
Recent innovations in interactive digital
television1 and multimedia products have

enhanced viewers’ ability to interact with programs and
therefore to individualize their viewing experience.
Designers for such applications need systems that pro-
vide the capability of immersing real-time simulated
humans in games, multimedia titles, and film anima-

tions. The ability to place the viewer
in a dramatic situation created by the
behavior of other, simulated digital
actors will add a new dimension to
existing simulation-based products
for education and entertainment on
interactive TV. In the games market,
convincing simulated humans reju-
venate existing games and enable
the production of new kinds of
games. Finally, in virtual reality
(VR), representing participants by a
virtual actor—self-representation in
the virtual world—is an important
factor for a sense of presence. This
becomes even more important in
multiuser environments, where
effective interaction among partici-

pants contributes to the sense of presence. Even with lim-
ited sensor information, you can construct a virtual
human frame in the virtual world that reflects the real
body’s activities. Slater and Usoh2 indicated that such a
body, even if crude, heightens the sense of presence.

We have been working on simulating virtual humans
for several years. Until recently, these constructs could
not act in real time. Today, however, many applications
need to simulate in real time virtual humans that look
realistic. We have invested considerable effort in devel-
oping and integrating several modules into a system capa-
ble of animating humans in real-time situations. This
includes interactive modules for building realistic indi-
viduals and a texture-fitting method suitable for all parts
of the head and body. Animating the body, including the
hands and their deformations, is the key aspect of our sys-
tem; to our knowledge, no competing system integrates

all these functions. We also included facial animation, as
demonstrated below with virtual tennis players.

Of course, real-time simulation has a price, demand-
ing compromises. Table 1 compares the methods used
for both types of actors, frame-by-frame and real-time.

Real-time virtual-human simulation environments
must achieve a close relationship between modeling and
animation. In other words, virtual human modeling must
include the structure needed for virtual human anima-
tion. We can separate the complete process broadly into
three units: modeling, deformation, and motion control.

We have developed a single system containing all the
modules needed for simulating real-time virtual humans
in distant virtual environments (VEs). Our system lets us
rapidly clone any individual and animate the clone in var-
ious contexts. People cannot mistake our virtual humans
for real ones, but we think them recognizable and realis-
tic, as shown in the two case studies described later.

We must also distinguish our approach from others.
We simulate existing people. Compare this to Perlin’s
scripted virtual actors3 or to virtual characters in games
and films like “Doom,” Lara Croft characters from “Tomb
Raiders,” or Toy Story heroes.

Constructing real-time virtual humans
Computer graphics gives us the power to model and

animate virtual humans. To simulate humans requires
real-time visualization and animation, taking into
account constraints on the data used for these avatars
(virtual humans representing users). For example, scan-
ning devices provide a fast method for constructing
avatars, regardless of meta-information within the data.
Real-time animation requires a small number of poly-
gons and specific data structures to accelerate the com-
puting process. Due to differences in modeling and
animation between head, hands, and body, we divide
our virtual humans into separate parts. Table 2 shows
our methods and tools.

Sculpting the shape
For head and hands we use software called Sculptor,4

dedicated to modeling 3D objects. This sculpting

Prem Kalra, Nadia Magnenat-Thalmann, Laurent
Moccozet, and Gael Sannier
University of Geneva

Amaury Aubel and Daniel Thalmann
Swiss Federal Institute of Technology

Real-Time
Animation of
Realistic Virtual
Humans

0272-1716/98/$10.00 © 1998 IEEE

Animating Virtual Humans

42 September/October 1998

Our system of simulating a

virtual human allows real-

time animation of the body,

head, and hands with

deformations. A

CyberTennis game and

CyberDance performance

demonstrate its capabilities.

approach relies on local and global geometric defor-
mations. Basic features provided by Sculptor include
adding, deleting, modifying, and assembling triangle
meshes. Real-time deformations and manipulation of
the surface give designers the same facilities as real clay
or wax sculpting.

Head modeling. Using the Sculptor program
instead of a scanning device while modeling the head
lets us take into account the constraints of real-time ani-
mation. Manipulating objects in real time requires as
few polygons as possible, while beautifying and ani-
mating the 3D shape requires more polygons. Design-
ing the head with this program lets us directly create an
object with the appropriate number of polygons. We can
do this knowing which region needs animation (requir-
ing lots of polygons) and which region requires less or
no animation (needing fewer polygons). Designers can
also model simpler objects knowing the texture will add

specific details, like wrinkles and shadows.
Starting with a prototype head accelerates the cre-

ation process. Figure 1 on the next page shows model-
ing a face by starting with an already existing one. The
more prototypical heads we have, the less time we need
to spend. With no prototype, the designer can model
half of the head starting from a simple primitive like a
hemisphere and use a symmetric copy for the other half.
In the final stages, however, the designer should make
small changes on the whole head because asymmetric
faces look more realistic.

Hand modeling. We use two basic sets of 3D hands,
one for each gender. The existing male hands were
refined to give a feminine look using the interactive
sculpting tool. The proposed hand simulation model lets
us model morphological variations. Deformations of the
muscular layer can be parameterized according to some
morphological changes, such as hand thickness or skele-

IEEE Computer Graphics and Applications 43

Table 1. Comparison between frame-by-frame and real-time virtual humans.

Frame-by-Frame Real-Time
Virtual Humans Virtual Humans

Surface Modeling No limitations on complexity Limitations on the number of polygons
Deformations May be calculated using Requires fast transformations, for example based on cross-sections

metaballs, FFD, splines
Skeletal Animation Any method may be used Requires real-time processing, which may prevent using expensive

methods based on inverse dynamics or control theory
Locomotion Any model/method may be Dynamic models may be too CPU intensive

used: motion capture,
kinematics, dynamics,
biomechanics

Grasping Complex models may be used, Kinematics and heuristic methods should be used
including inverse dynamics

Facial Animation Complex models may be used, Simplified models should be used; limitations on the facial
including muscles with finite deformations
elements

In Virtual Not applicable No specific problems except limitations for immersive applications
Environments
In the Real World May be composed offline Requires real-time blending using a powerful video card

using a video composer
Shadow True shadows may be Only shadows of approximate primitives may be calculated

computed
Clothes Autonomous clothes calculated Texture mapping

using mechanical models
Skin Model with wrinkles Texture mapping
Hair Individual hairs possible Only a polygonal shape with possible texture may be applied

Table 2. Methods and tools for modeling, animation, and deformations.

Modeling Modeling Animation Animation Deformation Deformation
Method Tool Method Tool Method Tool

Head/Face Polygon mesh Sculptor MPAs Face Rational FFDs Dodylib
deformation

Body Multilayer BodyBuilder Skeletal Track Contour Dodylib
approach animation manipulation
(metaballs)

Hands Polygon mesh Sculptor Skeletal Track Dirichlet FFDs Dodylib
deformation animation

ton finger length. The muscle layer is first fitted to the
skeleton or scaled to the given morphological parame-
ters, then the muscular operators are applied to the
hand surface to create a new hand. The resulting new
hand data set can then be used directly for animation. In
Figures 2a and 2b, morphology changes are parame-
terized by the underlying skeleton’s changes. Figure 2c
shows a global morphology change: the thickness of the
hand increases. This change is parameterized indepen-
dently from the skeleton.

Body creation
BodyBuilder software helps in creating human body

envelopes. We wanted realistic and efficient human
modeling that let us use this data for real-time motion
and deformation.

We developed a multi-layered approach for the design
of human bodies,5 as follows.

First layer. The first layer provides an underlying

articulated skeleton hierarchy schematically similar to
a real human skeleton. You can define all the human
postures using this skeleton. The virtual human’s pro-
portions are designed at this stage, as described later.

Second layer. The second layer consists of grouped
volume primitives, which fall into two categories: blend-
able and unblendable. Also known as metaballs or ellip-
soids, these volume primitives have different colors
depending on their selected functions: blendable or
unblendable, deformable or nondeformable, or positive
or negative shapes.

Because metaballs can be joined smoothly and grad-
ually, they give shape to realistic, organic-looking cre-
ations suitable for modeling human bodies. Attached to
the skeleton’s proximal joint, they can be transformed
and deformed interactively to define the 3D shape of a
virtual human. Figure 3 shows male and female human
body prototypes constructed by positioning, scaling, and
rotating these volumes as well as attaching them to a
desired joint articulation of the avatar’s skeleton.
Designers can start from a simplified structure leading
to a rough shape, then go back into the model by increas-
ing the number of volumes. The latter technique gives—
step by step—a higher level of detail.

The human form is a very complex shape to repro-
duce. Modeling it proves tedious, since the human eye
is very sensitive to inaccuracies in the human figure. The
most challenging part is to manipulate these volumes
in a 3D environment to simulate the muscles’ shapes and
behaviors. Therefore, this kind of assignment requires
strong skills in anatomy or in drawing and sculpting
human figures.

Third layer. The third layer is the equivalent of the
human skin. We define the body envelope with spline
surfaces using a ray-casting method. In this way, meta-
balls have observable effects on the surface shape. We
use this approach because human limbs exhibit a cylin-
drical topology, and the underlying skeleton provides a
natural centric axis upon which we can define a num-
ber of cross-sections.

Texture fitting
A well-known method in computer graphics, texture

mapping improves virtual objects’ quality by applying

Animating Virtual Humans

44 September/October 1998

1 Head created
from a template
in the Sculptor
program.

2 Changes in various hand mor-
phologies: (a) the middle finger
lengthened, (b) the thumb extend-
ed from the hand and its size modi-
fied, and (c) an increase in the
hand’s thickness.

(a)

(b)

(c)

real images onto them. Its low cost in terms of compu-
tation time proves very useful for real-time applications.
For virtual humans, the texture can add grain to the skin,
including details like variations in the hair and mouth
color. These features require correlation between the
image and the 3D object.

A simple projection doesn’t always realize this corre-
lation: the object—designed by hand—can differ slight-
ly from the real image. An interactive fitting of the
texture is required. In Figure 4, the wrinkles of the hands
have been fitted to the morphology of our 3D model.
Figure 4a shows the texture applied to the 3D hand
shown in Figure 4b.

We developed a new program for fitting the texture to
the 3D object’s features.6 The program enables the
designer to interactively select a few 3D points on the
object, which are then projected onto the 2D image. The
projection can be chosen and set interactively, hence the
designer can adjust these projected points to their cor-
rect position on the image. This method obtains the tex-
ture coordinates for the selected 3D points.

One problem faces us with this method, however: we
want to avoid interactive specification of the texture
coordinates for all the 3D points needed to map a whole
surface. We implemented a method for finding these tex-
ture coordinates by interpolating from the already exist-
ing ones. Thus, all the 3D points are projected onto the
2D image. Using a Delaunay triangulation with the 2D
points marked, we can select which points are projected
inside the Delaunay area—those belonging to the 3D sur-
face to be textured. The barycentric coordinates are cal-
culated for all the projected points inside a Delaunay
triangle, giving the position of each. After the motion of
a marked point (vertex of a Delaunay triangle), the posi-
tions of the projected points are recalculated using their
barycentric coordinates. Finally, the texture coordinates
of all the surface’s 3D points are given by the positions
of the corresponding points on the image.

Animating the body
A real-time virtual human is one that can act at the

same speed as a real person. Virtual reality, interactive
television, and games require real-time virtual-human

bodies. The generally accepted approach models the
body in two layers, skeleton and skin; a third layer—
cloth—could also be added. The skeleton layer consists
of a tree-structured, fixed-topology hierarchy of joints
connecting limbs, each with minimum and maximum
limits. The skin layer, attached to the skeleton, gener-
ates the skin surfaces of the body.

Animation of the virtual body affects the skeleton
layer. Animation of skin and cloth are automatically
computed by deforming or transforming vertices. This
means that the skeleton animation doesn’t normally
depend on the two other layers and could be defined in
very different ways (as shown in the next section).

Skeleton animation
Motion control lies at the heart of computer anima-

tion. In the case of a digital actor, it essentially assists in
describing, with respect to time, the changes to the joint
angles of a hierarchical structure called “skeleton.”

Hierarchical skeleton. Based on a general hierar-
chy manager library, we built a specialized library to
model the human body. This hierarchy is defined by a set
of joints, which correspond to the main joints of real
humans. Each joint consists of a set of degrees of free-
dom (DOF), typically rotation and translation, which can
vary between two limiting values based on real human
mobility capabilities. Applying a set of scaling methods
to several points of this skeleton obtains different bod-

IEEE Computer Graphics and Applications 45

3 Male and female human body modeling using metaballs.

4 (a) Texture;
(b) applied to a
3D hand.

(a) (b)

ies in terms of size (global scaling of body parameters)
and characteristics (local scaling like spin, or lateral or
frontal scaling). Our current virtual skeleton—the hier-
archical model—totals 32 joints corresponding to 74
DOF, including a general position-orientation joint (6
DOF) henceforth referred to as the global joint.7

Once we have defined the body in terms of shapes and
mobility, we use a global motion-control system to ani-
mate the virtual human skeleton within 3D worlds. Ani-
mating the joint angles over time accomplishes this.
However, this type of animation strongly relates to the
type of motion control, as we’ll discuss next.

Skeleton motion control. We see three distinct
categories of approaches to skeleton motion control for
virtual humans.

1. The skeleton motion, captured in real time, drives
a pure avatar.

A participant actor—the avatar—is a virtual copy of
the real user. This actor’s movements exactly reflect
those of the real user, meaning that the skeletal motion
must be determined in real time to interactively animate
the avatar. A teleconferencing application clearly illus-
trates this: multiple participants from distant sites can
share, move, and act within the same 3D environment.8

This approach requires many sensors to track every
degree of freedom in the real body. However, limitations
in the technology and number of sensing devices gen-
erally make this impossible. Therefore, the tracked infor-
mation is used in conjunction with human animation
behavioral knowledge and different motion generators
to “interpolate” the untracked joints.

Currently, the motion-capture system directly drives
34 DOF with 12 magnetic sensors. In addition, one dig-
ital glove controls 25 finger DOF and 2 wrist DOF. In
addition, the motion can be recorded as keyframes and
played back with additional information, such as the
joints’ trajectories. This information helps in analyzing
the motion for incremental improvements of a desired
recording (especially for sports).

The straightforward method for motion capture sets
each body segment’s location by 6D data (position and
orientation) from an attached sensor. However, for a
variety of reasons this can produce abnormal relative
translations between adjacent segments, giving the
impression that the body is an unnatural and unrealis-
tic collection of independent elements. Possible sources
for the mismatch between the virtual model and the per-
former postures include

■ Calibration error
■ Slippage of the sensors with respect to underlying

bones
■ Electronic noise
■ Oversimplified rotational joints on the graphical

model

To solve the problem, we developed an anatomical
converter9 based on a very efficient method for captur-
ing human motion after a simple calibration. The sensor

data is converted into the anatomical rotations of bod-
ies’ hierarchical representations. Such a choice facili-
tates a wider use of the motion for other human models
with the same proportions. It’s also easy to integrate
motion capture and immersion display devices, as the
head-tracking sensor can both animate the neck joint
(thus moving the model’s head) and set the viewing
parameters for the head-mounted display.

2. The skeleton motion is selectively activated from a
database of predefined motions.

A guided actor is completely controlled in real time
by the user, but the actions do not correspond directly to
the user’s motion. The participant uses input devices to
update the virtual actor’s position. You can exert this
local control by computing the incremental change in
the actor’s position and, for example, estimating the
rotation and velocity of the center of the body. A simple
method is to play back a specific sequence, for example
by hitting a key or clicking the mouse in the right place.

Again, you can use motion capture to solve this prob-
lem. The anatomical converter provides the ability to
easily record keyframe sequences of all or part of the
body. The design time is greatly reduced compared to
pure keyframe design even if you plan a second stage of
motion refinement after the capture. However, design-
ing and combining these predefined movements
requires combining various techniques to achieve real-
istic motion with relative efficiency. Consequently, we
based our approach on integrated methods.

Integrating different motion generators is vital for
designing complex motion where the characterization
of movement can quickly change in terms of function-
ality, goals, and expressivity. This induces a drastic
change in the motion control algorithm at multiple lev-
els: making behavioral decisions, optimizing global cri-
teria, and actuating joint-level controllers.

Until now, no global approach could reconfigure itself
with such flexibility. Consequently, the Track system—
an interactive tool for visualizing, editing, and manipu-
lating multiple track sequences—has two major goals.
First, it integrates a wide range of motion generators with-
in the unified framework of multiple track sequences, and
second, it provides a set of tools for manipulating these
entities. A sequence is associated with an articulated fig-
ure and can integrate different motion generators such
as walking, grasping, inverse kinematics, dynamics, and
keyframing within a unified framework. The system pro-
vides a large set of tools for track space manipulations
and Cartesian space corrections.

3. The skeleton animation is dynamically calculated.

Applications like complex games or interactive drama
need not only motion control but also a way of provid-
ing autonomy or artificial intelligence to virtual humans.
By autonomy, we mean that the virtual human doesn’t
require a viewer’s continual intervention. An
autonomous actor may act without the user’s interven-
tion. Autonomous actors can have behavior, thus must
have a manner of conducting themselves. Behavior

Animating Virtual Humans

46 September/October 1998

doesn’t mean just reacting to the environment—it
should also include the flow of information by which
the environment acts on the animated creature, as well
as the way the creature codes and uses this information.

The behavior of autonomous actors relies on their per-
ception of the environment. Typically, the actor should
perceive the objects and other actors in the environment
through visual, tactile, and auditory virtual sensors.10 The
actors’ behavioral mechanism will determine the actions
they perform based on the perceived information.

Actors may simply evolve in their environments. Alter-
natively, they may interact with these environments or
even be aware of other actors and real people. More-
over, they can communicate interactively with other
actors, whether real or virtual. With such an approach,
we should be able to create simulations of situations
such as digital actors moving in a complex environment
they may know and recognize, or playing ball games
based on their visual and tactile perception. The refer-
ee in the tennis game described later typifies an
autonomous virtual human.

A collaborative application can combine a virtual
human controlled by a participant with autonomous vir-
tual humans controlled by internal engines. We should
also mention the hybrid case where predefined motion
is dynamically replayed based on the autonomous actors’
decisions and not in response to user intervention.

Body deformations
Few attempts at producing virtual humans have

reached the right compromise between realism and ani-
mation speed. On the one hand, some applications
emphasize speed and interaction. Typically, they use a
polygonal representation: the skin wrapped around the
skeleton is represented with a fixed mesh divided at
important joints where deformations occur. Because no
deformations are computed within a body part—that
is, between two joints—the virtual human appears
“rigid” and lacks realism. Moreover, visually distracting
artifacts may arise at joints where two body parts con-
nect, for example when limbs are bent. On the other
hand, some applications stress visual accuracy. Such
applications generally compute the skin from implicit
primitives and use a physical model to deform the body’s
envelope. Though this approach yields very satisfacto-
ry results in terms of realism, it proves so computation-
ally demanding that it’s unsuitable for real-time
applications.

We investigated a third approach that combines some
elements of the previous ones, allowing a good trade-
off between realism and rendering speed. Our simple
yet powerful system smoothly deforms the skin, great-
ly enhancing the human appearance of our virtual char-
acters while preserving a high frame rate to meet the
real-time requirements of virtual environments.

Constructing a body mesh. After modeling a vir-
tual human in BodyBuilder and generating the three
layers, we can output body data as cross-sectional con-
tours. A (cross-sectional) contour is the set of coplanar,
outermost points around a skeleton’s segment. Since
BodyBuilder divides a human body into several logical

parts—neck, torso, shoulders, forearms, waist, pelvis,
thighs, and calves—we get skin contours for these body
parts as well.

While dedicated graphics hardware doesn’t render
complex primitives very well, it performs far better
when rendering polygons, especially triangle meshes.
It therefore seems logical to convert our data to trian-
gle meshes. We can easily construct a triangle strip from
two adjacent cross-sections by connecting their points.
Thus, we can construct an entire triangle mesh for each
body part directly from the contours’ points. Connecting
two different body parts proves a bit more complicated,
since the contours may have a different number of
points, but the idea remains essentially the same. We
eventually obtain a single, seamless body mesh.

Deforming by manipulating skin contours.

The basic idea for fast deformations of human limbs and
torso is to manipulate the cross-sectional contours. This
transforms a complicated 3D operation into a 2D oper-
ation that’s more intuitive and easier to control. We have
seen that a contour is by definition a set of points that
lie in a plane. By setting the orientation and position of
this plane, we achieve a smooth deformation of the skin.

First, every joint in the skeleton is associated with a
contour. We make sure every joint lies in the plane of its
contour when the skeleton is in the at-rest posture. If we
consider the arm deformation as an example, as illus-
trated in Figure 5a and 5b, we have three joints and two
segments whose directions are L1 and L2. Let Nu, N0, and
Nl be the normal vectors of the cross-section planes at
the segments’ ends. Note that these planes are precise-
ly those mapped to the three joints. Consequently, the
shoulder joint, elbow joint, and wrist joint respectively
drive the orientation and position of Nu, N0, and Nl.
Finally, let Oi and Ni be the center and normal respec-
tively of the ith cross-section plane along the upper seg-
ment. Then, a simple interpolation of the two normal
vectors N0 and Nu gives us Ni. If we now suppose Ni is
the normal vector of the ith contour belonging to the
forearm, we can similarly compute Ni by direct interpo-
lation between N0 and Nl. Obviously, once the normal
vector Ni is known, it becomes straightforward to com-
pute the new local coordinates of each vertex Vj belong-
ing to the ith contour (see Figure 5b).

If you look closely at the region above the elbow in
Figure 5b, you’ll notice adjacent contours that seem to
run parallel, as if not deformed. That is indeed the
case—we intentionally limited the number of contours
deformed for each body part. This decision was moti-

IEEE Computer Graphics and Applications 47

5 Arm
deformation.

(a) (b)

vated by the observation that even though real human
beings’ skin deforms smoothly, some parts play a greater
role visually than others. In fact, hardly any loss of visu-
al quality occurs if a skeleton segment’s middle contours
do not deform because our eyes naturally go to the areas
surrounding major joints like the elbows or knees. Prac-
tically, we determined the number of upper and lower
contours to deform in a heuristic fashion. On the whole
this deliberate limitation pays off in the sense that it
saves a considerable amount of rendering time, with
very little degradation of the final image.

Results. For the implementation, we used a real-
time-oriented 3D graphics toolkit called Performer,
available on all Silicon Graphics workstations. Figure 6
on the left shows a virtual human made up of 14,000
vertices and containing 13,500 textured triangles using
deformations. Figure 6 on the right shows the same vir-
tual human using rigid meshes (with 17,000 triangles
because of the extra ellipsoids needed at joints).

Table 3 summarizes the results for these models
obtained on a single-CPU (R10000) Octane workstation.
Although the hands, feet, and head appear in Figure 3,
we don’t take them into consideration in the triangle
count nor in the rendering timings displayed in Table 3.
Computing the contour deformations accounts for less

than one third of the total rendering time. Obviously, the
real bottleneck lies rather in the drawing process. Final-
ly, because the deformable model needs fewer polygons,
it follows that only a marginal difference exists between
rendering a deformable model and a rigid one.

These results show this technique’s promise. Note that
Character Studio, a plug-in for 3D Studio Max dedicat-
ed to creating and animating bipeds, uses a similar tech-
nique to deform the skin. Its approach also uses
cross-sections—in essence, what we have termed con-
tours. Unfortunately, Character Studio is not intended
for real-time applications.

Animating hands
Hands have gotten very specific treatment in real-time

human simulations because using a deformable hand
model is generally considered too expensive given its con-
tribution to the global visual result. This approach close-
ly relates to the optimization approach generally used in
virtual environments (VEs): the level of detail (LOD).11

This approach mainly links an object’s importance to its
rendered size relative to the final picture’s size. According
to this hypothesis, hands should not get a lot of attention.

We want first to justify the need for providing a real-
time and accurate hand simulation model by briefly
underlining the importance of hands in simulating
humans inside VEs. We’ll then show how we developed
a dedicated simulation model for the hand and para-
meterized it to simulate realistic hands for real-time
environments.

Hands in human simulation
Hands represent a very small part of the whole body.

Artists’ rules for drawing humans define the ideal pro-
portions: the whole body measures eight times the
height of the head, and the length of the hand equals
the height of the face. The hand’s width should equal
half its height. Although canonical, these measure-
ments give a good idea of the hand’s size relative to the
whole body. We must consider its relative size, of
course, but the hand’s importance is not restricted to
this aspect.

Mulder12 classified hand gestures into three main
categories:

■ Semiotic: communicates meaningful information and
results from shared cultural experience.

■ Ergotic: associated with the notion of work and the
human capacity to manipulate the physical world and
create artifacts.

Animating Virtual Humans

48 September/October 1998

6 Deformable
(left) versus
rigid (right)
virtual humans.
Note the shoul-
ders, right
elbow, top of
left thigh, left
wrist, and other
areas for differ-
ences.

Table 3. Rendering timings (in milliseconds).

Average Time Deformable Rigid Deformable Rigid
per Frame Model when Model when Model in Motion model in Motion

Motionless Motionless (all joints involved) (all joints involved)

On computations 3.4 1.3 9.7 1.4
Drawing 19.5 23.7 19.9 24.2
In total * 25.7 25.9 31.3 29.1
*Total rendering time differs from just computing and drawing because of extra processes like culling.

■ Epistemic: allows humans to learn from the environ-
ment through tactile experience or hepatic exploration.

These three categories show the hand’s importance in
simulating a realistic human when interacting with a VE.
The hand is both an effect and a sensor, providing a gate-
way between humans and their environment. This
implies that hands are a center of interest and that
despite their size, many situations during the simulation
will focus on them. A convincing visual representation
requires appropriately modeled and simulated hands.

Hands concentrate many DOF; each hand contains 25
DOF. Since our skeleton model counts around 120 total
DOF, that means the hands account for about 40 percent.
As a result, the hands are the most flexible part of the
body, and the total number of possible postures and
movements is very large. Thus, the hand may have a high
level of deformation, concentrated in a very short area.
Moreover, a brief look at anyone’s hands shows that the
main hand lines associated with the skeletal joints con-
trols the muscular action and skin deformation.

The hand’s importance requires more than the set of
rigid, articulated skin pieces devoted to it in the tradi-
tional approach. Its particularities require a dedicated
model. We propose a hand-simulation model suited for
real time, to be used in conjunction with the tradition-
al approach.

Basic hand multilayer model
We proposed a multilayer model for simulating

human hands13 as a part of the Humanoid environ-
ment.7 The basic model, which follows the traditional
multilayer model for articulated deformable characters,
subdivides into three structural layers: skeleton, mus-
cle, and skin. We combined the approaches of Chadwick
et al.14 and Delingette et al.15 to design the three-layer
deformation model for hand animation.

The intermediate muscle layer maps joint-angle vari-
ations of the basic skeleton layer into geometric skin
deformation operations. It is based on a generalized
free-form deformations (FFDs)16 model called Dirich-
let FFDs (DFFDs).13 The structural muscle layer is mod-
eled by a set of control points, attached to the skeleton,
that approximate the hand skin’s shape. The skeleton’s
motion controls the control points’ displacements. Once
the control point set fits the skeleton’s current configu-
ration, the generalized FFD function is applied to the
triangle mesh representing the geometric skin.

The relationship between the control points and the
object to deform relies on a local coordinate system
called Natural Neighbors (NN) or Sibson.17 For each ver-
tex of the surface, this local coordinate system permits
automatically defining a subset of control points whose
displacements will affect it. This subset serves to build
a deformation function similar to the one defined for
FFDs. (The geometric deformation model is thorough-
ly described elsewhere.18) The deformation function,
defined inside the control points’ convex hull, interpo-
lates the control points’ displacements to the deformed
surface’s vertices.

Among all the resulting model’s properties, note the
lack of a constraint on the location of the control points

and on the shape of their convex hull. Moreover, we do
not need to explicitly define the topology of the control
points set. All of the FFD extensions apply to DFFD,
among them two of particular interest to our hand sim-
ulation model. We can assign weights to control points
and define rational DFFD (RFFD)19 with an additional
degree of freedom to control deformations. We can also
perform direct surface manipulation with the basic
model without having to use an estimation method.
Since we can define any location in the 3D space as a
control point, assigning a control point to a vertex on
the surface lets us directly control its location: any dis-
placement applied to the constraint control point is inte-
grally transmitted to the associated surface vertex.

We build the set of control points to match a simplified
surface hand topography. From observing a hand, espe-
cially its topography, we derive the following basic data
structure for our hand model. We call it a wrinkle, as
shown in Figure 7.

The wrinkle itself is a set of constraint control points.
Generally selected around the joint, they form a closed
3D line of points we call wrinkle control points. Two
points among the wrinkle control points define the axis
on which the associated skeleton joint should lie. In this
way, you can easily adapt a skeleton model to the hand’s
skin. This data allows easy, realistic hand-skeleton map-
ping by defining an implicit skeleton to which you can fit
the skeleton.

A mixed set of control points and constraint control
points surrounds the upper part of the hand surface
affected by rotation of the joint associated with the cur-
rent wrinkle. We call these points influenced wrinkle con-
trol points, as they are influenced by rotation of the
wrinkle itself. One control point, called an inflation con-
trol point, simulates inflation by the upper limb associ-
ated with the joint.

For each wrinkle, the muscle layer gets the joint angle
variation from the skeleton layer. If the rotation angle is
α, the wrinkle itself is rotated at an angle of α/2, and the
set of influenced control points is rotated at α. At the rest
position, all control points have a weight of 1. When the

IEEE Computer Graphics and Applications 49

Constraint control point
Standard control point
Inflation control point

7 Control
points arrange-
ment showing
wrinkles.

joint angles vary, the weights of the inflation control
points vary accordingly. This point is placed on the mesh
so that when its weight increases, it attracts the mesh,
simulating the skin inflation due to muscle contraction.

Figure 8 shows the simplified hand-surface topogra-
phy we want to model. It includes the important hand
lines associated with the underlying skeleton joints: (1)
palm; (2) upper transversal line; (3) lower transversal
line; (4) thenar eminence; (5) thenar line; (6) thumb
first line; (7) thumb second line; (8) hypothenar emi-

nence; (9) finger first line; (10) finger second line; and
(11) finger third line. Figure 9 shows how control points,
constraint control points, and inflation control points
are designed around the surface of the hand to build the
control points set and the different wrinkles.

Optimizing the deformation function
The complexity of our basic muscular deformation

model relates to the

■ degree of the deformation function and
■ number of control points involved.

In this optimization step we aim to provide a defor-
mation function that can work at different levels. We
introduce a deformation level of detail (LOD), similar
to a geometric LOD. Optimization results from para-
meterizing the deformation function with two features
that constrain the function complexity. The real-time
hand simulation model works on a fixed geometric LOD.
We chose this approach because a realistic hand shape
requires high resolution, and performing deformations
is worthwhile only for a minimum resolution of the
deformed surface.

As for basic FFDs, the deformation function is a cubic
function of the local coordinates. The deformation func-
tion’s properties make it usable at lower degrees with a
minimal loss in the continuity of the deformation. We
can then choose between a linear, quadratic, or cubic
deformation function.

The total number of control points in a vertex’s defor-
mation isn’t predefined and depends on the local con-
figuration of the control points’ set located at the vertex
inside the convex hull of control points. You can control
and constrain the number of control points between 4
and the “natural” number of NN control points. Note
that limiting the number of control points to 4 results in
a continuity problem—the price for the gain in speed.
Figure 10 shows, for the same hand posture, three dif-
ferent results with various constrained Sibson control
points. Figure 10a shows the basic DFFD function. Sib-
son control points are constrained to a maximum of 9
in Figure 10b and 4 in Figure 10c. The hand contains
around 1,500 vertices.

Facial animation
Our real-time human animation system considers the

face as a separate entity from the rest of the body due to
its particular animation requirements. Unlike the body,
the face is not based on a skeleton. Thus, we employ a
different approach from body animation to deform and
animate a face, based on pseudo muscle design.

Developing a facial model requires a framework for
describing geometric shapes and animation capabili-
ties. We must also consider attributes such as surface
color and textures. Static models prove inadequate for
our purposes; the model must allow for animation. The
way facial geometry is modeled depends largely on its
animation potential in our system. Facial animation
requires a deformation controller or a model for deform-
ing the facial geometry. In addition, a high-level speci-
fication of facial motion controls the movements.

Animating Virtual Humans

50 September/October 1998

(2)

(3)

(1)

(4)

(8)

(5)

(6)

(7)

(9)

(10)

(11)

8 Topography
of the hand.

9 Control
points set and
wrinkles design
(top). Hand
posture with
various con-
strained Sibson
control points
(bottom).

Facial deformation model
Our facial model considers the skin surface of a

human face—an irregular structure—as a polygonal
mesh. Muscular activity is simulated using rational free-
form deformations (RFFD).19 To simulate the effects of
muscle actions on the skin of a virtual human face, we
define regions on the mesh corresponding to the
anatomical descriptions of the regions where we want
a muscle. For example, we defined regions for eyebrows,
cheeks, mouth, jaw, and eyes. We then define a control
lattice on the region of interest.

Muscle actions to stretch, expand, and compress the
inside geometry of the face are simulated by displacing
or changing the control points’ weight. The region inside
the control lattice deforms like a flexible volume accord-
ing to the displacement and weight of each control
point. A stiffness factor specified for each point controls
the amount of deformation allowed for the point; a high
stiffness factor permits less deformation.

Facial motion control
Specifying and animating facial animation muscle

actions may prove a tedious task. We definitely need a
higher level specification that would avoid setting up

the parameters involved for muscular actions when pro-
ducing an animation sequence. The Facial Action Cod-
ing System (FACS)20 has been used extensively to
provide a higher level specification when generating
facial expressions, particularly in a nonverbal commu-
nication context.

In our multilevel approach (Figure 11), we define basic
motion parameters as minimum perceptible actions
(MPAs). Each MPA has a corresponding set of visible fea-
tures, such as movement of eyebrows, jaw, or mouth, and
others occurring as a result of muscle contractions. The
MPAs define both the facial expressions and the visemes
(defined as the animated shape of the face resulting from
the mouth’s motion and corresponding to one or more
phonemes). Our system uses 65 MPAs, such as
open_mouth, close_upper_eyelids, or raise_corner_lip,
which permit constructing practically any expression
and viseme. At the highest level, a script containing
speech and emotions with their duration controls ani-
mation. Depending on the type of application and input,
you can use different animation control levels.

Our real-time facial animation module uses three dif-
ferent input methods: video, audio or speech, and pre-
defined actions.

IEEE Computer Graphics and Applications 51

10 Hand posture with various constrained Sibson control points: (a) unconstrained, (b) 9 control points, and (c) 4 control points.

3D polygonal
surface

Muscle
simulation

RFFD Minimum
perceptible

actions (MPA) Expressions
phenomes

Emotions and sentences

11 Different
levels of facial
motion control.

(a) (b) (c)

Video input. This method requires facial feature
extraction and tracking from the video input’s image
sequences. We use an improved method developed by
Magnenat-Thalmann et al.21 that returns an array of
MPAs corresponding to the extracted facial feature
movements. We obtain mapping of the extracted face
features’ parameters because the displacement vectors
are based on some adhoc rules. The extraction method
relies on a “soft mask”—a set of points adjusted inter-
actively by the user. Recognition and tracking of the
facial features is based on color sample identification,
edge detection, and other image processing operations.
The feature capture and tracking rate is about 20 frames
per second (fps) on an SGI O2 workstation.

Audio or speech input. We rely on an external
program22 to segment the audio into phonemes with
their durations. In the absence of audio input, we use
text as input and obtain the phonemes by using a text-
to-phoneme module developed by the University of
Edinburgh.23 Each phoneme is translated into a viseme,
which decomposes into several MPAs. Visemes are
defined as a set of MPAs independent of the facial model
and applicable to any face.

Predefined actions. You can also perform real-

time animation of a face using a series of predefined
expressions and visemes. Here, the specification is at a
higher level—an action that has intensity, duration, and
a start time. An action may be an emotion (surprise,
anger), head gestures (nodding, turning), and sentences
(a combination of words defined with phonemes).
Actions decompose into an array of MPAs, and defor-
mation is performed accordingly for each frame during
the animation.

Synchronization. To synchronize output of the
MPA arrays from different sources (such as emotions

from video and phonemes from
audio-speech) with the acoustic
speech at a predefined frame rate
(Fd, generally 25 fps), we introduce
a buffer or stack for each source of
MPAs. An initial delay results if the
frame rate of one source is less than
Fd (see Figure 12).

We assume that for each MPA
source the frame rate is known (for
example, F1, F2). The intermediate
frames are added using interpola-
tion or extrapolation of the existing
computed frames in each buffer to
match the frame rate Fd. The MPA
array from each buffer goes to the
composer, which produces a single
stream of MPAs for the deformation
controller. The deformation process
for each frame on average takes less
than one fortieth of a second on a
fully textured face with about 2,500
polygons on an SGI O2 workstation.

Composition. Since the animation may involve
simultaneous application of the same MPA coming from
different types of actions and sources, we provide a
mechanism to compose the MPAs. A weight function
defined for each MPA in an action is a sinusoidal func-
tion with a duration relating to an action, generally con-
sidered 10 percent of the action’s total duration. This
provides a smooth transition with no jump effect when
actions with the same MPA overlap.

Animation framework
Our real-time simulation of virtual humans has a

unique feature: the close link between modeling and
animation. Here, modeling does not mean just con-
structing geometrically passive objects, but includes
structure and animation capabilities. In our system the
animation potential of the body parts drives the model-
ing. In addition, the modeling facilitates easy control of
multiple LODs—a big asset for real-time applications,
particularly when many virtual humans inhabit the same
virtual world. By real-time applications, we mean the
ability to display at least 10 fps while using the program.

As previously stated, the system separates broadly
into three units: modeling, deformation, and motion
control, as shown in Figure 13.

Modeling provides necessary geometrical models for

Animating Virtual Humans

52 September/October 1998

Source 1

F1

Fd

Fd

F1

F2

Fd

MPA
buffer 1

MPA
composer (Σ)

Source 2

F2

Fd

MPA
buffer 2

Initial delay

12 Synchro-
nization of MPA
streams.

Real-time
motion control

Skeleton
motion control

Face
motion control

Predefined
actions

Track

Motion
capture
(FOB
data

glove)

Predefined
actions

Face
Sculpture

Bodybuilder
Motion
capture

(camera)

Deformable bodies

Skeleton

Hands skin

Default hands

Head

Head

Body
skin

Body modeling

Dody
13 The anima-
tion framework
system.

the body, hands, and face. As mentioned, the Body-
Builder program models the body surface. These sur-
face contours are associated with the skeleton segments
and joints. The skeleton serves as a support in generat-
ing motion. For hand creation, designers can modify a
default template hand to build a specific hand. The
default hands are associated with the skeleton to pro-
vide postures used for real-time animation. Both local
and global transformations take place in the sculptor
program. Similarly, the face generally starts from a
generic model that includes the structure information
provided by definition of regions. Modifications of the
face, however, are done to retain the structure. A
method for automatic face reconstruction uses two
orthogonal views of pictures as the starting point.24

Deformations are performed separately on different
entities (body, hands, and face) based on the model used
for each part. Choosing a different model for each enti-
ty is motivated by the particular animation requirements
of each entity in real time. Different entities are assem-
bled into a single skin envelope using the Dody
(deformable body) library. Handling and managing
each entity’s deformations also takes place in the Dody
library.

Motion control generates and controls the movements
for different entities. For motion control, we separated
the body and face, but included the hands in the body
because they’re also skeleton based. You can generate
the skeletal motion using the interactive software pro-
gram Track, in which some predefined actions can also
be combined. A motion capture module is also available
for real-time motion capture of the body. Similarly, you
can generate facial movements in terms of expressions
or phonemes in an interactive Face program. Direct
motion capture from a real face is also possible. For ani-

mation, the body motion (in terms of angular values of
joints) and face motion (in terms of MPAs) pass to the
Dody library for appropriate deformations.

In a higher level motion library,10 you design motion
as a set of actions for the different entities. You can then
blend and simultaneously apply these actions. This
library offers a high-level programming environment
suitable for real-time applications.

Two case studies
We have applied these tools and techniques to

CyberTennis and CyberDance to explore their applica-
tion to real-time simulations.

CyberTennis
At the opening session of Telecom Interactive 97 in

Geneva, Switzerland, we presented in real time a virtu-
al, networked, interactive tennis game simulation. This
demonstration posed a big challenge because, for the
first time, we had to put together several different com-
puter-related technologies and corresponding software.
It had to work in real time at a specific moment on an
exposition site without permanent installations.

In this demonstration the interactive players were
merged into the VE as shown in Figure 14, by head-
mounted displays, magnetic flock of bird sensors, and
data gloves. The University of Geneva player appeared
“live” on stage at the opening session, and the other
player took part from the EPFL Computer Graphics Lab
at Lausanne, approximately 60 kilometers distant.

To manage and control the shared networked VE, we
used the Virtual Life Network, a general-purpose client-
server network system using realistic virtual humans
(avatars) to represent users. In Figure 15a, a camera
view displays, in real time, the network environment

IEEE Computer Graphics and Applications 53

14 The virtual tennis players ani-
mated by real-time motion capture
with the “live” player in Geneva
and the player in Lausanne shown
inset.

15 Networked environment with
autonomous referee.

(a) (b)

and the avatars. These avatars support body deforma-
tion during motion. They also represent autonomous
virtual actors, such as the autonomous referee shown
in Figure 15b as part of the tennis game simulation. A
special tennis ball driver animated the virtual ball by
detecting and computing collisions between the tennis
ball, the virtual rackets, the court, and the net.

We employed the following hardware:

■ At the Geneva site, two SGI Onyx 2 systems for the
first player client and the Referee client, both con-
nected to one Impact over local Ethernet. The Impact
contained one ATM card and served as a router for
fast communication with Lausanne. The VR devices
included an Ascension MotionStar with 14 sensors,
one Virtual Research VR4 HMD, two Virtual Tech-
nologies Cybergloves, and one Spaceball Technolo-
gies Spaceball to drive the virtual video camera.

■ At the Lausanne site, one Onyx for the second player
client and two Impacts for the Referee client and the
VLNet server. These three machines used ATM cards
to communicate with the server. The VR devices were
identical to those used at Geneva except for the mag-
netic sensors: a set of 16 Ascension Technology Flock
of Birds from (only 14 were used in the motion cap-
ture process).

CyberDance
CyberDance—a new kind of live performance—pro-

vides interaction between real professional dancers on

stage and virtual ones in a computer-generated world.
This demonstration used our latest development in vir-
tual human representation (real-time deformation)
together with the latest equipment in VR (for motion
tracking).

Our first performance, created for the Computer Ani-
mation film festival in Geneva September 1997, was an
18-minute show with eight professional dancers and
giant screens for computer-generated images. Since
then, we have performed at the Creativity Institute at
Zermatt and at another site in Geneva.

The show, which represented the creation of the “sec-
ond world,” consisted of three parts. In the first part, the
virtual world re-created the planet earth in the universe,
and the choreography reflected the evolution of differ-
ent styles of music through time.

In the second part, virtual humans appeared in the
virtual world and one real dancer was tracked to ani-
mate his virtual clone in real time, represented by a fan-
tasy robot. Figure 16 shows snapshots of the live
performance using motion capture. We can see the
dancer tracked on stage, while the result of this tracking
went to construct the virtual robot displayed in real time.
The audience could see both the real and the virtual
dancers simultaneously.

In the third part, the virtual actors danced to a given
choreography. Figure 17 shows the three virtual dancers
following the choreography recorded using a motion-
capture device. The same choreography was used for
the three clones sharing the VE.

Animating Virtual Humans

54 September/October 1998

16 Motion
capture for real-
time dancing
animation of a
virtual clone.

17 Professional
dancers and
three virtual
actors dancing
simultaneously.

Conclusion
Our real-time characters may assume any position

and work well for interactive TV applications, simula-
tion, and shared VEs. They cannot be completely pre-
defined, as in most current video games. On the other
hand, they take only a small amount of time to render,
unlike films, where most calculations occur offline.

Further research includes elaborating on a user-
interface for real-time simulation and improving the
simulated individuals’ visual quality. Increasing real-
ism requires revising and improving our methods,
although the results should not differ much qualita-
tively. We’re working on the real-time simulation of
hair and deformable clothing, and on a variety of
autonomous behaviors. With the goal of accelerating
the cloning process, we’re also making progress on the
automatic 3D reconstruction and simulation of virtu-
al faces. ■

Acknowledgments
Thanks go to Jean Claude Moussaly, Marlene Poizat,

Laurence Suhner, and Nabil Sidi Yacoub from Miralab,
who designed the virtual humans and the CyberDance
environment. Patrick Keller from LIG designed the vir-
tual tennis environment. We’re also grateful to Chris
Joslin for proofreading this document.

This research is funded by the Swiss Priority Program
(SPP), the Swiss National Science Foundation, and the
Electronic Arenas for Culture, Performance, Art, and
Entertainment (Erena) European project for the Cyber-
Dance project.

References
1. N. Magnenat-Thalmann and D. Thalmann, “Digital Actors

for Interactive Television,” Proc. IEEE, Special Issue on Dig-
ital Television, Part 2, July 1995, pp.1022-1031.

2. M. Slater and M. Usoh, “Body-Centered Interaction in
Immersive Virtual Environments,” Artificial Life and Vir-
tual Reality, N. Magnenat-Thalmann and D. Thalmann,
eds., J.Wiley, Chichester, UK, 1994, pp.1-10.

3. K. Perlin and A. Goldberg, “Improv: A System for Scripting
Interactive Actors in Virtual Worlds,” Proc. Siggraph 96,
ACM Press, New York, 1996, pp. 205-216.

4. N. Magnenat-Thalmann and P. Kalra, “The Simulation of
a Virtual TV Presentor,” Proc. Pacific Graphics 95, World
Scientific, Singapore, 1995, pp. 9-21.

5. J. Shen and D. Thalmann, “Interactive Shape Design Using
Metaballs and Splines,” Proc. Implicit Surfaces 1995, M.P.
Gascule and B. Wyvill, eds., Eurographics Assoc., Grenoble,
France, 1995, pp. 187-196.

6. G. Sannier and N. Magnenat-Thalmann, “A User-Friendly
Texture-Fitting Methodology for Virtual Humans,” Proc.
Computer Graphics Int’l 97, IEEE CS Press, Los Alamitos,
Calif., 1997, pp. 167-176.

7. R. Boulic et al., “The Humanoid Environment for Interac-
tive Animation of Multiple Deformable Human Charac-
ters,” Proc. Eurographics 95, Blackwell Publishers, England,
Aug. 1995, pp. 337-348.

8. T. Capin et al., “Virtual Human Representation and Com-
munication in the VLNet Networked Virtual Environ-
ments,” IEEE CG&A, Vol. 17, No. 2, 1997, pp. 42-53.

9. T. Molet, R. Boulic, and D. Thalmann, “A Real-Time
Anatomical Converter for Human Motion Capture,” Proc.
Eurographics Workshop on Computer Animation and Sim-
ulation 96, R. Boulic and G. Hégron, eds., Springer-Verlag,
Vienna, 1996, pp. 79-94.

10. H. Noser and D. Thalmann, “Synthetic Vision and Audi-
tion for Digital Actors,” Proc. Eurographics 95, Blackwell
Publishers, England, Aug. 1995, pp. 325-336.

11. T.A. Funkhauser and C.H. Sequin, “Adaptative Display
Algorithm for Interactive Frame Rates During Visualiza-
tion of Complex Virtual Environments,” Proc. Siggraph 93,
ACM Press, New York, 1993, pp. 247-254.

12. Hand Gestures for HCI, technical report, Hand Centered
Studies of Human Movement Project, School of Kinesiol-
ogy, Simon Fraser University, Vancouver, 1996,
http://fas.sfu.ca/cs/people/ResearchStaff/amulder/per-
sonal/vmi/HCI-gestures.htm.

13. L. Moccozet and N. Magnenat-Thalmann, “Dirichlet Free-
Form Deformations and their Application to Hand Simu-
lation,” Proc. Computer Animation 97, IEEE CS Press, Los
Alamitos, Calif., 1997, pp. 93-102.

14. J.E. Chadwick, D. Hauman, and R.E. Parent, “Layered Con-
struction for Deformable Animated Characters,” Proc. Sig-
graph 89, ACM Press, New York, 1989, pp. 243-252.

15. H. Delingette, Y. Watanabe, and Y. Suenaga, “Simplex
Based Animation,” Proc. Computer Animation 93, N. Mag-
nenat-Thalmann and D. Thalmann, eds., Springer Verlag,
Berlin, 1993, pp. 13-28.

16. T.W. Sederberg and S.R. Parry, “Free-Form Deformation
of Solid Geometric Models,” Proc. Siggraph 86, ACM Press,
New York, 1986, pp. 151-160.

17. G. Farin, “Surface Over Dirichlet Tessellations,” Computer
Aided Geometric Design, Vol. 7, No. 1-4, North-Holland,
1990, pp. 281-292.

18. L. Moccozet, Hands Modeling and Animation for Virtual
Humans, PhD thesis report, Miralab, University of Gene-
va, 1996.

19. P. Kalra et al., “Simulation of Facial Muscle Actions Based
on Rational Free-Form Deformations,” Computer Graphics
Forum, Vol. 2, No. 3, 1992, pp. 65-69.

20. P. Ekman and W.V. Friesen, Manual for the Facial Action
Coding System, Consulting Psychology Press, Palo Alto,
Calif., 1978.

21. N. Magnenat-Thalmann, P. Kalra, and I.S. Pandzic, “Direct
Face-to-Face Communication Between Real and Virtual
Humans, Int’l J. of Information Technology, Vol. 1, No. 2,
1995, pp. 145-157.

22. Abbot (Demo), Speech Recognition System, Cambridge,
UK, http://svr-www.eng.cam.ac.uk/~ajr/abbot.html.

23. Festival Speech Synthesis System, University of Edinburgh,
UK, http://www.cstr.ed.ac.uk/projects/festival.html.

24. W.S. Lee, P. Kalra, and N. Magenat Thalmann, “Model-Based
Face Reconstruction for Animation,” Proc. Multimedia Mod-
eling 97, World Scientific, Singapore, 1997, pp. 323-338.

IEEE Computer Graphics and Applications 55

Amaury Aubel is a PhD candidate
in the computer graphics lab at the
Swiss Federal Institute of Technolo-
gy (Ecole Polytechnique Fédéral de
Lausanne—EPFL). His research
interests include geometric deforma-
tions for human animation and

human crowd rendering. Part of his work takes place in
the framework of the European project Platform for Ani-
mation and Virtual Reality (PAVR). He received a software
engineering diploma from the Computer Science Institute
in Paris (Institut d’Informatique d’Entreprise) in 1995.

Prem Kalra is an assistant profes-
sor at the Indian Institute of Tech-
nology (IIT), Delhi. His research
interests include geometric modeling
and deformation, image-based ani-
mation, virtual human simulation,
and virtual reality. He obtained his

PhD in computer science from the Swiss Federal Institute
of Technology (Ecole Polytechnique Fédéral de Lausanne—
EPFL), Lausanne in 1993.

Nadia Magnenat-Thalmann

has researched virtual humans for
more than 20 years. She studied psy-
chology, biology, and chemistry at
the University of Geneva and
obtained her PhD in computer sci-
ence in l977. In l989 she founded

Miralab, an interdisciplinary creative research laborato-
ry at the University of Geneva. Some recent awards for her
work include the l992 Moebius Prize for the best multi-
media system awarded by the European Community, “Best
Paper” at the British Computer Graphics Society congress
in l993, to the Brussels Film Academy for her work in vir-
tual worlds in 1993, and election to the Swiss Academy of
Technical Sciences in l997. She is president of the Computer
Graphics Society and chair of the IFIP Working Group 5.10
in computer graphics and virtual worlds.

Laurent Moccozet is a senior
researcher at Miralab, at the Com-
puter Science Center, Universitiy of
Geneva. His main research interests
are shape modeling, geometric defor-
mation and their applications to vir-
tual humans, and virtual worlds. He

received a PhD in information systems from the Universi-
ty of Geneva in 1996.

Gael Sannier is a research assis-
tant at the University of Geneva at
Miralab. His main interests are in
user-friendly texture-fitting methods
and virtual presenter for TV applica-
tions. He studied at the University
Lyon-2 in Lyon and earned an MS in

computer graphics in 1996.

Daniel Thalmann researches
real-time virtual humans in virtual
reality, networked virtual environ-
ments, artificial life, and multimedia
at the Swiss Federal Institute of Tech-
nology (Ecole Polytechnique Fédéral
de Lausanne—EPFL). He received a

diploma in nuclear physics in 1970, a certificate in statis-
tics and computer science in 1972, and a PhD in comput-
er science (cum laude) in 1977 from the University of
Geneva. He is co-editor-in-chief of the Journal of Visual-
ization and Computer Animation, member of the editori-
al board of the Visual Computer, CADDM Journal (China
Engineering Society) and Computer Graphics (Russia).
He is co-chair of the Eurographics Working Group on Com-
puter Simulation and Animation and member of the exec-
utive board of the Computer Graphics Society.

Readers may contact Magnenat-Thalmann at Miralab,
University of Geneva, 24 Rue du General Dufour, CH 12111
Geneve 4, Switzerland, e-mail nadia.thalmann@cui.
unige.ch.

Animating Virtual Humans

56 September/October 1998

