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Abstract

In this paper, we propose a method for real-time anomaly

detection and localization in crowded scenes. Each video is

defined as a set of non-overlapping cubic patches, and is

described using two local and global descriptors. These

descriptors capture the video properties from different as-

pects. By incorporating simple and cost-effective Gaussian

classifiers, we can distinguish normal activities and anoma-

lies in videos. The local and global features are based on

structure similarity between adjacent patches and the fea-

tures learned in an unsupervised way, using a sparse auto-

encoder. Experimental results show that our algorithm is

comparable to a state-of-the-art procedure on UCSD ped2

and UMN benchmarks, but even more time-efficient. The

experiments confirm that our system can reliably detect and

localize anomalies as soon as they happen in a video.

1. Introduction

The definition of an anomaly depends on what context is

of interest. A video event is considered as being an anomaly

if it is not very likely to occur in the video [6]. Describing

unusual events in complex scenes is a cumbersome task,

often solved by employing high-dimensional features and

descriptors. Developing a reliable model to be trained with

such descriptors is quite challenging and requires an enor-

mous amount of training samples; it is also of large compu-

tational complexity. Therefore, this might face the so-called

“curse of dimensionality”, in which the predictive power of

the trained model reduces, as the dimensionality of the fea-

ture descriptors increases.

In recent work, one or a set of reference normal models

are learned from training videos, which are then applied for

detecting an anomaly in the test phase. Such methods usu-

ally consider a test video as being an anomaly if it does not

resemble the learned model(s). In order to build these ref-

erence models, some specific feature descriptors should be

used. In general, features usually are extracted to represent

either (1) trajectories or (2) spatio-temporal changes. For

instance, [8] and [19] focus on the trajectories of objects in

videos, in which each object is to be labeled as an anomaly

or not, based on how they follow the learned normal trajec-

tory. These methods could not handle the occlusion prob-

lem, and are also computationally very expensive, for the

case of crowded scenes.

To overcome these weaknesses, researchers proposed

methods using low-level features such as optical flow or

gradients. They learn the shape and spatio-temporal rela-

tions using low-level features distributions. As an example,

[13] fits a Gaussian mixture model as the features, while [1]

uses an exponential distribution.

Clustering of test data using low-level features is ex-

ploited in [16]. In [2, 9, 10, 22], the normal patterns were

fitted to a Markov random field, and [14, 18] apply latent

Dirichlet allocations. [11] introduces a joint detector of

temporal and spatial anomalies, where the authors use a

mixture of dynamic textures (MDT) model.

In recent studies, sparse representations of events [6, 7,

12] in videos is being heavily explored. Notably, the pro-

posed models in [6, 7, 11, 14, 15, 12] achieve favorable per-

formance in anomaly detection, however they normally fail

in the task of anomaly localization. All these methods, ex-

cept [12], are not designed for real-time applications and

commonly fail in real-world anomaly detection problems.

In this paper, we propose to represent videos from two

different aspects or views, and thus two partially indepen-

dent feature descriptors. Then, we introduce an approach

for integrating these views in a testing step to simultane-

ously perform anomaly detection and localization, in real-

time. Unlike previous work, instead of using low-level fea-

tures, we propose to learn a set of representative features,

based on auto-encoders [17].

Our detection framework identifies an anomaly in a real-

time manner. Our anomaly detection method has high true-

positive and low false-positive rates which make it quite re-

liable. We evaluate our anomaly detection and localization

framework on popular datasets and report the running time

for the whole procedure. The comparison with state-of-the-

art methods shows the superiority of our method, both in
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terms of performance and running time.

The main contributions of our work are as follows:

(1) Presenting a feature learning procedure for describing

videos for the task of video anomaly localization. This

method is time-consuming for training, but the learned fea-

tures are very discriminative to model the normal patches.

(2) Introducing a descriptor-based similarity metric be-

tween adjacent patches for detecting sudden changes in

spatio-temporal domains. (3) Representing video patches

from two different aspects or views. Both local and global

feature sets are used for each view. In the final decision,

these views support each other. (4) Modeling all normal

patches with Gaussian distributions. For a test video, the

Mahalanobis distance is used to figure out its relevance for

the normal patches. (5) Being real-time, we are able to de-

tect and localize anomalies soon after they occur in a test

video or stream.

Figure 1. The scheme of our algorithm (left to right): Input

frames, two views of patches (global and local), modeling the data

using Gaussian distributions, and making the final decision

The overall scheme of our algorithm is shown in Fig. 1.

We achieve 25 fps processing power, and with enduring

some bit errors we reach up to 200 fps using a PC with 3.5

GHz CPU and 8G RAM in MATLAB 2012a.

The rest of the paper is organized as follows. The pro-

posed approach is introduced in Section 2, where we first in-

troduce the overall schema, and then we focus on global de-

scriptors, local descriptors, anomaly classification scheme,

and finally anomaly detection through feature learning, one

after the other. Experimental results, comparisons, and

analysis are presented in Section 3. Ultimately, Section 4

concludes the paper.

2. Proposed System

Overall Scheme. To represent each video, first each

video is converted into a number of non-overlapping cubic

patches; a sketch of this video representation is shown in

Fig. 2. Generally, every video has one or a set of dominant

events. Thus, one expects that normal patches have similar

relations with their adjacent patches and a high likelihood of

Figure 2. Video representation: Each video is represented through

a number of non-overlapping cubic patches, covering the whole

space-time in the video.

occurrence in the video. Therefore, these anomaly patches

should meet three conditions:

1. The similarity between the anomaly patches and their

adjacent (i.e., defined by spatial changes) patches does

not follow the same pattern as from normal patches to

their adjacent patches.

2. It is most likely that the temporal changes of an

anomaly patch would not follow the pattern in the tem-

poral changes of normal patches.

3. It is obvious that the occurrence likelihood of an

anomaly patch is less than that of normal patches.

It can be easily inferred that the above conditions 1 and

2 are characterized locally. Therefore, they can be encoded

by local feature descriptors, and condition 3 is analogous to

the global nature of the scene. In other words, conditions 1

and 2 consider the relation between a patch and its adjacent

patches, and condition 3 describes the overall appearance

of patches in the video. As a result, the first two conditions

are corresponding to the spatio-temporal changes, while the

latter one is different. Therefore, we model a combination

of 1 and 2 through a local representation, and 3 by a more

global one. On the other hand, in order to avoid the so-

called “curse of dimensionality”, we model these two as-

pects independently.

So far, we have defined two different aspects that we ap-

proach the problem, leading to two independent models. In

order to make a final decision, we aggregate the decisions

from both models. If both models reject a patch it is con-

sidered to be an anomaly. This leads to a system with bet-

ter performance in terms of true-positive and false-positive,

since this way of combination of the two models guarantees

a concrete selection of a patch as anomaly if both models

agree on its being an anomaly.

In summary, the input videos are represented in two dif-

ferent aspects. Then, these representations are fitted to a set

of Gaussian distributions and a decision boundary is calcu-

lated for each of them. Finally, based on global and local

model results, a decision is reached about a patch being

an anomaly or not (detection). The localization could be

then easily inferred, based on which patches throughout the



Figure 3. Summary for learning the global features using an auto-encoder. Left: The step for learning features uses raw normal patches;

components (1), (2), (3), (4), and (5) are needed; the aim is to reconstruct the input paths with adjusting W1 and W2 using gradient descent.

Middle: Auto-encoder structure. Right: Representing the y patch using the W1 weights (y ×W1); (1), (2), and (3) are just used; this is a

multiplication of two matrixes, so it is very fast

video are classified as anomaly. In the subsequent sections,

the two sets of features (global and local) are introduced.

Global descriptors. A video global descriptor is a set

of features that describes the video as a whole and therefore

is best able to describe the normal video patches. In [21] it

is argued that classical handcrafted low-level features, such

as HOG and HOF, may not be universally suitable and dis-

criminative enough for every type of video. So, unlike pre-

vious works, that use low-level features, we use an unsuper-

vised feature learning method based on auto-encoders. The

structure of the auto-encoder is depicted in Fig. 3.

The auto-encoder learns sparse features based on gradi-

ent descent, by modeling a neural network. Suppose that we

have m normal patches with the dimensions (w, h, t), cre-

ating a data structure of xi ∈ R
D, D = w × h× t (the raw

data). The auto-encoder minimizes the objective defined in

Eq. (1) by re-reconstructing the original raw data:

L =
1

m

m
∑

i=1

‖xi −W2δ(W1xi + b1) + b2‖
2

+

w·h·t
∑

i=1

s
∑

j=1

(W 2

ji) + β

s
∑

j=1

KL(ρ‖ρ′j)

(1)

where s is the number nodes in the auto-encoder’s hidden

layer, W1 ∈ R
s×D and W2 ∈ R

D×s are the weight matri-

ces, which map the input layer nodes to hidden layer nodes,

and hidden layer nodes to the output layer nodes, respec-

tively. Wji is the weight between the jth hidden layer node

and the ith output layer node, and δ is equal to the sigmoid

function. Furthermore, b1 and b2, are the bias of the output

layer and the hidden layer, respectively. KL(ρ‖ρ′j) is a reg-

ularization function and is set to enforce the activation of the

hidden layer to be sparse. KL is based on the similarity be-

tween a Bernoulli distribution with ρ as parameter, and the

active node distribution. The parameter β is the weight of

the penalty term (in the sparse auto-encoder objective). We

can efficiently optimize the above objective with respect to

W1 via the stochastic gradient descent approach.

Local descriptors. To describe each video patch, we

use a set of local features. The similarity between each

patch and its neighboring patches are calculated. As for

the neighbors, we consider nine spatial neighboring patches

and one temporal neighboring patch (the one right behind

the patch of interest when arranged temporally), yielding

to 10 neighbors for each single patch. For temporal neigh-

bors, we only consider the patch before the patch of interest

(not the next one), as we aim to detect the anomaly soon-

est possible, even before the next video frames (and there-

Figure 4. Illustration of our local descriptor: Similarities of each

patch on interest with its neighboring patches (top), temporal inner

similarities of each patch of interest (bottom).
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Figure 5. Large patch anomaly detection using feature learning. (A) Input video. (B) Selected test patch (e.g., 40×40×5) is divided into

16 small patches. (C) W1× small patch. (D) Pooling all feature vectors (16 vectors). (E) Computing the mean of each feature and create

one feature vector. (F) Classifying with the learned classifier using 10×10×5 patches.

fore patches) in the video stream arrive. We use SSIM for

computing the similarity between two patches, which is a

well-known image-quality assessment tool [4]. Further, as

a second type of local descriptor, we calculate the SSIM of

each single frame with its subsequent frame in the patch

of interest. Figure 4 illustrates our local feature assess-

ment through the spatio-temporal neighboring. The local

descriptor would be the combination of the SSIM values,

i.e., [d0 · · · d9, D0 · · ·Dt−1].

Anomaly Classifier. To model the normal activities in

each video patch, we incorporate two Gaussian classifiers

C1 and C2. For classifying x′ patches, as described, we

use two partially independent feature sets (global and lo-

cal), and compute the Mahalanobis distance f(y). If f(y)
is larger than the threshold then it is considered to specify

an abnormal patch, where y equals W1 × x′ in the global

classifier, and [d0 · · · d9, D0 · · ·D3] for the case of the local

classifier. To avoid numerical instabilities, density estimates

are avoided. As a result, the C1 and C2 classifiers are de-

fined as follows:

Ci(x) =

{

Normal f(x) ≤ threshold

Anomaly otherwise
(2)

with

f(x) = (x− µ)TΣ−1(x− µ) (3)

where µ and Σ are mean and covariance matrix, respec-

tively. Selecting a “good” threshold is important for the per-

formance; it can be selected based on training patches. As

mentioned before, if both C1 and C2 classifiers label a patch

as being an anomaly, it is considered to be an anomaly, but

if one or neither of them considers the patch as being an

anomaly, our algorithm classifies it as being a normal patch.

A summary of these criteria is shown as F function in the

following equation:

F (x) =

{

Anomaly if C1 = Anomaly ∧ C2 = Anomaly

Normal otherwise (4)

Anomaly detection using feature learning. We learn

the features from raw training data, and classify the video

patches as specified in the previous section. But based on

the idea in [3], using both small patches and large patches

usually leads to increased values of false-positive rate and

decreased value of true-positive rate, respectively. When

the patches become larger, the input dimension of the auto-

encoder increases, so the number of weights in the network,

which need to be learned, will also increase.

Under the condition of limited training examples, learn-

ing of features from large patches is impractical (for exam-

ple 40×40×5), to overcome these challenges, we learn the

features from (small) 10×10×5 patches. To create a model

using these features, in the test phase the large patches

(40×40×5) are considered. Because the learned classi-

fier is adapted for 10×10×5 patch representations, we con-

volve the learned feature (W1) in 40×40×5 patches, with-

out overlapping, and pool the 16 extracted feature vectors

from the 40×40×5 patches. So, we use mean pooling to

achieve a representation of 40×40×10 patches that can be

checked with the learned classifier using 10×10×5 patches.

This procedure is shown in Figure 5.

3. Experimental results and comparisons

We compare our algorithm with state-of-the-art meth-

ods on Ped2 UCSD1 and UMN2 benchmarks. We empir-

ically demonstrate that our approach is suitable to be used

in surveillance systems.

Experimental settings. Feature learning is done with

10×10×5 patches. Training and testing phases in anomaly

detection is done with 10×10×5 and 40×40×5 patch sizes,

respectively. In anomaly detection, the size 40×40×5 is

exploited. Feature learning is done with an auto-encoder

with 0.05 sparsity. Each 10×10×5 patch is represented by

a 1000-dimensional feature vector. Before feature learning,

normalization is performed to set the mean and variance to

0 and 1, respectively.

UCSD datasets. This dataset includes two subsets, ped1

and ped2, that are from two different outdoor scenes. Both

1www.svcl.ucsd.edu/projects/anomaly/dataset.html
2mha.cs.umn.edu/Movies/Crowd-Activity-All.avi

www.svcl.ucsd.edu/projects/anomaly/dataset.html
mha.cs.umn.edu/Movies/Crowd-Activity-All.avi


are recorded with a static camera at 10 fps, with the resolu-

tions 158× 234 and 240× 360, respectively. The dominant

mobile objects in these scenes are pedestrians. Therefore,

any object (e.g., a car, skateboarder, wheelchair, or bicy-

cle) is considered as being an anomaly. We evaluate our

algorithm on ped2. This subset includes 12 video samples,

and each sample is divided into training and test frames. To

evaluate the localization, we utilize the ground truth of all

test frames. We compare our results with state-of-the-art

methods using receiver operating curve (ROC) and equal

error rate (EER) analysis, similar to [13]. We use two eval-

uation measures, one at frame level and the other at pixel

level. In addition to these, we define a new measure for the

accuracy of anomaly localization, called dual pixel level.

These measures are defined as follows:

Frame level measure: If one pixel detects an anomaly

then it is considered as being an anomaly.

Pixel level measure: If at least 40 percent of anomaly

ground truth pixels are covered by pixels detected by the

algorithm, then the frame is considered to be an anomaly.

Suppose that the algorithm detects some region as being

an anomaly, and just one of these regions has an overlap

with anomaly ground truth; the number of false regions is

not considered in the two former measures. Such a region

is called a “lucky guess”. For considering the “lucky guess”

regions, we introduce the dual pixel level. This measure is

sensitive to a “lucky guess”.

Dual pixel level: In this measure, a frame is considered

as being an anomaly if (1) it satisfies the anomaly condi-

tion at pixel level and (2) at least β percent (i.e., 10%) of

the pixels detected as anomaly are covered by the anomaly

ground truth. If, in addition to the anomaly region, irrele-

vant regions are also considered as being an anomaly, then

this measure does not identify the frame as being positive.

Figure 6 shows an example for the different measures of

anomaly detection.

Performance Evaluations. Figure 7 shows a qualita-
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Figure 6. Measure of anomaly evaluation. The blue and red rect-

angles indicate the output of the algorithm and anomaly ground

truth, respectively. (a) Frame-level. (b) Pixel- level evaluation: 40

percent red (ground truth) is covered with blue (detected). (c) Dual

pixel-level: Evaluates that 40 percent of red is covered by blue, but

at least β percent of blue is not covered by red. (d) Dual-pixel level

Figure 7. Example of anomaly detection from three scenes. First

row to 7th row show Temporal MDT, Spatial MDT, MPPCA, So-

cial force, Optic flow, Our method (feature learning only), an Our

method (combined views)

tive comparison with other methods.3 This figure indicates

that our algorithm has the best performance in comparisons

with all the competing algorithms. For the run-time com-

parisons, see Table 1.

Method Time (second per frame)

Xua et al. [20] Offline

Li et al. [11] 1.38

Ours 0.04

Table 1. Run time comparison

In Figure 8 (Left), the frame-level ROC of our method is

compared with other methods on the ped2 dataset. It shows

that our method is comparable to other methods. For this

3 Our results are available at http://mahfathy.iust.ac.ir/.

http://mahfathy.iust.ac.ir/


Figure 8. Comparison ROC curve (left to right): Frame-level evaluation and pixel- level evaluation

Method Frame-level Pixel-level

SF [14] 42 79

MPCCA [9] 30 82

MPCCA+SF [13] 36 72

Adam et.al [1] 42 76

MDT [13] 25 55

Xua et al. [20] 20 42

Li et al. [11] 18.5 29.9

Ours 19 24

Ours 0.1 — 67.5

Ours 0.05 — 27.5

Table 2. EER for frame and pixel level comparisons

measure, the EER for frame level for different methods is

shown in Table 2. This confirms that our method has a good

performance in comparison to others. We outperform all of

the methods except the one of Li et al. (we are 0.5 percent

below), reported in [11].

Figure 9. Comparison between dual pixel localization with β

equal to 0 (pixel- level measure), 0.05, 0.10, and frame-level

Figure 8 (Right) illustrates the ROC with respect to the

pixel-level measure. In Table 1, we compare the pixel level

EER of our approach to that of other approaches. Our

method’s EER is 24 percent where the next best result is

29.9 percent reported for the method Li et al. [11]. Our

method is 5.9 percent better than the otherwise best result.

The results show (both ROC and EER) that our algorithm

outperforms the other methods for the pixel-level measure.

We also use a dual-pixel level measure to analyze the ac-

curacy of anomaly localization. Figure 9 shows the effect

of the parameter β on our algorithm. The algorithm has a

good performance, even better than the state-of-the-art, in

pixel level with β=0.05 percent and 0 percent. Figure 9 il-

lustrates comparisons at frame level and pixel level of our

approach; in contrast to all reported algorithms, the pixel

level measure is very close to frame level measure in our

algorithm.

Figure 10. Examples of normal and abnormal crowed activities in

scenes of the UMN dataset. Top: Normal. Bottom: Abnormal

UMN dataset. The UMN dataset has three different

scenes. In each scene, a group of people are walking in

an area, suddenly all people run away (escape); the escape

is considered to be the anomaly. Figure 10 shows examples

of normal and abnormal frames of this dataset.



Method EER AUC

Chaotic invariants [19] 5.3 99.4

SF [14] 12.6 94.9

Sparse [6] 2.8 99.6

Saligrama et.al [16] 3.4 99.5

Li et al. [11] 3.7 99.5

Ours 2.5 99.6

Table 3. Anomaly detection performance in EER and AUC

This dataset has some limitations. There are only three

anomaly scenes in the dataset, and the temporal-spatial

changes between normal and abnormal frames are very

high. This dataset has no pixel-level ground truth. Based

on this limitations, to evaluate our method, the EER and

AUC in frame-level are used. The EER and AUC results

are shown in Table 3. Because this dataset is simple, and

anomaly localization is not important, only the global detec-

tor is used. Previous methods performed reasonably good

on this dataset. The AUC of our method is comparable with

the otherwise best result, and the EER of our approach is

better (by 0.3 percent) than the one of the best previous

method.

4. Conclusions

We presented an anomaly detection and localization

method. In our method, we propose to represent a video

using both global and local descriptors. Two classifiers

are proposed based on these two forms of representation.

Our fusion strategy on the outputs of these two classifiers

achieves accurate and reliable anomaly detection and local-

ization. However, each of the two classifiers has a good

performance for anomaly detection, solely. This is espe-

cially shown on the UMN dataset where the global descrip-

tor achieves state-of-the-art results. We introduced a new

metric for region level anomaly detection for suspicious re-

gions, as well. The performance of our approach on the

UCSD dataset is better compared to recent approaches. It

is also worth noting that we achieve all these good results

in a much better running time than all the competing meth-

ods. Our method enjoys a low computational complexity,

and can be run in real-time. This makes it quite useful for

real-time surveillance applications, in which we are dealing

with live streams of videos.
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