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Abstract 

Background: This paper describes a web based tool that uses a combination of soni-

fication and an animated display to inquire into the SARS-CoV-2 genome. The audio 

data is generated in real time from a variety of RNA motifs that are known to be impor-

tant in the functioning of RNA. Additionally, metadata relating to RNA translation and 

transcription has been used to shape the auditory and visual displays. Together these 

tools provide a unique approach to further understand the metabolism of the viral RNA 

genome. This audio provides a further means to represent the function of the RNA in 

addition to traditional written and visual approaches.

Results: Sonification of the SARS-CoV-2 genomic RNA sequence results in a complex 

auditory stream composed of up to 12 individual audio tracks. Each auditory motive 

is derived from the actual RNA sequence or from metadata. This approach has been 

used to represent transcription or translation of the viral RNA genome. The display 

highlights the real-time interaction of functional RNA elements. The sonification of 

codons derived from all three reading frames of the viral RNA sequence in combination 

with sonified metadata provide the framework for this display. Functional RNA motifs 

such as transcription regulatory sequences and stem loop regions have also been 

sonified. Using the tool, audio can be generated in real-time from either genomic or 

sub-genomic representations of the RNA. Given the large size of the viral genome, a 

collection of interactive buttons has been provided to navigate to regions of interest, 

such as cleavage regions in the polyprotein, untranslated regions or each gene. These 

tools are available through an internet browser and the user can interact with the data 

display in real time.

Conclusion: The auditory display in combination with real-time animation of the 

process of translation and transcription provide a unique insight into the large body 

of evidence describing the metabolism of the RNA genome. Furthermore, the tool has 

been used as an algorithmic based audio generator. These audio tracks can be listened 

to by the general community without reference to the visual display to encourage 

further inquiry into the science.
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CoV-2, COVID-19

Open Access

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi 
cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Temple  BMC Bioinformatics          (2020) 21:431  

https://doi.org/10.1186/s12859‑020‑03760‑7

*Correspondence:   

m.temple@westernsydney.

edu.au 

School of Science, 

Western Sydney University, 

Campbelltown Campus, 

Locked Bag 1797, Penrith 

South DC, NSW 1797, 

Australia

http://orcid.org/0000-0003-0902-6322
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03760-7&domain=pdf


Page 2 of 16Temple  BMC Bioinformatics          (2020) 21:431 

Background

Modern computers have had a great impact on biological experimentation and data 

analyses to reveal otherwise hidden patterns in complex data. �is is apparent in the 

field of genomic data analyses. �e viral genome of the first patient suffering from 

COVID-19 was submitted to GenBank [1] on 5 January 2020 some weeks after the first 

patient had been hospitalised in December 2019 [2]. Within 4 months over 4.7 million 

people worldwide had tested positive to the virus and the disease referred to as COVID-

19 with approximately 315,000 deaths reported by Johns Hopkins University [3]. Dur-

ing this time a large body of evidence has arisen regarding RNA sequence homology 

to other SARS like virus strains [4, 5] and these studies may help identify targets for 

immune recognition.

�is paper demonstrates that sonification of RNA sequence data may also be useful 

to understand how the genome functions. �e audio is generated using two approaches. 

�e rules governing gene expression have been applied to the process of generating a 

linear audio stream similar to the expression of a linear sequence of amino acids. �ese 

methods are based on our previous approach to sonify DNA sequences [6]. �ese meth-

ods have been improved upon to include multi-layering of related audio tracks, and 

the inclusion of audio that is representative of sequence metadata. Additionally, a real 

time animated display (as shown in Fig. 1) of both the biological process and the notes 

being generated has been implemented. �ese displays are important since the ability to 

sequence DNA has vastly outpaced tools for their visualisation [7]. �e real-time visual 

animation is an important addition since with sonification data alone is it difficult to 

relate the auditory display to the underlying sequence information. �e combination of 

the auditory and visual displays is more informative than either display in isolation. In 

these displays the auditory and visual output are produced by the same events, since the 

sequence is processed in a linear fashion, and it is thought that the multisensory integra-

tion improves the perception of each [8].

�e systematic and reproducible representation of data as sound is increasingly 

becoming a adjunct to the traditional visualization techniques of data inspection and 

analysis [9, 10]. In recent years auditory displays have become more popular to represent 

complex biological phenomena. A systematic review of over 150 sonification project 

highlighted the importance of pitch and spatial auditory dimensions in the auditory dis-

play [11]. Within the domain of molecular biology the properties of amino acid residues 

[12] and protein folding [13] have been sonified by a combination of musical techniques 

and sound effects. More recently researchers have generated musical scores representing 

amino acid sequences of protein structures and note sequences from short amino acid 

sequences [14]. Recently these authors applied their approach to sonifying the amino 

acid sequence and structure of the spike protein of SARS-CoV-2.

Genomic data has also provided a good candidate for sonification. �ese studies 

include sonification of the spectral properties of DNA, molecular analyses [15, 16] 

and a preliminary investigation into RNA structures [17, 18]. Gene expression data 

has been sonified to discriminate between differentially expressed genes [19, 20] and 

chip-seq data [21]. In the realm of cancer progression, epigenomic data has been 

sonified to investigate the importance of methylation [22]. It has also been suggested 

that audio may be useful to interpret tomography of human adipose and tumor tissue 
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samples [23]. Microbial ecology data has been sonified into musical style by mapping 

rows of numerical data to chords [24, 25], towards the end of communicating com-

plex results to people not specialised in the field.

Previous studies into DNA sonification for sequence analyses [6] demonstrated 

that mutations in repetitive DNA sequences such as telomer or alphoid DNA could 

be detected by ear alone and that coding regions could be distinguished from non-

coding regions. �e SARS-CoV-2 RNA genome does not contain extensive repetitive 

sequences except for the 3′ poly-A tail, hence this sequence provided more of a chal-

lenge for display. Given that the RNA genome is almost 30,000 kb in length it would 

be abrasive and fatiguing to the ear to use harsh or dissonant tones for the entire 

a

b

Fig. 1 The animated display. Panel A shows the sliding window of the animated display in translation mode. 

Key features of the animated display are labelled such as the translated peptide sequences and the frame 

in which they occur, the presence of start and stop codons are highlighted in green and red, respectively. 

The location of the audio play-head is represented to coincide with the peptidyl-transferase centre of 

the ribosome. The sonified audio is generated as the SARS-CoV-2 genome sequence passes through the 

play-head. The direction in which the ribosome moves relative to the RNA sequence is indicated. Panel B 

shows the animated display in transcription mode. The newly synthesised minus RNA strand is shown below 

the genome sequence with the 3′ extended nucleotide shown in the play-head. The direction in which the 

replicase protein complex moves in relation to genome sequence is indicated
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auditory display. Hence the decision was made to use more musical tones to generate 

the audio.

Implementation

�e web tool described in this paper [26] operates in two modes that broadly represents 

translation or transcription. �e audio display is generated using algorithms based on 

biological rules to generate sound at the play-head. �e play-head substitutes for a ribo-

some during translations mode or the RNA replicase/polymerase during transcription 

mode. A complex auditory stream was generated by overlaying up to 12 layers of audio 

(as summarised in Table 1). Each layer of audio is derived from an RNA motif directly 

or metadata was used to flag the region of sequence to be sonified. Additionally, prior to 

the start of each gene sequence an ascending run of 8 notes is triggered. �is scale pat-

tern is independent of the raw sequence data and is based solely on metadata relating to 

sequence position. �is provides an audio cue to anticipate the upcoming gene coding 

sequence.

�e most fundamental building block of RNA is an individual nucleotide and these 

were sonified as one of four individual notes whereas di-nucleotides were sonified 

as one of 16 notes and together these were panned left and right in the auditory dis-

play. Another characteristic of nucleic acid sequences which is often used as a metric 

of genome status is the GC content which is often represented as a ratio. Typically in 

Coronavirus the count of U is above average and C is below average whereas A is pre-

ferred over G [27] leading to a relatively low GC ratio. In our approach two GC ratios 

were determined within a sliding window of 10 or 100 nucleotides respectively across 

the entire genome. Each time the GC ratio changed by an increment or decrement of 0.1 

a note was generated and these were panned against each other in stereo. When there 

is no change between two adjacent features in an audio stream, the first instance of the 

Table 1 The mapping of each RNA feature into a layer of the auditory display

Description RNA feature Note range When is the feature soni�ed

As the sequence is processed 
each is sonified to create a 
constant audio stream

Nucleotide 4 Throughout the genome

Di-nucleotide 16 Throughout the genome

GC Content (10 bp) 10 Throughout the genome

GC Content (100 bp) 10 Throughout the genome

Three of the same nucleotide 
repeats

Example: the poly-A tail 4 Anytime when condition is true

Codons (translation only) Codon Frame 1 20 Between start and stop codons

Codon Frame 2 20 Between start and stop codons

Codon Frame 3 20 Between start and stop codons

Trinucleotides (transcription 
only)

Only the 1st and 3rd nucleo-
tides are considered

16 Throughout the genome

Untranslated regions Intragenic UTR regions (exclud-
ing 5′ and 3′ UTRs)

16 At genomic regions defined by 
GenBank metadata [2]

Individual nucleotides were 
mapped to higher octaves 
ranges for the sake of audio 
clarity

Transcription regulating 
sequences (TRS)

Each nucleotide in TRS1 
through to TRS10

16

Polyprotein cleavage sites 
(translation only)

Nucleotides that code for the 
cleaved AA residues

4

Stem and Loop regions (SL) Each nucleotide in the identi-
fied region

16
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feature was allowed to play for a longer period of time rather than generating another 

instance of the same note. �is approach provides a brief pause in the audio layer and 

provides an opportunity for another layer to be distinguished in the auditory display. 

Together these four audio tracks create an audio landscape that can be heard across the 

entire auditory display of the genome. �ese RNA features are not specific to either tran-

scription or translation nor are they specific to a particular region of the genome. Other 

sonified genome features were layered over this sonified landscape.

In the translation mode, codons represent an important feature of RNA and these 

were sonified as 20 notes when representing translation into amino acids. No distinction 

was made between the start methionine or that which occurs in the body of the pep-

tide sequence. Additionally, stop codons were sonified as an additional note since these 

are highly significant in the function of the genome. Overlapping codons in each of the 

three reading frames were sonified during translation to detect ORF’s in either frame. 

An important consideration in the modelling of translation was to use the start and stop 

codons in each reading frame to trigger or halt the audio derived from other codons. 

Additionally, in the visual display the audible codons were shown using the one letter 

amino acid representation. Using this simple method all gene sequences reported in the 

GenBank metadata were accurately represented in both the audio and visual displays. 

Additionally, all open reading frames throughout the RNA genome are shown and soni-

fied. However, only open reading frames that correlate with the known metadata (gene 

sequences) were labelled in the visual display. �is is consistent with prior approaches 

of mapping either individual bases [28], codons [29] or amino acids [30, 31] to musical 

notes in a manner inspired by the genetic code or codon usage during translation.

In the display representing transcription, codons per se were not considered. Instead 

tri-nucleotide features were considered for sonification, however, these were considered 

to be positioned adjacent in the sequence rather than overlapping. Given that there are 

64 different tri-nucleotides it is not possible to use a traditional scale. A traditional piano 

consists of 7 octaves plus a minor third (88 notes). Given that there are 7 scale notes in 

an octave it would require over 9 octaves to accommodate 64 trinucleotides. Using syn-

thesised notes could overcome this limitation but this would entail playing shrill high 

pitched notes that would be grating to the ear. �erefore, linear mapping of 64 codons to 

individual notes was avoided. In the transcription display, tri-nucleotides were mapped 

to 16 individual notes since only the first and third position in each was considered. 

Since trinucleotides play no functional role in the process of transcription there was 

no loss of information content using this approach and the audio could be designed to 

complement the single nucleotides and di-nucleotides in the audio stream and avoid the 

mapping to shrill notes. Additionally, tri-nucleotides were not mapped to start or stop 

functionality and these are audible throughout the entire genome. �eir occurrence had 

no further effect in the auditory display.

Metadata specific to the Coronavirus SARS-CoV-2 sequence was used to supplement 

the audio generated from the intrinsic characteristics of the RNA sequence. Audio from 

un-translated sequences between the open reading frames were mapped to an audio 

stream at a reduced tempo so that they were more clearly distinguished from the coding 

regions. Additionally, the viral genome is known to contain 10 transcriptional regulatory 

sequences (TRS) and five known stem loop (SL) structures known to play a role in the 
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function of the genome [32] and their occurrence was sonified. �ese conserved motifs 

were sonified and since they often occurred in the untranslated regions the audio from 

these two were panned in stereo.

�e genome codes for a large polyprotein from a large open reading frame. �is poly-

protein is thought to be cleaved into 16 individual polypeptides (often referred to as NSP 

proteins) and the occurrence of the known cleavage sites was sonified. In addition to 

generating a short burst of notes, cleavage regions were also used to pause the progres-

sion of the play-head for a second or so by slowing the tempo to one tenth of the coding 

tempo. �is effectively highlights the transition from one NSP sequence to the next. �e 

occurrence of three or more identical nucleotides was also sonified since these are easy 

to detect by eye and their sound may help the user to keep track of where they are in the 

display.

Audio generated from each of these sequence motifs and metadata were combined to 

create a complex auditory display to represent either transcription or translation. As the 

audio is played a sliding window of 60 nucleotides is shown on the screen. At any point 

in time the first nucleotide in the visual play-head can be heard in the auditory display. 

Other sequence features are determined relative to the position of this nucleotide.

To play the entire genome takes approximately 96  min in  translation mode which 

corresponds to approximately five nucleotides per second. �is is slower than cellular 

translation which is thought to proceed at approximately 30 nucleotides  per second 

[33], however, to play this any faster makes it difficult to interpret due to the shortened 

duration between each note and a different algorithm would need to be devised. In tran-

scription mode the full display lasts 120 min since the number of nucleotides played per 

second is a little slower, this approach was taken to clearly distinguish it from translation 

mode.

�ree sets of interactive buttons (summarised in Table 2) have been provided for each 

sonified feature so that each can be selected directly, for example a gene sequence or 

TRS can be selected and played directly without having to play through the proceed-

ing sequence data. �ese buttons change to a red colour as the respective feature is 

displayed.

In this study, auditory streams were paired and played as stereo layers. Audio that 

plays consistently throughout the entire genome were played at low frequency and tran-

sient data was highlighted at a higher frequency register to make them more prominent. 

In addition to simply considering the basic construction of pitch and separation, the data 

was harmonised to make it more listenable. �e root tone and third note of the scale 

were played across two octaves with the limited 4 note mono-nucleotide sonification to 

establish a strong harmonic landscape throughout the playback. �e drone generated 

from the GC content (which is sometimes invariant for periods of time) was also used 

to reinforce the foundation of the basic scale harmony. �e G or C bases, as nucleotide, 

di-nucleotide or trinucleotides were each matched to higher octaves and A and U were 

mapped to lower octaves. �is was done consistently between these audio streams in 

an attempt to harmonise the otherwise random note selection based on sequence infor-

mation. An exception to this principle was made for start and stop codons which were 

mapped to higher pitches than GC rich codons so that their occurrence was easily per-

ceived in the auditory display (since higher pitched notes are perceived to be louder). 
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Given that these codons are used to trigger and halt individual audio streams this 

approach further emphasises the occurrence of an open reading frame.

�e wider note range of the codons (20 notes) were used to introduce leading tones 

that often sound more dissonant and add complexity to the harmonic spectrum. �is 

allows them to be easily discerned above the landscape tones of the simpler motifs. 

Lastly, less frequent audio from dispersed regions of the genome e.g. TRS or stem-loop 

(SL) motifs were pitched at the highest octave ranges or more dissonant notes within 

the diatonic scale to highlight their occurrence. All of this was done within a mode of 

the diatonic major scale. Translation was played in Bb Aeolian (Bb, C, Db, Eb, F, Gb, 

Ab) whereas transcription was played in C Lydian (C, D, E, F#, G, A, B). �e parameters 

for mapping of each RNA feature into an audio stream is summarised in Table 3. �ese 

choices are arbitrary and in later iterations of the tool it may be possible to choose the 

scale modes and key of choice. �e Ionian mode mode of the major scale was avoided 

since this is generally considered to be happy sounding and inappropriate for the data.

Each nucleotide generates a note on every beat whereas each di-nucleotide gener-

ates a note every second beat. Each codon (in an ORF) generates a not every third beat. 

Together these notes are syncopated to create a characteristic sound during peptide 

Table 2 Description of  the  navigation buttons from  where  users can begin playing 

the audio and visual displays

Button set 1 RNA features associated with coding regions

5′UTR 5′ untranslated region

Poly-/-protein Two buttons representing the coding region before and after the -1 frameshift position 
of the large polyprotein

9 U regions Each navigates to an untranslated region between ORF’s

-S- Region coding for the canonical S protein

-E- Region coding for the canonical E protein

-M- Region coding for the canonical M protein

-N- Region coding for the canonical N protein

ORF 3a, ORF 6, ORF 
7a, ORF 7b, ORF 8, 
ORF 10

Regions thought to code for other proteins or polypeptides

3′UTR 5′ untranslated region

Button set 2 RNA features associated with the NSP proteins

5′UTR 5′ untranslated region

N1—N16 Location of the 16 NSP proteins within the large polyprotein

14 C sites Cleavage sites within the translated polyprotein giving rise to the 16 individual NSP 
proteins

S—ORF 10 Region of the RNA sequence downstream of the polyprotein

3′UTR 5′ untranslated region

Button set 3 RNA features associated with the TRS regions

5′UTR 5′ untranslated region

T1—T10 Location of TRS 1 to TRS 10. TRS1 is sometimes referred to as the leader TRS and is linked 
to the subsequence TRS 2—10 to produce the sub-genomic regions during transcrip-
tion

5 SL regions Stem Loop regions giving rise to structured regions of RNA. These are formed due to 
sequence complementarity and base pairing

12 Seq regions Undefined sequences between the TRS regions, these often correspond closely to the 
ORF regions

3′UTR 5′ untranslated region
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translation that is distinct from the surrounding untranslated region. Audio from the 

GC tracks are only triggered when the GC ratio changes by an increment of 0.1. If a 

note sequence has identical adjacent notes then the length of the note is extended rather 

than being repeated. �is creates space and clarity for other notes layered in the auditory 

display.

Translation of the genomic RNA leads to expression of a large polyprotein follow-

ing ribosome binding to the 5′ prime untranslated region. However, from this genomic 

template the subsequent genes downstream from the polyprotein cannot be directly 

expressed presumably due to the stop codon at the end of the gene. In the display the 

sonification also stops at this point, however, play can be resumed to inspect the down-

stream sequence. Additionally, the tempo of the untranslated regions are slower than 

that of the coding regions so that the tempo increases as the play-head (in place of the 

ribosome) reads into a gene sequence. �is was implemented to help the user distin-

guish between different sequence types during the display of translation.

One of the more interesting characteristics of the viral genome is the phenomena of 

discontinuous transcription whereby a template switch occurs during the synthesis of 

sub-genomic negative-strand RNA’s [5]. Various mechanisms have been proposed to 

explain how the transcription regulatory sequences (TRS) are involved in the synthesis 

of positive strand sub-genomic RNA from various negative strand intermediates [34]. 

TRS sequences are located in the untranslated regions between the genes and one model 

suggests that these facilitate transcription skipping to the TRS sequence located in the 5′ 

untranslated region. �is process is driven by complementary interactions between TRS 

regions to add a copy of the leader sequence to form sub-genomic RNA species. In these 

Table 3 Scale degrees and instrumentation of the RNA features being soni�ed

Soni�ed motif Instrument Pan Translation Scale Bb 
aeolian mode

Transcription Scale C 
Lydian mode

Scale degrees Octave Scale degrees Octave

Nucleotide Synth L 1, 3 2, 3 1, 5 2, 3

Di-nucleotide Synth R 1, 4, 5, 6 1, 2, 3, 4 1, 3, 5 1

GC Content (10 bp) AM synth
 + delay

L 1, 3, 6, 7 2,3 1, 3, 5, 7 4, 5

GC Content (100 bp) AM synth + delay R 1, 3, 6, 7 2, 3 1, 3, 5, 7 4, 5

3 bp repeat Synth L 1, 3 4 1, 4, 5 6

Codon Frame 1 (transla-
tion)

FM synth + distortion L 1, 3, 4, 5, 7 2, 3, 4, 5 – –

Codon Frame 2 (transla-
tion)

FM synth + distortion C 1, 3, 4, 5, 7 2, 3, 4, 5 – –

Codon Frame 3 (transla-
tion)

FM synth + distortion R 1, 3, 4, 5, 7 2, 3, 4, 5 – –

Tri-nucleotide (transcrip-
tion)

FM synth + distortion L – – 1, 3, 4, 5, 7 3, 4, 5

Untranslated regions AM synth R 1, 2, 3 5 1, 4, 6, 7 3

Transcription regulating 
sequences (TRS)

AM synth L 1, 2, 4, 5, 6 5 1, 2, 3, 4, 5, 6, 7 6

Cleavage sites in the 
polyprotein

AM synth + distortion L 1, 6, 7 4 1, 2, 3 6

Stem and loop regions 
(SL)

AM synth + delay + dis-
tortion

R 1, 2, 6, 7 5 1, 4, 5, 7
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sub-genomic RNA’s the polyprotein sequence has been omitted and ribosome binding 

at 5′ end can read through and express the contiguous downstream gene sequence [35]. 

�is functional behaviour of the RNA has been built into the auditory and visual display. 

By default, the process of auditory translation runs from the 5′ end through to the stop 

codon at the end of the polyprotein, whereas transcription runs the full length of the 

RNA beginning at the 3′ end. A toggle switch, labelled ‘Translate as sub-genomic RNA’ 

has been implemented to change these behaviours. When the toggle switch is selected 

during the transcription mode, the play-head will skip from any upcoming TRS region 

to the leader TRS1 located in the 5′ region (mimicking the behaviour of the RNA repli-

case). Subsequently in translation mode with the toggle activated the play-head will, by 

way of example, skip from the leader TRS1 (omitting the polyprotein) through to the 

TRS2 region adjacent to the start of the S protein. Whilst the metadata use to drive this 

behaviour does not change the characteristics of the sound, it does change the selection 

which regions are sonified.

�e website does not rely on a server and instead the entire RNA sequence is down-

loaded into the client browser when the page is loaded. All code is written in JavaScript 

and runs within the client browser. �e React framework was used to create the environ-

ment state whereby each iteration of state represents a sliding window to the next base. 

Redux was also used to help manage state. Audio is generated in real time within the cli-

ent browser using Tone.js. �e Reactronica framework [36] was used to further manage 

audio within the environment state.

Translation of the viral polyprotein is known to be subject to a frameshift mutation 

and since this does not follow the normal rules of gene expression a conditional expres-

sion was used to change the display for that instance so that the translated protein in 

frame 2 shifts to frame 1 in both the visual and auditory display.

Results and discussion

To understand the function of the viral plus RNA strand the information needs to be 

processed in the 5′ to 3′ direction during translation and in the reverse 3′ to 5′ direc-

tion for transcription (whereby nucleotides are extended to the newly synthesised minus 

strand at the 3′ end). In this study an auditory display of the sequence was generated 

with a sliding window moving in either direction. Processing of information within the 

sliding window was used to generate a synchronised auditory and visual display. �is 

is advantageous since it mimics the behaviour of biological processes within the cell. 

To further emulate translation the generation of audio was triggered by start codons 

and silenced by stop codons. Furthermore, the visual display shows all possible pep-

tide sequences and these are aligned with the RNA sequence being processed. From 

the sequence data alone the tool was able to detect and display all known open reading 

frames and metadata was used solely to label these in the display. Other open reading 

frames were detected throughout the genome in the displays, however, since these are 

not downstream of an in-frame ribosome binding site no claim is made that these are 

actually translated.

High resolution analysis of gene expression in Coronavirus genomes has detected 

ribosome protected fragments which map to non-canonical ORF’s, these may be novel 

protein-coding ORFs and short regulatory uORFs. �e tool highlights the occurrence 
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of one such uORF of 30 nucleotides (including the stop codon) in the 5′ untranslated 

region downstream of TRS1 [35] that is not documented in the GenBank metadata. 

An image of the raw wave files and their relationship to the sequence information for 

this region are shown in Fig. 2. Non-standard uORF’s such as this have been detected 

as translation products in RNA sequencing and ribosome profiling experiments which 

allude to the complexity of gene regulation [37]. For this reason, all open reading frames 

are included in the display.

�is uORF is clearly represented in Additiaonal file 1: Example 1, supplementary file 

‘Sonification Untranslated ends’ (MP3 file) whereby at 26 s into the auditory display of 

the 5′ untranslated region a high-pitched start codon introduces a short sequence of lay-

ered audio that is punctuated a few seconds later by another high-pitched note as the 

layered audio ends. �is can also be observed in Example 1 (MP4 file) as a nine amino 

acid residue sequence in reading frame 2. �e 5′ untranslated region is also character-

ised by the distinctive sound of the TRS1 sequence at 16 to 19 s into the audio display. 

Fig. 2 Multitrack wave files representing a portion of an auditory display. These tracks play in unison to 

generate the auditory display and each represent approximately 80 nucleotides beginning at nucleotide 

position 65. This sequence is located in the 5′ untranslated region and includes a TRS region and a uORF. Each 

audio stream was generated from a different algorithm, only nucleotides that gave rise to audio are shown 

(the entire nucleotide sequence is shown in track 2). In track 1, each nucleotide generates a note for every 

beat unless it is a repeat of the previous in which case the length of the note is extended. In track 2, each 

di-nucleotide generates a note every second beat. In tracks 3 and 4, audio from the GC track is only triggered 

when the GC ratio changes by an increment of 0.1. Each change in the GC ratio is indicated by a plus (+) or 

minus (−) symbol on the wave files. In track 5, only codon sequences beginning with a start codon (AUG) 

are shown through to the next stop codon (e.g. UAA). Isolated stop codons also give rise to a note. This track 

is a compilation of audio form three sub-tracks each representing a different reading frame and notes in this 

track are panned left, centre or right, respectively. Track 6 represents the audio generated from metadata that 

indicates the location of a TRS region. Additionally, the consensus sequence within this region is coloured 

purple in the visual display. Track 7 represents audio generated by the occurrence of three nucleotides of the 

same type. Other data tracks are not represented since no audio was generated in these during processing of 

this sequence of the genome. Additionally, the amino acid sequence of the ORF is shown in the codon track 

5
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Similarly, three short ORF’s are apparent in the 3′ untranslated region of Example 1 

beginning at 1 min 31 s following the high-pitched repetitive pattern of the SL region. 

�ese two untranslated regions were manually played one after the other during the 

same auditory display using the navigation buttons. Since they are both characterised by 

the absence of long open reading frames they provide a good introduction to the basic 

sound of the auditory display over which the highlighted notes from other RNA features 

will be layered.

�e Additional file 2: Example 2 ‘Sonification UTR to Surface Glycoprotein’ (supple-

mentary file) represents the sonification of a sub-genomic RNA. For this run the ‘Trans-

late as sub-genomic RNA’ checkbox was selected to mimic translation from one of the 

products of discontinuous transcription, a process upon which viral gene expression is 

reliant. Sonification of the entire genome in either direction results in an auditory dis-

play lasting up to 2 h in duration. Selecting the ‘Translate as sub-genomic RNA’ check-

box results in a shorter auditory display since shorter regions of RNA are processed. 

Example 2 again plays from the beginning of the plus strand sequence (as does Exam-

ple 1), however in this display the play-head skips from TRS1 to TRS2 and immediately 

into the ORF of the Surface Glycoprotein (skipping a portion of the untranslated region 

and skipping all of the ~21,000 bp of the polyprotein sequence). �e display highlights 

that the prior discussed uORF is skipped in the 5′ leader of the sub-genomic RNA from 

which the genes downstream of the polyprotein are translated. �e audio diverges from 

Example 1 after 23 s or so since the layered sound of the Surface Glycoprotein (an open 

reading frame) begins and continues to play for the rest of the display. Portions of the 

two stereo waveforms of the display from Example 1 and 2 are shown in Fig. 3. To the 

left of the cursor both stereo waveforms are essentially the same whereas to the right of 

the cursor the audio displays have clearly diverged as different sequences were processed 

beyond TRS1.

�e Additional file  3: Example 3 ‘Sonification of the Nucleocapsid Phosphoprotein’ 

further builds upon the two prior examples. �is supplementary file example begins with 

the Nucleocapsid Phosphoprotein gene and a clear duplet note pattern can be heard 

that is characteristic of two open reading frames playing simultaneously. �e associated 

a

b

Fig. 3 Alignment of the raw stereo waveforms. Two stereo waveforms are shown that depict the audio 

from examples 1 and 2. The vertical cursor indicates the transition across the TRS1 consensus sequence. 

Panel A depict the audio from the ‘UTR to Surface Glycoprotein’ example and panel B depicts that from the 

‘Untranslated ends’ example. To the left of the cursor the stereo waveforms are identical leading up to the 

TRS1 region. To the right of the cursor the waveforms diverge. Panel A represents translation of a template 

produced through discontinuous transcription whereas panel B represents translation of contiguous genome 

sequence
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visual display shows that this pattern continues for approximately 100 amino acid resi-

dues. Whilst this may only be an artefact of the analyses rather than an undocumented 

protein sequence it does demonstrate the auditory display is capable of detecting unu-

sual features in the genome. It is also worth noting that frame shift mutations do occur 

in the polyprotein sequence through a process that is not fully understood giving rise 

to a protein sequence that does not follow canonical gene expression patterns. �e tool 

highlights the position of other relatively long open reading frames within the display so 

that they can be considered in the analysis of genome function. �e Nucleocapsid Phos-

phoprotein sequence is followed by the ORF 10 sequence which is about one third the 

length of this parallel ORF. �is analysis also highlights one of the properties of the audi-

tory display which is that data in the three possible reading frames give rise to a triplet 

note pattern whereas data in two reading frames gives rise to a duplet note pattern (e.g. 

from 1 min 9 s through to 1 min 17 s). �ese note patterns make it easier to distinguish 

the features in the auditory display. In the last 1 min and 30 s of the display the genome 

alternates between gene sequences, transcription regulatory sequences, ORF10, stem 

loop structures and untranslated regions. �ese features have been further annotated 

in the video file with circles and arrows to emphasise their occurrence in the combined 

visual and auditory display.

In the Additional file 4: supplementary example ‘Sonification Sub-genomic RNA’ the 

auditory display represents the process of transcription. �e tempo and scale patterns 

used for these displays are distinct from those used to represent translation. Addition-

ally, no attention was paid to the occurrence of open reading frames or codon usage pat-

terns since these pay no role in genome replication or transcription. Metadata relating to 

SL and TRS elements were sonified, however, cleavage information relating to the poly-

protein modification did not seem relevant. �e resulting auditory display is therefore 

simpler than that arising from translation. �is can be heard in Example 4 which begins 

with sonification of the poly-A tail. In this example the play-head skips from TRS10 

through to TRS1 which models the behaviour of discontinuous transcription. �ere is a 

check box on the page to switch between normal genome replication (whereby the entire 

genome would be sonified) and discontinuous transcription.

�e Additional files 5, 6 and 7: Examples 5 to 7 in the supplementary files include 

regions already describe in the previous auditory displays. However, in these examples 

various streams of audio that contribute to the auditory display have been toggled on 

and off. Checkboxes are provided on the web page to facilitate this on the left-hand side 

of the note display table. �e reason for this is two-fold. It provides a method to delineate 

how each feature of the RNA genome contributes to the auditory display. For instance, 

the sound of a TRS element or open reading frames could be highlighted (soled) or 

excluded (muted) from the overall sound of the translation display. �is provides a bet-

ter understanding of how the auditory displays are constructed. Secondly for those who 

are less interested in the science of Coronavirus and who are more interested in algorith-

mic music generation these tools can be used to compose and modify the inherent audio 

stream. �e first of these, example 5 ‘Remix UTR through to Polyprotein’, highlights the 

contribution that GC content makes to the audio stream since these features are soloed 

at the beginning of the display. At one minute into the display audio from the translated 

amino acids are also toggled on or off to highlight their contribution. Example 6 ‘Remix 
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ORF10 to the poly-A tail’ highlights the off-beat syncopation between the dinucleo-

tides playing every second beat against codons playing every third beat. Lastly Example 

7 highlights how important it is to continually sonify individual nucleotides across the 

sequence, since this provide a sonic landscape to overlay the other features. To empha-

sise this the individual bases were soloed at the beginning and excluded at the end of the 

display. All previously mentioned example files have been uploaded as supplementary 

files.

In addition to using the tool to navigate and inspect the function of the genome, the 

tool has been used to generate isolated audio in both translation and transcription 

modes. A playlist of four tracks has been uploaded to SoundCloud. �ese audio tracks 

are to be listened to without reference to the visual display. �e intention of this is to 

engage the non-specialised community with the concept of ‘the sound of the Corona-

virus genome’ and hopefully encourage people to delve a little deeper into the ideas 

behind the concept. Without the context of the display and without a clear understand-

ing of the molecular biology of RNA virus the audio has to engage purely on its own 

sonic qualities—as an example of algorithmic music. In translation mode two auditory 

displays were prepared, the first (Covid-19 Translation polyprotein) plays through to the 

end of the polyprotein lasting 1 h and 8 min, covering approximately 21,500 nucleotides. 

�e second audio track from a sub-genomic RNA (Covid-19 Translation discontinuous) 

skips the polyprotein entirely to the untranslated region prior to the Surface glycopro-

tein and then plays through to the 3′ poly-A tail. �is piece covers approximately 8500 

nucleotides and lasts 27  min. In addition, two audio tracks were generated represent-

ing transcription/ RNA synthesis. �e track representing genome replication (Covid-19 

Transcription) last 2  h. �e track representing discontinuous transcription (Covid-19 

Transcription discontinuous) skips between TRS10 and TRS1 lasts only 1 min and 47 s.

Conclusion

�is paper extends prior work whereby DNA was sonified using the rules of gene 

expression to generate an auditory display. Previously an individual algorithm was used 

to produce an individual stream of audio from either a nucleotide, a di-nucleotide or 

codons and it was concluded that the sonification of codons was the most useful to 

identify mutations in repetitive DNA or to distinguish coding regions from non-coding 

regions [6]. Here we layer up to 12 layers of audio, each relating to an RNA feature of 

interest. �ese include metadata to layer RNA features such as consensus sequences in 

TRS regions, SL regions, cleavage sites in the polyprotein and interspersed untranslated 

regions between characterised ORF’s. �is approach produces a more detailed and rich 

auditory display which acts as a viable complement to an animated visual display.

Metadata was also used to affect the behaviour of the display to mimic what is known 

to occur during the Coronavirus life cycle. �e polyprotein is the only product to be 

translated from the genomic RNA since this is thought to be the only ORF that has 

access to the ribosomal binding site in the 5′ untranslated region. To mimic this the 

default behaviour of the tool is to stop at the in-frame stop codon at the end of the poly-

protein. �e tool can be restarted at the adjacent untranslated region or elsewhere using 

the navigation buttons. �e default behaviour in transcription mode is to read through 

the entire genome sequence from end to end to mimic genome replication to produce 
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the complementary minus strand. A toggle switch has been implemented to mimic dis-

continuous transcription and in the first instance the polymerase will jump from TRS10 

to TRS1 in the 5′ leader region. �is can be overridden using the navigation buttons but 

if another TRS region is encountered by the play-head it will also jump to the TRS1 in 

the leader region. In translation mode the same toggle causes the ribosome play-head 

to skip the polyprotein and skip from TRS1 to TRS2 and into the Surface Glycoprotein 

sequence. From this point the play-head will continue to the 3′ end reading through the 

remainder of the genome. All other stop codons will be sonified but they will not influ-

ence the progression of the play-head. �e auditory display in combination with real-

time animation provide a unique insight into the large body of evidence describing the 

metabolism of the RNA genome. �is provides another useful tool in the domain of 

genome browsers to further understand the complex function of the viral genome.
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