame to keep the total number of active features above a 

certain number.   

 

Two-Frame Motion Estimation 

 

From the 2D correspondences of the tracked features, the 

SFM algorithm estimates the relative motion of the vehicle. 

For UAV real-time control application, the SFM solution 

must provide the camera (i.e., vehicle) motion from the most 

recent image frames. 

  Let us denote a 3D point in the scene corresponding to the 

i-th feature as Mi = (Xi, Yi, Zi)
T.  Here we use the first 

camera's coordinate frame as the world coordinate frame. 

The point Mi is projected to the first image as an image point 

mi = (xi, yi, 1)T. Also, let us assume that the camera moves by 

rotation R and translation r. In the second camera’s 

coordinates, the same point appears as Mi'= (Xi', Yi', Zi')
T and 

it is projected to the second image as m'i = (x'i, y'i, 1)T. 

For simplicity, let us assume that the camera is calibrated, 

(i.e., the camera intrinsic parameters are known). Then these 

entities are related to each other by  
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The two-frame SFM estimates the relative camera pose (R,t) 

between two camera positions, and the 3D point positions in 

the coordinate frame of the first camera. 

 

The basic solution of the problem is as follows. From 

equation 7 we have: 

( 0i i
′ × =m r R)m                                (8) 

where × is the 3-vector cross product.  The 3×3 matrix E = r 

× R is the so-called Essential matrix in computer vision. 

Given 8 or more pairs of feature point correspondences, we 

can compute f (i.e., E) using the linear Eight Points algorithm 

[3].  Equation 8 can be rewritten as: 
 

8 9 0       || 1s.t.× = =A f f ||                        (9) 

Here f contains the 9 parameters of matrix E. The solution  f  

is the null space of A, i.e., the eigenvector of A
T
A 

corresponding to its smallest eigenvalue. In principle, if more 

than 8 correspondences are available, then we have a 

least-squared solution, and once we have E, we can factorize 

it into rotation R and translation r . 

 

Detecting Unreliable Estimation 
 

The basic algorithm presented above works well as long as 

feature tracking results are good and the camera motion 

contains a large translational component |r|. 

Outliers in feature tracking come both from gross errors 

and from feature points on moving objects. Since 

least-squared technique is sensitive to outliers, we use the 

RANSAC algorithm to detect the outliers and estimate the 

Essential matrix.  

Dealing with a case where the camera translation is too 

small is far more difficult. In the extreme case, when the 

camera undergoes only rotation, the eight-point algorithm 

outputs a random translational vector r.  Using the amount of 

2D motion is not enough to detect such degeneracy, since 

there are indeed large 2D motions when the camera 

undergoes even only rotation.   

For the no-translation case, the 8-point algorithm outputs 

random estimation to r, but still outputs correct rotation 

estimation (see appendix for a simple proof).  Therefore the 

degeneracy can be handled by the following method: 

1) Estimate the camera rotation using 8-point algorithm. 

2) Transfer the feature points M in the first camera to the 

second camera by Mt = R M. 

3) Compute ∆r = M'- Mt , where M' in the second frame 

is the correspondence of M in the first frame.  The 

displacement ∆r characterizes the amount of parallax 

about the point M.  If the camera translation is zero, 

then ∆r will be zero, too. 

4) If all of the points have small |∆r|, then we declare 

degenerate camera motion.  In such a case, we only 

update the camera orientation, and wait until there are 

enough points with large |∆r| for the estimation of 

camera translation.   

The second degenerate case is when the rank of AT
A (a 9x9 

matrix) is less than 8.  We can prove that if camera translation 

is zero, then the rank of AT
A is no more than 7.   Since the 

essential matrix is the one-dimensional null space of AT
A, it 

requires the rank of AT
A be 8 for a reliable estimation of f, 

i.e., the essential matrix.  Therefore, if the last two smallest 

eigen values of A
T
A are similar, that signals unreliable 

estimation of translation, but still outputs the camera rotation. 

 



 

 

 

                                                    
 

 

                      

Figure 4.1: A snapshot of our system. (a): image source view; (b) 

tracker view shows 2D image motion trajectory; (c) detected 

outliers, larger pink squares are moving objects, and small red 

dots are missing tracks; (d) the final vehicle trajectory and 3D of 

feature points recovered. This video is a real video taken from an 

actual micro air vhecle. 

(a) 
(b) 

(c) (d) 

 
 

Long Sequence SFM by Merging Multiple Two-Frame SFM 
 

The above two-frame SFM is applied whenever the 2D 

features have sufficient motion in the image sequence.  Since 

we can only recover the translational direction, the depth of 

the 3D point is defined up to an unknown scale.  To unify the 

3D scales from multiple two-frame reconstructions, we need 

to merge the 3D structures multiple SFM reconstructions by 

finding the scale among them.  Such scale estimation is 

critical in a long-sequence SFM. For this purpose, previous 

work relies on either initial two-frame SFM reconstruction 

[1] or “reliable” feature track [2]. It is desirable to avoid such 

critical dependence on particular information that may or 

may not correct. 

Suppose that we have N points in the scene whose current 

3D positions are Mi, i=1, 2, ..., N in the reference world 

coordinate frame, and that we denote their corresponding 

positions in the coordinate frame of the current image 

(obtained from two-frame SFM estimation) by M'i. For each 

point Mi we can estimate the scale according to 
 

 

           
 

Then the scale s between the two reconstructions is: 
 

 

                                         
 

 

Here wi is the weight for point Mi based on reconstruction 

reliability, which depends on camera configuration and depth 

of Mi: 

                
 

 

Here ρ is a robust function, is the angle between the two rays 

cast from the camera centers to the 3D point in the scene, and 

ri is the intensity residual from 2D tracking.  In such a 

weighting scheme, a reliably tracked point closer with more 

parallax in image plane will receive larger weight.  Due to 

noise and/or outliers in the 3D estimation, the above 

estimation could be un-reliable, too, if done naively.  We use 

LMedS [10] to initialize the estimation, and then use a 

weighting algorithm to derive the final maximum likelihood 

estimation; points with large reconstruction variance or near 

the direction of the camera translation receive less weight. 

Results of Vision based 3D motion estimation 

Figure 4.1 shows an example output of our system 

consisting of feature detector, tracker and SFM.  The system 

runs in real-time with a standard 2-GHz single-CPU PC.  

Images from the camera are fed to the system and are 

displayed in view (a).  The tracking results are displayed in 

(b), where yellow dots are newly generated feature points in 

the current frame. View (c) shows the outliers as well: pink 

squares indicate moving objects (the car and the moving 

light), and red points that are considered missed 

(disappeared) during the tracking. The recovered camera 

motion is displayed in (d). 

 

      
 

 

                            

Figure 4.2: Verification by ground truth from motion capture 

system: (a) the scene model; (b) one view of the motion capture 

system; (c) camera trajectory from motion capture system; (d) 

camera trajectory from our vision system. 

(a) (b) 

(c) (d) 

 
 

 

To verify our system, we use a motion capture system to 

capture the motion of the camera. The motions output from 

the motion capture system are very accurate and can be used 

as ground truth to verify the camera motions recovered by 



 

 

 

our system.  Figure 4.2 shows the verification result. Figure 

4.2(a) shows the scene model.  We use the same camera as 

the one  used in MAV vision system.  The camera is attached 

to a stick and moved by hand to simulate the MAV motion.  

Figure 4.2(b) shows a snapshot of the captured motion and 

3D recovered by motion captured system.  Figure 4.2(c) 

shows the motion trajectory output by motion capture system.  

Figure 4.2(d) shows the camera trajectory recovered by our 

3D vision system.  It can be seen from (c) and (d) that our 

vision system recovers good camera motion trajectory.    
 
 

IV. SCENE MAPPING BY LASER SCANNER FROM A SMALL 

UAV PLATFORM 

 

A laser ranger finder is an effective sensor to map the 

three-dimensional environment from a small UAV platform, 

when combined with precise estimates of vehicle’s position 

and pose. The map information is in turn used for three 

purposes: automatic target recognition to extract the location 

of potential targets; feature recognition algorithms to classify 

the scene and identify features such as buildings, roads, and 

bridges; visual odometry to maintain high quality 

navigational updates in the event of GPS disruption.  
 

Autonomous Helicopters 
 

We have been developing vision-based autonomous 

helicopters [8]. The current fleet consists of three mid-sized 

(~3m long) unmanned helicopters. On-Board systems 

include: a state estimator (integrating GPS/IMU/vision), 

flight controller (capable of accurate (~0.2m) hovering and 

tested for autonomous forward flight (up to 40 Knots and~30 

degree bank angle), laser scanner (900 nm, 120 m range, 12 

KHz frequency) with optics for calibrated color sensing, 

actuated pan-tilt camera system (Sony DXC-9000), and 

multi-CPU computing for general purpose vision algorithms. 

The demonstrated capabilities so far include: 1) unmanned 

take off and landing, 2) 3D terrain mapping that was 

deployed in NASA’s Haughton-Mars expedition (1998) [7], 

surveying the US Airways flight crash site (Sept, 2001), and 

mapping the MOUT site at Fort Polk for the DARPA 

Perceptor Program, 3) vision-based locating of a 10-cm 

diameter pack on the ground and retrieving it from the air by 

visually servoing a magnet at the end of strings to reach it 

(winner of 1997 Unmanned Aerial Robotics Competition by 

perfectly completing the task), 4) forward scouting the 

obstacles and holes by 3D laser vision for autonomous 

ground vehicles, and 5) pointing a laser to a target at 100m 

away at precision <50cm.  
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On-board Scanner 
 

A helicopter with an onboard scanner flies over and scans the 

terrain. The range finder on board is a pulse-based (1ns) 

time-of-flight sensor (LADAR) with one-axis scanning 

mirror, collecting up to 6000 range data per second with raw 

range precision of 2cm.  

In addition to the range measurement, our sensor can also 

measure the color of the surface [10]. As shown in Figure 5, a 

high-sensitivity color sensor is optically aligned with the 

laser path so that the color information (the sun light 

reflected by the surface) is measured simultaneously. 

  

Figure 6 State estimation by GPS/INS integration. The blue line is the 

GPS position measurement. The red curve is the integrated state estimate

while the green curve is the ground truth. 

 

 

Helicopter State Estimation 
 

Robust and precise state estimation is among the most 

important capabilities for UAV’s. “Robust” refers to the high 

level of dependability that is required for successful 

low-altitude flying. The state estimator must be tolerant of 

sensor failures and be intelligent in managing available 



 

 

 

resources to maintain relative state at all times. 

Our existing complete state estimation capability uses an 

on-board inertial measurement unit (Litton LN-200) and 

GPS receiver (NovAtel RT2 dual-band carrier-phase), 

magnetic compass (KVH), and laser altimeter (Yamaha). The 

on-board computing runs our custom-built inertial 

navigation system software. The system implements a 

latitude-longitude mechanization and fuses inertial and GPS 

data using a 13th order Kalman Filter. The filter updates 

position, velocity, pose, and sensor parameters such as 

accelerometer biases modeled as stochastic processes.  

The performance of the system is evaluated by ground truth 

sensors and has been verified when used with a GPS receiver 

as a direct position input (not satellite raw pseudo-range). 

Figure 6 shows an example. The blue (jagged) graph is GPS 

data, the green is ground-truth position measured by strapped 

down transducers and the red is the resolved position 

estimate of the helicopter. Note the high accuracy of the 

predicted position after each GPS sample. 

 

Figure 7: (a) Terrain mapping result by an autonomous helicopter displayed as 

a 3D elevation map; (b) comparing this with USGS orthophoto of the same site 

demonstrate the precision achived. 

(a) (b) 

 
 

Map Generation 

 

The raw LADAR sensor, combined with the forward motion 

of the helicopter, collects a set of terrain profiles, each of 

which is sensed along the flight path. A swath of terrain up to 

200 m wide (and any length) is covered in a single pass.  

Larger areas are scanned by systematic flying patterns that 

completely cover the area. The collected data are transformed 

into a single rectified coordinate system (geodesic or certain 

task-oriented coordinates), using the precise knowledge of 

pose and position estimate – the output of the state estimator.  

Figure 7 shows one such result of mapping [9]. A test site is 

approximately 300m x 300m, and contains an asphalt road 

surrounding an open field with two large buildings and trees 

surrounding the area.  The flight at this site was 

approximately 5 minutes in duration, and produced over 2.5 

million 3D data points. A digital elevation map (figure 7(a)) 

with a 0.5m-square grid spacing was generated from the scan 

data. The intensity of each pixel indicates the average 

elevation measured for that location. Figure 7(b) shows a 

side-by-side comparison of this image with the USGS 

orthophoto. Ground truth measurements have verified the 

spatial accuracy of < 10 cm in all three axes.  

Figure 8 shows another more recent example: (a) color 

image captured by the range sensor’s color sensor, (b) range 

map (color coded – red to blue for high to low), and (c) 

perspective view. 

 

 

   

     
 
 

 

(a) (b) 

(c) 

Figure 8: Another example of terrain mapping 

 

V. SENSOR FUSION FOR STATE ESTIMATION 

 

The real-time motion (and scene) recovery method in 

section III was purely vision-based to be used for 

micro-UAV, and the state estimator of the small autonomous 

helicopter in section IV was mainly GPS/INS-based.  

The two sources of information, vision and GPS/INS, for 

air vehicle state estimation are complementary. For example, 

we can intuitively see the following. Distinguishing between 

small rotation and small translation is extremely difficult 

from images alone, because with a limited field of view a 

yaw rotational motion can appear virtually the same as a 

lateral translation. This ambiguity can be resolved by fusing 

gyro sensors to counteract image ambiguity. We can see this 

in the equations of the two-frame SFM. If the rotation is 

available from other sensors, we can use it to transfer the 

feature points in the first image to the second image, and then 

compute the 2D parallax ∆m=Projection-of(∆M).  The 

camera translational direction can be estimated as the focus 

of expansion (FOE) via the intersection of all parallax vector 

∆m. Such intersection can be estimated reliably in a 

maximum likelihood framework because of a large amount 

of redundancy (estimating two parameters with many 

parallax vectors). Likewise, certain knowledge of translation 

will help stabilize the computation of rotation. 



 

 

 

 

 

 
 
 

 
Figure 9: Comparison and integration of multi-sensor fusion for 

state estimation 

(a) Comparison of vision-based state estimation and GPS/INS based 

state estimation: Red dashed – vision, Blue-solid –GPS/INS 

(b) Fusion of vision and inertial sensor: red dashed – inertial sensor 

integration only, green – inertial plus vision 

 
 

On the other hand, estimating a large motion by integrating 

inertial sensor output over a period is prone to drift 

(especially at slow speed), but vision can provide a good 

estimate as it ensures a long baseline. Further, while GPS 

provides stable geodesic position information, it can suffer 

from intermittent loss of measurement due to a shadow or 

jamming problem. The vision-based position estimation can 

sustain the state estimation.  

We have performed preliminary experiments on 

comparing and fusing the GPS/INS-based state estimator and 

the vision-based estimator (visual odometer) in an 

autonomous helicopter – the particular program for visual 

odometer in this experiment is an older program than the one 

presented above.  

Figure 9 (a) shows comparison of the output of the visual 

odometer’s position (solid) with GPS-based position 

(dashed) while flying diagonally forward and backward. 

Figure 9 (b) shows the comparison of velocity estimation 

between simple integration of inertial sensor (dashed) and 

fusion of gyro and vision (green) while it is hovering. The 

results shown demonstrate promise for sensor fusion 

approach. 
 

VI. CONCLUSION 

 

Small and micro autonomous UAV’s (SMUAV’s) have 

great potential for various applications. Real-time 3D vision 

is a critical and integral part of such SMUAV’s.   
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