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ABSTRACT

We present a flexible, real-time-coupled transcrip-

tion–translation assay that involves the continuous

monitoring of fluorescent Emerald GFP formation.

Along with numerical simulation of a reaction

kinetics model, the assay permits quantitative esti-

mation of the effects on full-length protein synthesis

of various additions, subtractions or substitutions to

the protein synthesis machinery. Since the assay

uses continuous fluorescence monitoring, it is

much simpler and more rapid than other assays of

protein synthesis and is compatible with high-

throughput formats. Straightforward alterations of

the assay permit determination of (i) the fraction of

ribosomes in a cell-free protein synthesis kit that is

active in full-length protein synthesis and (ii) the

relative activities in supporting protein synthesis of

modified (e.g. mutated, fluorescent-labeled) exogen-

ous components (ribosomes, amino acid-specific

tRNAs) that replace the corresponding endogenous

components. Ribosomes containing fluorescent-

labeled L11 and tRNAs labeled with fluorophores in

the D-loop retain substantial activity. In the latter

case, the extent of activity loss correlates with a

combination of steric bulk and hydrophobicity of

the fluorophore.

INTRODUCTION

Protein synthesis is being studied intensively with a variety
of motivations, ranging from practical needs for the de-
velopment of efficient methods of cell-free protein synthe-
sis (CFPS) for production of proteins that are difficult to
express in cells (1–3), for the identification of new antibi-
otics (4,5), and toward achieving understanding of basic

mechanisms of individual steps of the translation cycle
and of overall protein synthesis (6,7). Many mechanistic
studies employ fluorescent-labeled constituents of the
protein synthesis machinery. Fluorescent probes permit
real-time monitoring of specific reaction steps (8–15),
but raise the question of whether introduction of exogen-
ous labels unduly affects the processes under study. Assays
of protein synthesis in current use are often cumbersome,
involving aliquot removal and subsequent point-by-point
determinations of bioluminescence (3), fluorescence
(16,17), gel densitometry (16), enzymatic activity assay
(18,19) or incorporation of radioactive amino acids
(20–22).
Here we present a flexible, real-time coupled transcrip-

tion–translation assay that, along with numerical simula-
tion of a reaction kinetics model, permits quantitative
estimation of the effects on full-length protein synthesis
of introducing fluorescent probes, or other modifications,
into components of the translational machinery. The assay
involves the continuous monitoring of the formation of
Emerald GFP (EmGFP), a rapidly maturing variant of
green fluorescent protein (23), using a suitable plasmid
and a commercially available CFPS kit derived from
Escherichia coli (24). Straightforward alterations of the
assay permit determination of (i) the fraction of ribosomes
in a cell-free protein synthesis kit that is active in
full-length protein synthesis and (ii) the relative activities
in supporting protein synthesis of modified (e.g. mutated,
fluorescent-labeled) exogenous components (ribosomes,
amino acid-specific tRNAs) that replace the correspond-
ing endogenous components.
Since the assay uses continuous fluorescence monitor-

ing, it is much simpler and more rapid to use than other
assays of protein synthesis and is compatible with
high-throughput formats. It should thus find widespread
application in many studies measuring protein synthesis
in vitro. However, the assay does have the significant limi-
tation that it is extremely stringent, since it treats as fully
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inactive those ribosomes that produce only partial or
otherwise non-fluorescent EmGFP polypeptides.

MATERIALS AND METHODS

All solutions contained water of high purity generated by
MilliQ deionizer equipped with pyrogen free filter (Biopak,
Millipore) to ensure the absence of contaminating RNAses,
DNAses and proteases. All ultracentrifugations at
110 000 r.p.m. were carried out in a S120AT2 rotor in a
Sorvall M120SE ultracentrifuge. Ribosome concentrations
were calculated assuming 26 pmol/A260 (25).

Exogenous component preparation

Plasmid
The pREST-EmGFP plasmid (Invitrogen, Inc.) contains a
reading frame that includes a 40-residue N-terminal
His-tag sequence followed by the 239-residue EmGFP
sequence. We used standard mutagenesis techniques to
introduce two modifications. The first, following reference
(26), was to add a 31-residue C-terminal segment ending
with the HindIII restriction site that, following plasmid
linearization with HindIII, resulted in a reading frame
devoid of a stop codon. This allowed tethering of
mature, nascent EmGFPs to the ribosomes. The second
change was a point mutation (S4F) near the beginning of
the N-terminal His-tag sequence that was introduced for
use in other studies. Mutagenesis was performed using a
QuikChange Lightning site-directed mutagenesis kit
(Stratagene, Inc.) with primers set according to the manu-
facturer’s instructions.

Ribosomes
All preparative steps were carried out on ice or at 4�C. S30
fractions of E. coli strains MRE600 (wild type) and AM77
(�L11) were prepared as previously described (27) using a
French Press at 5000 psi. Crude ribosome pellets were
prepared by centrifuging S30 fractions at 110 000 rpm
for 12min at 4�C either directly (S100P), or by layering
the S30 lysate on a sucrose cushion (S100sucP, using 1.1M
sucrose in TAM15 buffer) followed by resuspending the
resulting pellet in TAM15 buffer. Small scale ribosome
purification (70S-ss) was achieved by layering S100sucP
ribosomes on a linear 15–30% sucrose gradient and col-
lecting the 70S peak as described, using a VTi50 rotor (28).
Large-scale ribosome purification (70S-ls) was achieved by
sucrose gradient centrifugation using a zonal rotor as
described (9). S100P preparations of AM77L11or
AM77L11Cy3 ribosomes were prepared by incubating
AM77 S30 fractions with a 2-fold excess of either un-
labeled C38S/S87C-L11 (L11) or Cy3-labeled C38S/
S87C-L11 (L11Cy3) at 37�C for 15min prior to high-speed
pelleting. The preparation of the L11 variant and its
labeling by Cy3 is described in (11). FPLC-purified
L11Cy3 contained 1.0 Cy3/protein.

tRNA
The charging and fluorescent labeling of yeast and E. coli
tRNAPhes (Chemical Block, Moscow) were performed as
previously described (10,11). tRNA concentrations were

calculated on the basis of the amount of charged
material, as determined by 14C-Phe radioactivity.

In vitro protein synthesis of EmGFP

Using the cell-free protein synthesis kit
The CFPS kit (RTS 100 E. coli HY kit – previously sold
by Roche Applied Science, currently sold by 5prime) was
utilized to synthesize EmGFP according to the manufac-
turer’s manual, with some modifications. The CFPS kit is
made up of five vials, containing cell lysate (V1), reaction
mixture (V2), 19 amino acids (V3), methionine (V4),
reconstitution buffer (V5) and a control GFP vector that
was substituted throughout these experiments with the
modified pREST-EmGFP plasmid described above. In
the standard reaction, the following components are
pre-mixed on ice: 2.4 ml V1, 2 ml V2, 2.4 ml V3, 0.2 ml V4,
1 ml V5 and 2 ml (130 ng) plasmid in water. The total
reaction volume was �10 ml. Fluorescence is recorded
continuously at 30�C. The V3 solution was sometimes
substituted by a home-made solution that contained ap-
proximately twice the original amino acid concentrations
(denoted V3a). V3a, made up in V5, contained 8.33mM
tyrosine, 16.66mM of each of the 18 other amino acids
and no methionine. Final amino acid concentrations in the
CFPS mixture were: 10mM Met, 1mM Tyr and 2mM of
the other amino acids. All other lyophilized CFPS
components, were dissolved in V5 according to the manu-
facturer’s manual, flash-frozen and stored at �80�C in
single-use aliquots.

To test the activity of various buffers (Figure 1A) the
following components were mixed: 2.4ml V1, 2ml V2,
1.2ml V3a, 0.2ml V4, 9.2ml of the indicated buffer and
0.45ml plasmid (stock solution 430ng/ml in water). V3a
was made up in the indicated buffer rather than in V5. The
total volume of the reaction was �15ml. This combination
yielded a reactionmixture that contained at least 70%of the
indicated test buffer by volume and 30% of V5 used to
reconstitute the lyophilized V1, V2 and V4. The buffers
tested, included: TAM15: 50mM Tris–HCl pH 7.5, 30mM
NH4Cl, 70mMKCl, 15mMMg(Ac)2, 1mMDTT; TAM7:
50mMTris–HClpH7.5, 70mMNH4Cl, 30mMKCl, 7mM
MgCl2, 1mMDTT (29); Polymix Buffer: 50mMTris–HAc
pH 7.5, 5mM NH4Ac,100mM KCl, 15mM Mg(Ac)2,
0.5mM Ca(Ac)2, 6mM 2-mercaptoethanol, 5mM
putrescine and 1mM spermidine (30); Polyamine Buffer:
20mM HEPES–KOH pH 7.5, 150mM NH4Ac, 4.5mM
MgAc2, 4mM 2-mercaptoethanol, 0.05mM spermine and
2mM spermidine (31).

Using the CFPS-ribosome kit
Ribosomes were removed from a mixture containing 2.4 ml
V1, 2 ml V2, 1.2ml V3 and 0.2 ml V4 as the pellet formed by
ultracentrifugation at 110,000 rpm for 12min at 4�C to
yield the CFPS-ribosome kit. EmGFP synthesis was accom-
plished by adding 2.2ml of 6.8mM stock solution of
home-made ribosomes (see above) in TAM15 buffer to
the kit and initiating reaction with 130 ng of plasmid in
2 ml water. The final ribosome concentration of 1.5mM
equals the concentration found in the CFPS kit.
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Using the CFPS-Phe kit
Construction of the CFPS-Phe kit required treatment of
various solutions with an inhibition cocktail [100 ml of a
commercial mixture of protease inhibitors (Halt, Pierce)
and 0.5 ml of 4.7M N-benzyl-2-phenylethylamine (Acros),
a Phe-RS inhibitor (32)] and preparation of a V3a solution
lacking Phe (denoted V3a-Phe). Additional details
are found in Supplementary Information 2C and
Supplementary Figure S3C. In addition, the normal
ribosome concentration was sometimes reduced by half.

V1 (24ml) was combined with 0.24ml of an inhibition
cocktail and the resulting mixture was dialyzed against
40ml of TAM15 buffer supplemented with 5% PEG-8000
(Fisher) in 3.5 kDa cutoff micro-dialysis cups (Slide-A-
Lyzer, Pierce—soaked in water for 15min prior to first
use). Following dialysis at 4�C for 30min, 0.24ml of fresh
inhibition cocktail was added and dialysis was repeated
against fresh buffer. The dialyzed V1 solution (24 ml) was
combined with 20ml V2, 12ml V3a–Phe, 2 ml V4, 0.24ml
inhibition cocktail and 0.42ml 10� of Polyamine buffer,
generating the CFPS-Phe solution. Reduction of ribosome
concentration was accomplished by combining equal
volumes of a ribosome-containing CFPS-Phe kit and a
ribosome-depleted CFPS-Phe kit, prepared via high-speed
centrifugation as described above.

EmGFP synthesis was accomplished by adding aqueous
solutions (3.8ml) of various concentrations of Phe-tRNAPhe

or Phe to the CFPS-Phe kit (6.2 ml), followed by incubating
the resulting mixture at 37�C for 5min to promote ternary
complex (EF-Tu·aa-tRNA·GTP) formation, and initiating
the reaction with 130ng plasmid in water (0.3ml). Addition
of EF-Tu in amounts equimolar with added Phe-tRNAPhe

results in a loss of EmGFP production (Supplementary
Information 2F and Supplementary Figure S3F).

Other methods

Real-time fluorescence detection
Assays were performed at 30�C. Most assays were carried
out in triplicates on a reaction volume of 10ml dispensed in
384 well-plates (Greiner Bio-One 784076). Readings were
taken every 20–45 s for 30–70min in a plate reader

(Envision 2103, Perkin-Elmer). The exposure time for indi-
vidual fluorescence determinations was �30ms using 10
flashes/measurement. In the absence of dye-labeled exogen-
ous components, filters/bandpass settings of lex=486/
10nm, lem=535/25nm were employed. To overcome
spectral overlap of EmGFP emission with Cy3 and/or
Cy5, the optimal settings were found to be lex=450/8 nm,
lem=510/10nm (see Supplementary Information 3 and
Supplementary Figure S5). Some assays were also carried
out using a reaction volume of 15ml placed in a sub-micro
fluorometer cell (Starna Cells, Inc) placed within a
spectrofluorometer (Hobira Jobin Yvon) (lex=468nm,
lem=510nm). Kinetic traces were recorded over 30min at
10 s intervals, using a 1 s integration time.
EmGFP displays a fast component of photobleaching

(33). To minimize photobleaching, sample irradiation was
avoided except during recording, both in the fluorometer
and in the plate reader. In a control experiment, no ap-
preciable loss in EmGFP fluorescence could be detected
over 70min for purified EmGFP added to a CFPS-Phe kit
using the employed plate reader configuration, although
photobleaching was evident for EmGFP that was
dissolved in TAM15 buffer.

Determination of the fraction of active ribosomes
Cell-free protein expression was performed for 1 h at 30�C
with 130 ng circular or linearized plasmid DNA per 10 ml
reaction volume. Anti-tmRNA [SsrA (34)] at a final con-
centration of 5 mM (6) was premixed with the reaction
mixture, and reaction was initiated with linearized
plasmid. The reaction mixtures were incubated either in
the plate reader while following fluorescence in real time,
or in a temperature controlled bath for one hour and sub-
sequently pulled-down through a sucrose cushion. In
pull-down assays, reaction volumes of 30 ml were layered
onto ice-cold 1.1M sucrose in TAM15 buffer (100ml) and
centrifuged at 110 000 rpm for 40min at 4�C. The super-
natant was collected and the pellet was suspended in 30 ml
TAM15 buffer. EmGFP in the supernatant and in the
pellet were quantified in the plate reader using a fluores-
cence calibration curve (Supplementary Information 1 and
Supplementary Figure S1). The calculated ratio of

Figure 1. Cell-free expression of EmGFP using the CFPS kit. (A) Buffer dependence. Activity was determined using the indicated buffers. The
reaction volumes were diluted (dilution factor of 1.5) to 15 ml and measured in the fluorometer every 20 s. (B) Plasmid dependence. Activity was
determined, using the buffer provided with the kit for the indicated plasmids. Anti-tmRNA oligo DNA at a concentration of 5 mM was added in
addition to the linearized plasmid to prevent dissociation of the ribosome-EmGFP complex. All experiments were preformed in triplicate. Signal was
acquired every 45 s, avoiding sample irradiation between consecutive measurements in order to minimize photobleaching.
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EmGFP per ribosome in the pellet represented the
fraction of active ribosomes.

[14C]-Phe incorporation into EmGFP
Samples were prepared with CFPS-Phe as described above,
except the final sample volume was 15 ml. The [14C]-
Phe-tRNAPhe variants were used at final concentrations
of 10 mM. The reaction was initiated by plasmid addition
and incubated at 30�C for 30min. The reaction was
quenched by the addition of 0.3ml 5% TCA (ice-cold),
heated to 95�C for 15min, cooled on ice, filtered
through a nitrocellulose filter, and washed five times
with 1ml of 5% ice-cold TCA. The filter was then
dissolved in 1ml ethyl acetate. Precipitated radioactivity,
accurate to ±8%, was determined above a background
equal to the radioactivity obtained with a sample that did
not contain the EmGFP plasmid.

Fluorescence trace analysis
Four parameters were evaluated from the fluorescence
traces that contained various Phe-tRNAPhes, using
Origin software (OriginLab Corporation). Estimates of
lag time, tL, maximum synthesis rate, S1 and final
protein synthesis rate, S2, were obtained from the time
of the maximal value of the second derivative, the
maximal value of the first derivative, and a linear fit of
the last eleven time points, respectively. Amplitude of the
rapid synthesis period, A1, was determined by the inter-
cept of two linear regression lines, the first centered at the
point of maximal slope and the second fitted as described
for S2. Before taking derivatives, the traces were smoothed
using a 5-point adjacent average. All linear fits were per-
formed using 11 time points. All values were normalized
to the data obtained for 2 mM E. coli Phe-tRNAPhe.

Numerical simulations
A model of the kinetics of EmGFP fluorescence accumula-
tion in the CFPS experiment was written in MATLAB
version 7.5.0 (R2007b). Details of the algorithm are
described in Supplementary Information. The MATLAB
code is supplied as Supplementary File S2. A compiled exe-
cutable file may also be obtained upon request to one of the
corresponding authors.

RESULTS

Preliminary characterization of the cell-free coupled
transcription/translation reaction

We employed a construct containing the 239-residue
EmGFP sequence in between a 40-residue N-terminal
His-tag extension and a 31-residue C-terminal extension.
The latter sequence permitted the native EmGFP polypep-
tide to leave the ribosomal exit tunnel, allowing folding
and maturation of EmGFP while the peptide is still
attached to the ribosome. Translation of EmGFP
followed by fluorophore maturation results in an accumu-
lation of fluorescence intensity, providing a readily detect-
able signal that, after an initial lag phase, increases
continuously in real time, reaching a near plateau after
60–90min (Figure 1). Four different buffers were

examined, with the amounts of fluorescent EmGFP for-
mation falling in the order Polyamine (31) > TAM15 (11)
> Polymix (30) � TAM7 (29) (Figure 1A), with the
Polyamine buffer showing similar activity to the buffer
provided with the kit (unknown composition).
Accordingly, only the Polyamine buffer [having a compos-
ition similar to that used previously to support transcrip-
tional activity (35)] or the TAM15 buffer was used in
subsequent translational activity assays. We also tested
whether pre-transcribed mRNA would program ribo-
somes to produce EmGFP in the CFPS kit. Translation
rates and amounts were comparable to the coupled
transcription-translation beginning from the DNA
plasmid (data not shown).

We next determined the fraction of active ribosomes
present in a CFPS kit, as measured by the amount of
ribosome-associated nascent EmGFP complex formed,
adapting a known procedure (26). In this approach the
EmGFP plasmid is linearized to remove the stop codon,
preventing re-initiation on a new mRNA, and anti-
tmRNA oligonucleotide complementary to the tmRNA
sequence is added to suppress the release of EmGFP
from the stalled ribosome after translation of the last
codon (6,36). The results (Table 1, Figure 1B) show
higher total fluorescent EmGFP production for circular
plasmid than for linearized plasmid, in accord with an
earlier report (22). Addition of anti-tmRNA to the
linearized plasmid further reduces EmGFP production.
Here the slightly higher value of total mature EmGFP
synthesized (0.36/ribosome) vs. mature EmGFP
cosedimenting with ribosomes (0.29/ribosome) arises
from some combination of incomplete suppression of
EmGFP release (i.e. a small number of ribosomes express-
ing multiple EmGFPs) and/or dissociation of some
ribosome-bound EmGFP during either the reaction or
ultracentrifugation. The fraction of active ribosomes
(0.29), as measured by co-sedimenting fluorescent
EmGFP, provides an important benchmark for evaluating
the quality of different preparations and/or batches of
CFPS kits, and of exogenous ribosomes that are
substituted for endogenous ribosomes (see below). For
other batches of the CFPS kit this fraction varied from
0.18 to 0.33, which is in reasonable agreement with previ-
ously reported results for SecM-stalled ribosomes with a
protein of similar length (6) and somewhat higher than
found in a previous single molecule experiment using
similar methods (26).

Table 1. Determination of fraction of active ribosome

Plasmid Circular Linear Linear

Anti tmRNA � � +
Total EmGFP/ribosome 1.62±0.10 0.76±0.05 0.36±0.01
Co-sedimenting

EmGFP/ ribosome
0.10±0.01 0.05±0.01 0.29±0.01

Co-sedimenting
EmGFP/total EmGFP

0.06±0.01 0.06±0.01 0.79±0.02

All measurements were performed in triplicate and reported as
means±SD. EmGFP stoichiometry is estimated by fluorescence inten-
sity, using the calibration curve shown in Supplementary Figure S1.
Ribosome stoichiometry is estimated by 26 pmol/A260.
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Substitution of exogenous ribosomes for endogenous
ribosomes

High speed centrifugation can be used to remove
endogenous ribosomes from the CFPS kit, resulting in a
preparation, denoted the CFPS-ribosome kit, that is inactive
in the EmGFP expression assay, with activity restored by
addition of exogenous ribosomes. We examined the res-
toration of activity as a function of the extent of ribosome
purification (Figure 2A and ‘Materials and Methods’
section), using the circular EmGFP plasmid, and
determined that minimal purification, consisting of
ribosome pelleting by high-speed centrifugation of crude
S30 lysate, gave the highest restored activity. Accordingly
this preparation, denoted S100P ribosomes, was used in
assays comparing the activities of several exogenously
added ribosomes, including wild-type MRE600
ribosomes, AM77 ribosomes lacking protein L11 (37)
and AM77 ribosomes reconstituted with either wild-type
L11 (AM77L11) or with an L11 variant labeled stoichio-
metrically at position 87 with Cy3 (AM77Cy3L11) (11)
(Figure 2B). These results, showing that the lower
activity of the AM77 ribosomes is partially restored by
reconstitution with either wild-type or Cy3-labeled L11,
indicate that derivatization of L11 with Cy3 does not
interfere with translational activity, in accord with
earlier results measuring other ribosomal activities
(9,38,39). Addition of initiation factors improves the
activity of these exogenously added ribosome preparations
(Supplementary information 2B and Supplementary
Figure S3A and B).

For the CFPS kit used for the experiments shown in
Figure 2B, 0.18±0.02 of the endogenous ribosomes
were active (determined as described above using the
linearized EmGFP plasmid in the presence of anti-
tmRNA), compared with 0.32±0.05 of the exogenously
added MRE600 ribosomes and 0.09±0.01 and
0.10±0.04, respectively, for exogenously added AM77
and AM77L11 ribosomes. The lower fractions of active
AM77-derived ribosomes account for the lower levels of

EmGFP synthesis observed with these ribosomes
(Figure 2B), although the intrinsic translation rate of
active AM77-derived ribosomes is similar to that of
wild-type ribosomes (see Supplementary Information
2A, and Supplementary Figure S2).

Substitution of exogenous for endogenous charged tRNAs

We next modified the EmGFP assay to permit comparison
of the activities of added exogenous charged tRNA in
supporting EmGFP expression. Below we detail our
results with Phe-tRNAPhe, although the approach is
general and has also been applied successfully to Val-
tRNAVal and Lys-tRNALys. These experiments were
performed using the circular EmGFP plasmid.
The principal challenge in the development of this

modified assay was to prepare a CFPS-Phe kit (i.e. a kit
depleted of all forms of Phe) such that synthesis of mature
EmGFP was completely dependent on added exogenous
Phe-tRNAPhe or Phe. This was accomplished by: (i)
dialysis of the commercial CFPS lysate to remove all
small molecules, including the amino acids; (ii) specific
inhibition of Phe-amino-acyl tRNA synthetase (Phe-RS)
with an active-site directed inhibitor; (iii) addition of a
general protease inhibitor to prevent generation of Phe
from protein breakdown; and (iv) adding back all of the
small molecules required for protein synthesis with the ex-
ception of Phe (Supplementary Figure S3C). The ability of
the resulting CFPS-Phe kit to produce detectable amounts
of EmGFP was totally dependent on adding either ex-
ogenous yeast Phe-tRNAPhe (Figure 3A, Supplementary
Figure S4A—similar results were obtained for E. coli
Phe-tRNAPhe; Supplementary Figure S4B) or Phe
(Figure 3B) with maximal EmGFP expression requiring
higher concentrations of Phe (80 mM) than of
Phe-tRNAPhe (8–10mM) (Figure 3C and D).
The curves of EmGFP fluorescence in Figure 3A and B

can be characterized by four parameters, a lag phase
corresponding to all dark events preceding EmGFP mat-
uration (tL), a region of high slope reflecting the maximum

Figure 2. Cell-free expression of EmGFP on addition of exogenous ribosomes (1.5 mM) to the CFPS-ribosome kit. Experiments were performed with
ribosome preparations dissolved in TAM15 buffer mixed with CFPS reconstituted with the vendor-provided buffer, using the plate reader. (A) As a
function of MRE600 ribosome purification: centrifugation of crude S30 lysate directly (S100P); through a sucrose cushion (S100sucP); small-scale
(70S-ss) and large-scale (70S-ls) 70S purification via sucrose density-gradient centrifugation. A control ribosome-depleted sample (CFPS-Rib)
contained no added ribosomes. (B) S100P preparations of MRE600 and AM77 ribosomes. All samples contained the CFPS-ribosome kit. Due to
the spectral overlap of Cy3 with EmGFP, the AM77Cy3L11 trace exhibits slightly higher background. Experiments, repeated five times using different
CFPS batches, gave reproducible results.
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rate of fluorescent EmGFP formation (phase-1-slope, S1),
the total fluorescent EmGFP synthesized in the first, rapid
phase of reaction (phase-1-amplitude, A1), and a final
region of lower slope (phase-2-slope, S2) corresponding
to a slower, second phase. Each of the latter three param-
eters shows a strong Phe-tRNAPhe or Phe concentration
dependence (Figure 3C and D, respectively). Both S1 and
A1 increase nearly monotonically before reaching
saturated values. S2 increases monotonically over the
limited range of Phe-tRNAPhe concentrations employed,
but goes through a maximum over the broader range of
Phe concentration that was explored. In contrast, tL has
only minor dependence on either Phe-tRNAPhe or Phe
concentration. The overall maximal activities of the
CFPS-Phe kit with added Phe-tRNAPhe (8-10 mM) or Phe
(80mM) were similar to one another (Supplementary
Figure S3D), but reduced as compared with the unmodi-
fied CFPS kit, showing similar tL values but 2- to 4-fold
reductions in the values of S1, S2, and A1 (Supplementary
Table S1).
The CFPS-Phe kit makes very efficient use of added

Phe-tRNAPhe. For a CFPS-Phe kit containing a total active
ribosome concentration of 0.6mM, saturation of Phase-1-
formation was reached by �8mM yeast Phe-tRNAPhe

(Figure 3C). As the encoded EmGFP has 14 Phe residues
(2 in the N-terminal linker sequence and 12 in the original
gene) the value of 8mM of added Phe-tRNAPhe found at

saturation, in addition to the residual endogenous
Phe-tRNAPhe (2mM) that we estimate to be present in the
CFPS-Phe kit (see below), is just slightly above the expected
stoichiometric requirement of 8mMPhe-tRNAPhe needed to
produce one EmGFP per active ribosome. This result indi-
cates an apparent Km for Phe-tRNAPhe incorporation at
cognate codons that is <1mM, in accord with results
derived from simpler model sytems (10,40,41). The
apparent Km for Phe, estimated from the concentration
dependence of either S1 or A1, is �10–15mM. This value,
which represents the first reported estimation of Km for an
aminoacid in aCFPS system, is considerablyhigher than the
value for Phe-RS (2mM) determined in a highly purified
system (42), perhaps reflecting competing binding to
Phe-RS in the CFPS-Phe kit by near cognate amino acids
and/or added Phe-RS inhibitor.

Numerical simulations of multi-step EmGFP synthesis

We developed a numerical simulation of a reaction
kinetics model in order to gain additional understanding
about the effects of exogenous Phe-tRNAPhe (see below)
on the formation of EmGFP fluorescence using the CFPS-
Phe kit (Figure 3A). This model includes 315 steps, which
proceed in series, and include: a transcription initiation
step, a transcription elongation step, a translation initi-
ation step, 310 translation elongation steps, utilizing 296

Figure 3. Cell-free expression of EmGFP using the CFPS-Phe kit. Experiments were performed in Polyamine buffer, using the plate reader. (A) As a
function of added [Phe-tRNAPhe]. The dashed lines are derived from the numerical simulation model described in the text and in Supplementary
Data. The active ribosome concentration was 0.58±0.04mM. Deviations from simulated values are attributable to various oversimplifications within
the model, as well as to inhibitory effects expected at high concentrations of labeled deacylated tRNAPhe (see Supplementary Data and Figure S3E).
(B) As a function of added [Phe]. (C and D) Dependence of normalized parameters tL, S1, A1 and S2 (Table 2) on [Phe-tRNAPhe] or [Phe], respectively.
Solid symbols, measured values. Open symbols, values derived from the simulations of the various Phe-tRNAPhe concentrations.
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non-Phe aminoacyl-tRNAs and 14 Phe-tRNAPhes accord-
ing to the EmGFP sequence, and two fluorophore matur-
ation steps (35). Each non-Phe translation elongation step
was assigned the same pseudo-first-order rate constant
(k1) and each Phe translation elongation step was
assigned a second-order rate constant, k2 for endogenous
Phe-tRNAPhe and k�2 for exogenous Phe-tRNAPhe. The
pseudo-first-order rate process with rate constant k1
reflects the large excess of each of the non-Phe
aminoacyl-tRNAs present in the CFPS-Phe kit while the
second-order process, k2, reflects the limited availability of
the added Phe-tRNAPhe.

In order to account for the rather small observed thresh-
old value of exogenously added Phe-tRNAPhe (�1mM)
that has to be exceeded in order to detect EmGFP fluor-
escence (Figure 3C), the model includes endogenous
Phe-tRNAPhe that is not completely removed in preparing
the CFPS-Phe kit and functionally heterogeneous ribo-
somes. If all of the ribosomes were equally active, small
amounts of added Phe-tRNAPhe would be consumed by
synthesis of incomplete, non-fluorescent chains, leading to
a considerably higher threshold Phe-tRNAPhe concentra-
tion (Supplementary Figure S6). A final assumption is that
protease and Phe-RS activities are incompletely inhibited
in the CFPS-Phe kit, allowing a continual slow regeneration
of the limiting reagent, Phe-tRNAPhe, that results in the
slow second phase of EmGFP formation.

The kinetic model was used to simulate actual results
obtained on adding varying Phe-tRNAPhe concentrations
to the CFPS-Phe kit, as described below. Further details on
the simulation may be found in Supplementary
Information 4A.

Assaying the activity of labeled Phe-tRNAPhe variants by
EmGFP formation

We used the CFPS-Phe kit to compare the relative activities
of various Phe-tRNAPhe variants in EmGFP synthesis.
The Phe-tRNAPhes examined were E. coli and yeast,
either unlabeled or labeled at dihydroU residues (16 and
17 in yeast or 16 and 20 in E. coli tRNAPhe) to a total
stoichiometry of 0.8 – 0.9 fluorophores/tRNA (Table 2)
with either Cy3, Cy5, or Cy5.5 (10). Variants were
examined at one to three concentrations over a concentra-
tion range, 1–4 mM (Figure 4A), for which both S1 and A1

are highly dependent on Phe-tRNAPhe concentration
(Figure 3C).
Although the simulation model described above

adequately fits the data using identical values of k�2 for
both yeast and E. coli exogenous unlabeled Phe-tRNAPhes
(equal to the k2 value for endogenous Phe-tRNAPhe), some
variability in individual head-to-head comparisons caused
slight differences in apparent activity, as is evident from
Figure 4A. In contrast, the labeled Phe-tRNAPhes were
consistently less active than the unlabeled Phe-tRNAPhes
with respect to values of both S1 and A1 (Figure 4B and C,
Table 2). A large increase in tL is associated with the use of
Cy5-labeled yeast Phe-tRNAPhe, whereas tL is not strongly
affected by the other Phe-tRNAPhes. The relative activities
of labeled Phe-tRNAPhes are reduced more strongly at
higher concentrations (Table 2), suggesting that high
concentrations of the labeled Phe-tRNAPhe preparations
are inhibitory. Such inhibition could be due, at least in
part, to an increase in uncharged, labeled tRNAs in these
preparations (Supplementary Figure S3E) that may offset
the direct effect of raising Phe-tRNAPhe concentration.

Table 2. Phe-tRNAPhe variant parametersa

E. coli E. coli Cy3 E. coli Cy5 E. coli Cy5.5 Yeast Yeast Cy3 Yeast Cy5

Phe-tRNAPhe preparation (%)
Labeling 80 90 79 92 93
Charging 28 25 15 26 44 37 30
Empirical parameters
tL

b (2mM) 1.00±0.05 1.47±0.11 1.13±0.22 1.13±0.08 1.20±0.11 1.27±0.11 2.33±0.15
tL

b (4mM) 1.27±0.11 1.67±0.04 1.07±0.08 NA 1.07±0.07 1.18±0.11 2.27±0.25
S1

c (2 mM) 1.00±0.22 0.48±0.17 0.42±0.04 0.71±0.19 0.79±0.04 0.42±0.02 0.21±0.02
S1

c (4 mM) 2.34±0.06 0.60±0.07 0.43±0.04 NA 1.43±0.05 0.50±0.03 0.09±0.01
A1

d (2 mM) 1.00±0.09 0.87±0.10 0.35±0.05 0.55±0.17 1.02±0.04 0.68±0.01 0.38±0.02
A1

d (4 mM) 2.89±0.06 1.52±0.09 0.81±0.03 NA 2.41±0.01 1.24±0.06 0.50±0.02
S2

e (2 mM) 1.00±0.14 1.17±0.15 0.63±0.07 0.37±0.18 1.14±0.08 0.71±0.09 0.68±0.04
S2

e (4 mM) 2.61±0.12 1.54±0.12 0.78±0.11 NA± 1.74±0.03 1.03±0.05 0.73±0.09
Relative 14C-Phe incorporationf

1.00±0.02 0.98±0.02 0.13±0.01 NA 0.66±0.01 0.43±0.02 0.12±0.01
Simulation
Relative k�2 1g 0.1 0.025 0.2 1g 0.05 0.025
Phase 2 steady-state Phe-tRNAPhe concentration (mM) 0.1 0.1 0.01 0.01 0.15 0.025 0

aData at 2 mM added Phe-tRNAPhe are presented in Figure 4B and C. Parallel results obtained at 4 mM Phe-tRNAPhe are summarized in the table.
Experiments were performed using 2–5 repeats. Data obtained with 2 mM E. coli tRNA variants was repeated with two different CFPS batches. All
values were normalized to 2 mM E. coli Phe-tRNAPhe.
bLag time.
cPhase-1-slope.
dPhase-1-amplitude.
ePhase-2-slope.
fAfter 30-min incubation.
gEqual to k2.
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Because of the apparent inhibition at high labeled
Phe-tRNAPhe concentrations, only the time-courses of
fluorescent EmGFP formation using 2 mM exogenous
labeled Phe-tRNAPhe (Figure 4B and C) were fit with
the kinetic simulation model. The resulting k�2 values
(Table 2) show that the activities of the labeled tRNAs,
relative to E. coli Phe-tRNAPhe, fall in the order Cy5.5
(5-fold reduction) > Cy3 (10-fold reduction) > Cy5 (40–
fold reduction). The order of activity found with these
dyes suggests that activity loss results from a combination
of steric bulk and hydrophobicity, since Cy3 is both
smaller and less hydrophobic than Cy5, whereas Cy5.5,
a dianion at neutral pH, is both larger and less hydropho-
bic than Cy5.

Assaying the activity of Phe-tRNAPhe variants
by [14C]-Phe incorporation

Plasmid-dependent [14C]-Phe incorporation into polypep-
tide during EmGFP synthesis provides an alternative
measure of the relative activities of labeled Phe-tRNAPhe

in protein synthesis. [14C]-Phe incorporation is less
stringent than the EmGFP fluorescence assay, since it
measures synthesis of partial and full-length EmGFP
chains regardless of correct folding or chromophore
maturation. Indeed, for the results presented in Table 2
using unlabeled E. coli or yeast Phe-tRNAPhe, only
35–40% of the [14C]-Phe incorporated into precipitable
peptide chains was incorporated in full-length fluorescent
EmGFP protein in the first 30min of the reaction, as
determined by carrying out both analyses on the same
sample. The relative [14C]-Phe incorporation levels are
consistent with relative activities observed in ensemble
measurements of polyPhe synthesis and single molecule
translation of short stretches of model mRNAs using
these same labeled tRNAs (10,11). Qualitatively, the
relative [14C]-Phe incorporation levels showing
Phe-tRNAPhe (Cy3) to be more active than
Phe-tRNAPhe (Cy5) for both E. coli and yeast tRNAs
parallel the order of relative activities found in the fluor-
escence assay measured either by k�2 or A1 values (Table 2).

DISCUSSION

Here we describe a convenient, fluorescence-based assay
that, via adaptation of a commercially available bacterial
CFPS kit, permits quantitative determination of the
effects on the rate and stoichiometry of fluorescent
EmGFP expression of replacing endogenous with exogen-
ous components of the protein synthesis machinery. An
important adjunct to this assay is the quantification of the
fraction of active ribosomes in either the CFPS kit itself,
or in a sample from which endogenous ribosomes have
been removed (the CFPS-ribosome kit) and replaced.
Approximately 20–30% of the ribosomes in the commer-
cial CFPS kit are active in fluorescent EmGFP expression.
By comparison, wild-type MRE600 ribosomes prepared
by us show �30% activity, whereas the fractional
activities of the mutant AM77 ribosomes which lack
protein L11, even when supplemented with L11, are dis-
tinctly lower (�10%).

As described above, replacement of endogenous
ribosomes is quite facile, since exogenous ribosomes
prepared directly from crude cell extracts (‘S100P’ ribo-
somes) confer the highest activity when added to the easily
prepared CFPS-ribosome kit. Replacement of endogenous

Figure 4. Comparisons of cell-free expression of EmGFP on addition
of Phe-tRNAPhe variants to the CFPS-Phe kit. EmGFP fluorescence
measurements contained an active ribosome concentration of
0.30±0.02mM. (A) Various concentrations of unlabeled E. coli and
yeast Phe-tRNAPhe. (B) Escherichia coli variants (2 mM). (C) Yeast
variants (2 mM). Unlabeled E. coli Phe-tRNAPhe is included in each
panel for ease of comparison. The dashed lines are derived from the
numerical simulation model using the parameter values listed in Table 2
and given in the text.
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Phe-tRNAPhe is somewhat more demanding, but relatively
straightforward using the optimized procedures detailed in
‘Materials and Methods’ section. In order to selectively
remove Phe-tRNAPhe, we elected to prepare a CFPS-Phe

kit in which the endogenous tRNAPhe is retained, but Phe
is depleted and Phe-RS is inhibited. With the CFPS-Phe kit,
fluorescent EmGFP expression is totally dependent on
either added Phe (Figure 3B) or added Phe-tRNAPhe, at
much lower concentration (Figure 3A). An alternative
approach for preparing a CFPS-Phe system, which we are
currently pursuing, utilizes PURExpress� (New England
Biolabs), a cell-free transcription/translation system
reconstituted from purified E. coli components, including
each of the tRNA synthetase enzymes (43). A
custom-made PURExpress� mixture should essentially
eliminate the residual Phe-tRNAPhe and Phe-RS content
present in a CFPS-Phe kit.

Our primary goal in developing adaptations of CFPS
kit assay for the expression of fluorescent EmGFP was to
permit determination of the effects on translational
activity of fluorescent labeling of components of the
protein synthesis machinery, in particular ribosomes and
tRNAs, since such labeling is used extensively in both
ensemble and single molecule studies of the mechanism
of protein synthesis (12–15). The results showing that
dye-labeled Phe-tRNAPhes have substantially lower
activity than unlabeled Phe-tRNAPhe in supporting full-
length protein synthesis highlight the need to explore
alternative labeling strategies to produce labeled tRNAs
with higher intrinsic activities. Such strategies could
include using tRNA transcripts so as to be able to direct
labeling to a unique DHU position (44) as opposed to
native tRNAs, for which labeling is distributed over all
DHU positions (45,46); using less hydrophobic fluoro-
phores; and introducing fluorophores at other than
DHU positions (47–49).

In addition to meeting our primary goal, continuous
monitoring of the formation of fluorescent EmGFP by
simple or modified CFPS kits provides a general,
radioactivity-free approach, amenable to high-throughput
screening, for evaluating effects on the efficiency of
protein synthesis of various additions, subtractions or sub-
stitutions to the protein synthesis machinery. These
include (i) any kind of tRNA, rRNA or ribosomal
protein variation, including mutation or enzymatic or
chemical modification; (ii) addition of agents affecting
transcription, translation, or protein folding (e.g. antibi-
otic screening effects on translation could be separated
from those on transcription by initiating EmGFP synthe-
sis with added mRNA, transcribed separately, rather than
with added DNA); (iii) substituting amino acid analogues
for native amino acids, whether measured by supplement-
ing a CFPS-aminoacid kit with the amino acid analogue or
with a tRNA charged with the analogue (50). In some
experiments, suitable controls would be needed to
exclude possible artifacts due to direct effects on
EmGFP fluorescence. Finally, a CFPS-aminoacid kit,
reconstituted with an isotopically labeled amino acid,
could be used to prepare isotopically labeled proteins for
IR and NMR studies.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables S1–S3, Supplementary Figures
S1–S6, Supplementary Information Files S1–S2 and
Supplementary Reference [51].
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