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Abstract Although the recent load information is critical

to very short-term load forecasting (VSTLF), power com-

panies often have difficulties in collecting the most recent

load values accurately and timely for VSTLF applications.

This paper tackles the problem of real-time anomaly

detection in most recent load information used by VSTLF.

This paper proposes a model-based anomaly detection

method that consists of two components, a dynamic

regression model and an adaptive anomaly threshold. The

case study is developed using the data from ISO New

England. This paper demonstrates that the proposed

method significantly outperforms three other anomaly

detection methods including two methods commonly used

in the field and one state-of-the-art method used by a

winning team of the Global Energy Forecasting Competi-

tion 2014. Finally, a general anomaly detection framework

is proposed for the future research.

Keywords Real-time anomaly detection, Very short-term

load forecasting, Multiple linear regression, Data cleansing

1 Introduction

Very short-term load forecasting (VSTLF) provides load

forecasts up to one day ahead. Across the power industry,

such forecasts are typically utilized by utilities and grid

operators for real-time scheduling of electricity generation,

load frequency control, and demand response. The very

short-term load forecasts are also crucial to business

operations of retailers, power marketers and trading

firms.

VSTLF is often viewed as a sub-problem of short-term

load forecasting (STLF), largely because both can take

weather forecasts as the inputs for the forecasting period.

STLF has been extensively studied over the past several

decades, as summarized by several review articles [1–4]. A

recent development on STLF was through the Global

Energy Forecasting Competition 2012 (GEFCom2012)

[5].

Many STLF models, such as regression models [2, 6]

and artificial neural networks (ANN) [3], can be used for

VSTLF. Nevertheless, to achieve high accuracy in the very

short horizon, it should be recognized that the difference

between VSTLF and STLF in practice is two-fold. From

the modeling perspective, VSTLF models can rely on

lagged load as an independent variable in addition to others

such as weather and calendar variables that are commonly

used in STLF. From the implementation perspective,

VSTLF requires the model to be estimated rather quickly to

produce the forecast in time. The short lead time also

challenges the data collection process. Although the smart

grid technologies today have made it possible to push
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recent load information to the operation room, many power

companies still do not have access to high-quality load data

of the most recent hour(s) when forecasting the load of the

next hour.

The literature of VSTLF has been primarily devoted to

the modeling aspect. Researchers have tried various tech-

niques to forecast the load of the next few minutes to hours.

Liu et al. compared five techniques for VSTLF in [7].

Although the paper has been frequently cited, its autore-

gressive models were incorrectly applied to the load series.

Charytoniuk and Chen proposed another approach using a

set of ANNs to model the load dynamics instead of the

actual loads [8]. For VSTLF, Taylor used the observations

of minute-by-minute British electricity demand to evaluate

various methods including autoregressive integrated mov-

ing average (ARIMA) models and two exponential

smoothing methods [9]. Alamaniotis et al. proposed an

ensemble of kernel-based Gaussian processes [10]. Guan

et al. pre-filtered the spikes in load series and decomposed

the load series using wavelet prior to feeding it into a

neural network [11].

Although the lagged load has often been used in the

VSTLF literature, researchers typically assume that the

observations of recent load are available with high quality

whenever needed. In other words, there are few studies

about the data quality issues of the lagged load variables. In

reality, the information and communication technologies

utilized by many power corporations cannot guarantee the

real-time accurate demand load data. The most recent load

data may arrive one or several hours or even several days

later. Considering the meter malfunction, communication

failures and equipment outages, the raw load data may be

further cleansed through the load settlement process sev-

eral weeks later. Hence it is very likely that the load value

in the most recent hour is inaccurate. The possible mali-

cious data attack to the data acquisition system may also

lead to bad load data with many anomalies [12]. In fact,

anomalies in the most recent load observations often cause

the performance degradation of VSLTF models.

Although some papers in the load forecasting literature

have more or less covered data quality issues, few of them

are specifically devoted to VSTLF. Among power and

energy applications, the anomaly detection emerges as an

important topic in some fields, such as electric load fore-

casting [11, 13–15], load pattern grouping [16], gas load

forecasting [17] and load data cleaning [15, 18, 19].

Among them, some have focused on the related topics of

anomaly detection for STLF. Chakhchoukh et al. proposed

a robust method for outlier and break detection for seasonal

ARIMA parameter estimation and forecasting the elec-

tricity consumption in France up to a day-ahead [15].

Several engineers from the British Columbia Transmission

Corporation proposed several novel methods to cleanse the

corrupted and missing observations in the load data

[18, 19]. In GEFCom2014, a winning team Jingrui Xie

used a procedure based on a multiple linear regression

model for outlier detection and data cleansing for STLF

[14].

The main contribution of this paper is a novel anomaly

detection method for VSTLF. We propose a model-based

anomaly detection method that consists of two compo-

nents, a dynamic regression model and an adaptive

anomaly threshold. Due to a lack of benchmarking anom-

aly detection method specifically for VSTLF, three other

methods are selected for Comparisons. Two of them are so-

called ‘‘naı̈ve methods’’ commonly used in the industry,

while the other one is the method developed and used by

Jingrui Xie in GEFCom2014 [14]. The publicly available

data from ISO New England (ISONE) is used to construct

the case study. We introduce the anomalies by deliberately

increasing the most recent load observation to different

levels.

The rest of this paper is organized as follows. Section 2

introduces the background of this study. Section 3 intro-

duces three anomaly detection methods and then proposes

a model-based anomaly detection method for VSTLF.

Section 4 reports the framework to simulate the anomalies

and presents the computational results. Section 5 proposes

a general anomaly detection framework and discusses

about some future research directions. Section 6 concludes

this paper.

2 Background

In this section, we introduce the background of this

paper including the data, models and their VSTLF per-

formance on the case study data. All numerical experi-

ments in this paper are performed using MATLAB

(R2014a) on a personal laptop equipped with Intel Core i5

2.40 GHz CPU, 4GB usable RAM and Microsoft Windows

8 Professional. The two regression models are imple-

mented using the module ‘‘robustfit’’ of MATLAB.

2.1 ISONE data

ISONE has made its load and temperature data publicly

available from its website [20]. The data has been widely

used in the load forecasting community [11, 21]. The

Global Energy Forecasting Competition 2017 also used

ISONE data in its qualifying match.

This paper takes 3 years (from 2013 to 2015) of hourly

system total load and dry bulb temperature data to con-

struct the case study. The goal is to forecast the one-hour-

ahead loads of 2015. We conduct one-hour-ahead ex-post

forecasting on a rolling basis with the model being re-
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estimated every hour using two years of data. In other

words, to forecast each hourly load in 2015, the most recent

two years of hourly load and temperature values are used as

the training data for parameter estimation.

2.2 Models for VSTLF

Regression analysis is a widely used technique for load

forecasting [2, 22–24]. In the regression analysis frame-

work, the load is usually treated as the dependent variable,

while the weather and calendar variables are treated as

independent variables. The parameters of regression mod-

els are usually estimated using the ordinary least square

method. Most of the top teams in GEFCom2012 adopted

regression models [5, 25]. The benchmark model of

GEFCom2012, a.k.a. Tao’s Vanilla benchmark, is also a

regression model:

EðLoadtÞ ¼ b0 þ b1Trendt þ b2Montht þ b3Hourt

�Weekdayt þ b4Tt � Hourt þ b5T
2
t

� Hourt þ b6T
3
t � Hourt þ b7Tt

� Hourt þ b8T
2
t �Montht þ b9T

3
t

�Montht

ð1Þ

where Trendt is an increasing natural number representing

a linear trend at time t; Hourt, Weekdayt and Montht are

class variables representing 24 hours of a day, 7 days of a

week and 12 months of a year, respectively; Tt is a quan-

titative variable representing the temperature at time t. For

the ease of presentation, we use bj to denote the coeffi-

cients. Nevertheless, it should be noted that bj for a

quantitative variable is one coefficient, while bj for a class

variable or an interaction including one or two class vari-

ables is a vector of multiple coefficients. In total, this

Vanilla model consists of 290 coefficients to be

estimated.

To enhance the accuracy in the very-short term, we

augment the Vanilla model by adding a lagged load vari-

able as the following:

EðLoadtÞ ¼ b0 þ b1Trendt þ b2Montht

þ b3Hourt �Weekdayt þ b4Tt

� Hourt þ b5T
2
t � Hourt þ b6T

3
t

� Hourt þ b7Tt �Montht þ b8T
2
t

�Montht þ b9T
3
t �Montht þ b10Loadt�1

ð2Þ

where Loadt-1 is the load in the preceding hour. Hence,

there are totally 291 coefficients to be estimated. With the

lagged dependent variable, model (2) is a dynamic

regression model, abbreviated as DRM.

2.3 Benchmarking VSTLF performance on ISONE

data

We then conduct one-hour-ahead forecasting for 2015

using the two models introduced above. Here we use the

mean absolute percentage error (MAPE) of all hourly loads

in 2015 to evaluate the performance of the models. MAPE

is specified as the following:

MAPE ¼
100%

n

X

n

t¼1

At � Ft

At

�

�

�

�

�

�

�

�

ð3Þ

where At and Ft are the actual and forecasted hourly loads

at time t, respectively. A smaller MAPE value indicates

that the corresponding model produces more accurate

forecasts.

Table 1 shows the VSTLF performance of the two

models. For each model, we conduct two experiments. One

experiment is based on the assumption that the actual load

value of the most recent hour is available and accurate, so

we use the actual value for Loadt-1. The other one does not

use the actual load value of the most recent hour either due

to its unavailability or poor quality. In order to forecast the

next hourly load, we first forecast the load of the most

recent hour. We then use the predicted load value for

Loadt-1 and actual values for the previous loads.

The following observations can be made from Table 1:

1) Using different values for Loadt-1, the MAPE results

for Vanilla model are different due to the rolling

VSTLF basis with the model being re-estimated using

two recent years of changed data.

2) Whether the actual or predicted load values are used

for the lagged loads, the DRM produces much more

accurate one-hour-ahead forecasts than the Vanilla

model. This is largely due to the inclusion of the

lagged load variable.

3) The Vanilla model is not very sensitive to the load of

the most recent hour. When using the predicted load

value for Loadt-1, the MAPE value only increases by

0.01%. The reason is that the most recent observation

is only one of the 17520 hourly observations within

two years that are equally weighted in the least square

estimation.

The DRM is quite sensitive to the most recent hourly

load. When the predicted load value is used for Loadt-1,

Table 1 MAPE of hourly load forecast in 2015

Experiment condition Vanilla DRM

Using actual values for Loadt-1 (%) 3.30 0.84

Using predicted values for Loadt-1 (%) 3.31 1.46
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the MAPE value increases from 0.84% to 1.46%. The

reason is that Loadt-1 is treated as an independent variable

in the DRM.

3 Anomaly detection methods

In this section, we first introduce three anomaly detec-

tion methods, and then propose a DRM based detection

method with an adaptive threshold.

3.1 A naı̈ve method

In the power industry, a naı̈ve anomaly detection

method is often used for load forecasting. The mean and

standard deviation of the hourly load values of all obser-

vations in one preceding year are first calculated and

denoted as lL and rL, respectively. Then the hourly

observations with load values outside the interval [lL -

hrL, lL ? hrL] are treated as anomalies, where the

threshold h is given beforehand. This naı̈ve method is

denoted as ‘‘Method I’’ in this paper.

3.2 A seasonal naı̈ve method

The seasonal naı̈ve method is widely used for anomaly

detection in the load data. Denoted as ‘‘Method II’’ in this

paper, this method is based on the corresponding hourly

loads for the load in each hour of a day. For the ith hour of

the day, i=1, 2, …, 24, the mean and standard deviation of

the hourly load values of all observations at hour i are first

calculated and denoted as lL(i) and rL(i), respectively.

Then the observations at hour i with load values outside the

interval [lL(i) - hrL(i), lL(i) ? hrL(i)] are treated as

anomalies, where the threshold h is again given

beforehand.

3.3 A Vanilla model based method with fixed

threshold

In GEFCom2014, a winning team JIngrui Xie developed

an anomaly detection method based on the Vanilla model

with a fixed threshold [14]. The parameters of the Vanilla

benchmark model are first estimated by using the training

data. Then the absolute percentage error (APE) for each

hourly load observation in the historical data is calculated.

The observations in the unknown data with APE values

greater than the fixed threshold h are treated as anomalies.

h was set to be 0.5 in [14]. This method is denoted as

‘‘Xie’s method’’ in this paper.

3.4 A DRM-based method with an adaptive

threshold

Due to the outstanding performance of the DRM as

shown in Table 1, we propose a real-time anomaly detec-

tion method with an adaptive threshold for VSTLF based

on the DRM. First, the parameters of the DRM are esti-

mated using the training dataset (i.e., part of historical

data). Then the percentage error (PE) for each hourly load

in the training dataset is calculated. Finally, the newly-

collected hourly observation will be treated as an anomaly,

if the corresponding PE value is outside the interval [lp -

hrp, lp ? hrp], where the lp and rp values are the mean

and standard deviation of the PE values of all observations

in the two recent years of the rolling period. Hence these

thresholds are updated on a rolling basis as the VSTLF

progresses. The flow chart of this proposed anomaly

detection method for one instance is depicted in Fig. 1. As

the forecasting origin being advanced during the sliding

simulation, the work flow is repeated on a rolling basis as

well. This proposed anomaly detection method can be

effective for both missing data and corrupted data. In this

paper, we test this proposed method on ISONE data with

simulated anomalies.

Estimate the parameters of DRM. 

Then calculate µp and σp

Is PE of collected point 

in [µp p, µp h p]?

Collected point is an anomaly, replace it with 

forecasted load from last simulation

N

Update the most recent point with obtained point 

Y

Start

End

Input h and the training dataset from the historical data

σhσ

Fig. 1 Flow chart of proposed anomaly detection method
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4 Case study

In this section, we present the case study including the

anomaly simulation method, a comparative analysis of the

four anomaly detection methods on the ISONE data with

simulated anomalies.

The simulated anomalies are injected to the year of 2015

one at a time. In total, p% of the loads is randomly selected

with their loads altered by multiplying with 1 ? k% to

make these selected data points anomalies. Figure 2 depicts

the hourly load profiles of the corrupted data for one week

(from 13 July 2015 to 19 July 2015) in the summer of 2015,

where k = 20, p = 50. The effects of anomalies in the load

data with k C 0 will be tested in this section since similar

observations can be obtained for k\ 0.

Before forecasting an hourly load of the next hour using

DRM, each anomaly detection method is tried individually

to determine whether the newly-acquired hourly load data

of the current hour should be used or replaced with the

predicted hourly load. To measure the performance of the

four anomaly detection methods, we used two measures

introduced in [26]. One is false negative rate (FNR), which

indicates the ratio of the number of undetected anomalies

to the number of all anomalies. The other is false positive

rate (FNR), which indicates the ratio of the number of

normal points being detected as anomalies to the number of

normal points. A smaller FNR or FPR value indicates that

the corresponding method is more effective for anomaly

detection. Since the ultimate goal of anomaly detection is

to enhance the VSTLF accuracy, we also use the MAPE

value to evaluate the one-hour-ahead forecasting accuracy

after each anomaly detection method is applied.

4.1 Varying magnitude of anomalies

To investigate how the magnitudes of anomalies affect

the performance of the anomaly detection methods, we first

fix the percentage of anomalies in the testing dataset (i.e.,

data in the full year 2015) as 50% (i.e., p = 50) and then

vary the magnitude k of anomaly load from 1.25 to 40 by

doubling the k value each step. For each k and each

anomaly detection method, we repeat the tests 5 times.

Note that increasing the amount of repetitions does not

alter the findings and conclusions from this paper. The

averages of FNR, FPR and MAPE values of the 5 tests are

recorded in Table 2 for all four methods. The thresholds

h of Method I, Method II, Xie’s method [14] and the

proposed method are set to be 2, 2, 0.2 and 2, respectively.

The following observations can be made from Table 2.

(1) For each method, as k increases, FPR remains the same

and FNR decreases. The reason is that FPR is

determined by h, and h stays the same for all possible k.

(2) For k = 1.25, a lower FNR does not necessarily result in

a lower MAPE. The reason is that there is an increasing

trend of electric loads from year 2013 to year 2015. The

higher FNR indicates more undetected anomalies of k%

increased loads in the training dataset, which help offset

the bias in the load forecast for year 2015.

(3) For Method I or II, MAPE increases as k increases. The

main reason is that the two methods cannot detect and

correct enough anomalies (i.e., FNR is not low enough)

to maintain the strong forecasting performance.

(4) For Xie’s method and the proposed method, MAPE first

increases and then decreases with respect to the increase

of k. The initial increase of MAPE is mainly due to the

increase of k. The latter decrease of MAPE is mainly

due to the significant decrease of FNR value.

Figure 3 shows the forecasted hourly load profile for the

same week in the summer of year 2015, with the anomalies

generated from the setting k = 20 and p = 50. We can

observe that all four methods are more or less over-pre-

dicting the actual load, due to the anomalies of increased

loads. Nevertheless, the forecast provided by the proposed

0 24 48 72 96 120 144 168
1

1.4

1.8

2.2

2.6
x 10

4

Time(hour)

L
o
a
d
(M

W
)

Actual data

Corrupted data

Fig. 2 Load profile of corrupted data

Real-time anomaly detection for very short-term load forecasting 239

123



method is overall much closer to the actual load and much

less affected by the anomalies than the forecasts provided

by the other three methods.

4.2 Varying the amount of anomalies and threshold

in the proposed method

We first fix the magnitude of anomaly load at 110%, i.e.,

k = 10. We then set the percentage of anomalies in 2015 as

25%, 50% and 75%, respectively. The threshold h in the

proposed anomaly detection method is varied from 1 to 8

with the increment of 1. For each (h, p) pair, we repeat the

tests 5 times. Figure 4 shows the averages of FNR and FPR

values of the 5 tests for different h values and p = 50.

Figure 5 shows the averages of MAPE values of the 5 tests

for different h and p values.

The followings can be observed from Figs. 4 and 5:

(1) As h increases, FNR increases and FPR decreases.

(2) For any given h,MAPE increases as the percentage of

anomalies increases.

Table 2 FNR, FPR, MAPE under various magnitude of anomaly load

k Method I Method II Xie’s method Proposed method

FNR

(%)

FPR

(%)

MAPE

(%)

FNR

(%)

FPR

(%)

MAPE

(%)

FNR

(%)

FPR

(%)

MAPE

(%)

FNR

(%)

FPR

(%)

MAPE

(%)

1.25 96.20 3.36 1.11 78.24 22.07 1.16 99.93 0.11 1.10 88.22 5.82 1.30

2.5 95.71 3.36 1.60 78.09 22.07 1.55 99.80 0.11 1.62 40.68 5.82 1.50

5 94.67 3.36 2.66 77.37 22.07 2.41 99.53 0.11 2.73 2.25 5.82 1.25

10 91.30 3.36 4.71 74.42 22.07 4.09 97.20 0.11 4.95 0.12 5.82 1.23

20 80.88 3.36 8.03 65.37 22.07 6.74 48.06 0.11 5.23 0 5.82 1.23

40 52.22 3.36 10.44 38.57 22.07 8.21 0.57 0.11 1.25 0 5.82 1.23

Fig. 3 Forecasted loads for corrupted data using four method
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(3) For any given p, as h increases from 1 to 4, MAPE

decreases, which is primarily due to the significant

decrease of FPR. As h increases from 5 to 8, MAPE

increases, which is primarily due to the increase of

FNR.

For any given p, MAPE reaches the minimum value

when h is 4 or 5. Taking p = 50 for example, if h = 4 or 5,

both FNR and FPR are below 0.8%. Meanwhile, MAPE=

1.17%, lying in the middle of the interval [0.84, 1.46] from

Table 1. This is close to the lowest possible MAPE we can

get, because most anomalies are replaced with the fore-

casted loads with few normal observations being recog-

nized as anomalies. Without loss of generality, for other

k values or the coming anomaly either increasing or

decreasing the recent load, different optimal h values can

be obtained for lowest MAPE similarly.

4.3 Comparisons

Based on the computational results in Table II, the order

of anomaly detection methods from more effective to less

is the proposed method, Xie’s method, Method II and

Method I, respectively. In principle, Xie’s method and

proposed method are the two better ones since they are

based on more comprehensive models than the naı̈ve and

seasonal naı̈ve models. Method II outperforms Method I

due to the inherent seasonality of the load series. The

reason that the proposed method outperforms Xie’s method

is two-fold. Firstly, as shown in Table 1, the underlying

model of proposed method (a.k.a., DRM) produces much

more accurate forecasts than the underlying model of Xie’s

method (a.k.a., Vanilla model) for VSTLF. Secondly, the

threshold determined by mean and standard deviation of

PE values is more adaptive to the data than a fixed APE

value in Xie’s method.

5 Discussion

In this section, we discuss the general anomaly detection

framework and some future research directions.

5.1 A general anomaly detection framework

As shown in Table 3, the four anomaly detection

methods can be categorized using a general anomaly

detection framework, consisting of two components: an

underlying model and a threshold. Evidence from earlier

observations suggests that the accuracy of the underlying

model directly influences the effectiveness of the anomaly

detection method. Moreover, an adaptive threshold is

superior to a fixed threshold. Future research can be carried

out following this analytical framework by testing addi-

tional underlying models and other means to define the

threshold. Similar anomaly detection methods can be tested

for STLF applications as well.

5.2 Underlying models in proposed framework

In this paper, the DRM model is proposed by adding a

lagged load variable to the Vanilla model. If we have added

two or more lagged load variables to the Vanilla model and

then used this new model as the underlying model in the

proposed anomaly detection framework, we may obtain

more accurate VSTLF forecasts and then more accurate

real-time anomaly detection. Other alternatives such as the

artificial neural network, support vector regression, fuzzy

regression and robust regression models are also good

candidates of underlying models. Hence, one important

future direction is to seek the best underlying model for

fine tuning of the proposed anomaly detection framework.

Fig. 4 FNR and FNR of proposed method for p% = 50%

Fig. 5 Forecast error in MAPE of DRM for VSTLF

Table 3 Details of four methods under proposed framework

Method Underlying model Threshold

Method I Naive Adaptive

Method II Seasonal naive Adaptive

Xie’s method Vanilla Fixed

Proposed method Dynamic regression Adaptive
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6 Conclusion

The anomaly detection and cleansing in the load data

is an essential task in the smart grid era. High-quality

real-time load data helps achieve accurate very short-term

forecasts, which can further help with the operational

excellence. In this paper, extended from the Vanilla

benchmark model in GEFCom2012, a DRM is proposed

for VSTLF. We then propose a real-time anomaly

detection method based on the DRM for the corrupted

load data, which can be further cleansed by replacing the

detected anomalies with the forecasted hourly load from

last sliding simulation. According to extensive tests on the

ISONE data with simulated anomalies, the proposed

anomaly detection method is shown to outperform two

commonly-used naı̈ve methods and one state-of-the-art

method. Finally, a general framework is proposed to lay

the ground for the future research on anomaly detection

for load forecasting.

Although designed for hourly load data, the proposed

anomaly detection method may be equally applicable to

other scenarios of anomalies in time series data, such as

the weather data and renewable generation data. Further

investigations on the design of more effective model-

based real-time anomaly detection methods or robust

VSTLF techniques are also of particular importance to the

field.
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