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Abstract 

We describe a real time robot navigation system based on three VLSI 
neural network modules. These are a resistive grid for path planning, a 
nearest-neighbour classifier for localization using range data from a time­
of-flight infra-red sensor and a sensory-motor associative network for dy­
namic obstacle avoidance . 

1 INTRODUCTION 

There have been very few demonstrations ofthe application ofVLSI neural networks 
to real world problems. Yet there are many signal processing, pattern recognition 
or optimization problems where a large number of competing hypotheses need to 
be explored in parallel, most often in real time. The massive parallelism of VLSI 
neural network devices, with one multiplier circuit per synapse, is ideally suited to 
such problems. In this paper, we present preliminary results from our design for a 

real time robot navigation system based on VLSI neural network modules. This is a 

• Also: RSRE, Great Malvern, Worcester, WR14 3PS 

422 



Real-time Autonomous Robot Navigation Using VLSI Neural Networks 423 

real world problem which has not been fully solved by traditional AI methods; even 
when partial solutions have been proposed and implemented, these have required 
vast computational resources, usually remote from the robot and linked to it via an 
umbilical cord. 

2 OVERVIEW 

The aim of our work is to develop an autonomous vehicle capable of real-time 

navigation, including obstacle avoidance, in a known indoor environment. The 
obstacles may be permanent (static) or unexpected and dynamic (for example, 
in an automated factory environment, the walls and machines are permanent but 
people, other moving vehicles and packages are not.) There are three neural network 
modules at the heart of our navigation system: a localization module (to determine, 
at any time, the robot's position within the environment), an obstacle detection 
module and a path planning module (to compute a path to the goal which avoids 
obstacles). These modules perform low-level processing in real time which can then 
be decoupled from higher level processing to be carried out by a simple controller. 
It is our view that such a hybrid system is the best way to realise the computational 
potential of artificial neural networks for solving a real world problem such as this 
without compromising overall system performance. 

A short description of each module is now given. In each case, the general principles 
are first outlined and, where applicable, the results of our preliminary work are then 
reported. 

3 PATH PLANNING 

The use ofresistive grids for parallel analog computation was first suggested by Horn 
in the mid-seventies (Horn, 1974) and the idea has since been exploited by Mead and 
co-workers, for example in a silicon retina (Mead and Mahowald, 1988). Although 
these resistive grids cannot be said to be neural networks in the conventional sense, 
they also perform parallel analog computation and they have the same advantages, 
in terms of speed and fault-tolerance, as any hardware realisation of neural networks. 

We have taken the resistive grid concept and applied it to the path planning prob­
lem, here taken to be the computation of an obstacle-avoiding path, in a structured 
environment, from the robot's initial (or present) position (P) to its goal (G). In our 
approach, the robot's working domain is discretized and mapped onto a resistive 
grid of hexagonal or rectangular cells - see Figure 1 which shows the test environ­
ment for Autonomous Guided Vehicles (AGV's) in the Oxford Robotics Laboratory. 
Each resistor in the grid has a value of flo, unless it is part of a region of the grid 
corresponding to an obstacle, in which case its resistance is infinite (Roo). 

The principle of the method is perhaps best understood by considering a continuous 
analog of the resistive grid (for example, a sheet of material of uniform resistivity in 
which holes have been cut to represent the obstacles). The current streamlines re­
sulting from the application of an external source between P and G skirt around the 
obstacles; if we follow one of these streamlines from P to G, we will obtain a guaran­

teed collision-free path since current cannot flow into the obstacles (Tarassenko and 
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Blake, 1991). For simple cases such as circularly symmetric conductivity distribu­
tions in 2D, Laplace's equation can be solved in order to calculate the value of the 
potential V at every point within the workspace. Following a current streamline is 
then simply a matter of performing gradient descent in V. 

Figure 1: The Oxford test environment for AGV's mapped out as a hexagonal 
resistive grid. The resistors corresponding to the four pillars in the middle are open 
circuits. Note that the pillars are enlarged in their grid representation in order to 
take into account the mobile robot's finite size. 

It is not possible, however, to solve Laplace's equation analytically for realistic en­
vironments. With the resistive grid, the problem is discretized and mapped onto a 
hardware representation which can be implemented in VLSI. As soon as an external 
source of power is connected between P and G, the resistive network settles into 
the state of least power dissipation and the node voltages can be read out (hard­
ware computation of Kirchhoff's equations). The path from P to G is computed 
incrementally from local voltage measurements: for each node, the next move is 
identified by measuring the voltage drop ~ Vn between that node and each of its 
nearest neighbours (n = 6 for a hexagonal grid) and then selecting the node cor­

responding to (~Vn)max. This is illustrated by the example of a robot in a maze 
(Figure 2). As above, the resistors shown shaded are open circuits whilst all other 
resistors are set to be equal to Ro. The robot is initially placed at the centre of the 
maze (P) and a path has to be found to the goal in the top left-hand corner (G). The 
solid line shows the path resulting from a single application of the voltage between 
P and G. The dotted line shows the (optimal) path computed by re-applying the 
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voltage at every node as the robot moves towards the goal. As already indicated, 
this is actually how we intend to use the resistive grid planner in practice, since 
this approach also allows us to re-compute the robot's path whenever unexpected 
obstacles appear in the environment (see Section 5) . 
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Figure 2: Path from middle of maze (P) to top left-hand corner (G) 

3.1 VLSI IMPLEMENTATION 

The VLSI implementation of the resistive grid method will allow us to solve the path 
planning for complex environments in real time. MOS switches are ideal implemen­
tations of the binary resistors in the grid. Each transistor can be programmed to 
be either open (Roo) or closed (Ro) from a RAM cell connected to its gate. With 
the incremental computation of the path described above, the selection of the next 
move is a matter of identifying the largest of six voltages. Of course, the nearest 
neighbour voltages and that of the P node could be read out through an AID con­
verter and the decision made off-chip. We favour a full hardware solution instead, 
whereby the maximum voltage difference is directly identified on-chip. 

4 LOCALIZATION 

The autonomous robot should at any time be able to work out its position in 
the workspace so that the path to the goal can be updated if required. The grid 
representation of the environment used for the path planner can also be employed 
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for localization purposes, in which case localization becomes, in the first instance, 
a matter of identifying the nearest node in the grid at any time during navigation. 

This task can be performed by harnessing the pattern recognition capabilities of 
neural networks. The room environment is learnt by recording a 3600 range scan 
at every node during a training phase prior to navigation. During navigation, the 
nearest node is identified using a minimum-distance classifier implemented on a 
single-layer neural network working on dense input data (one range value every 30 , 

say). In order to solve the localization problem in real-time, we have designed a time­
of-flight optical rangefinder, which uses near infra-red light, amplitude-modulated 
at a frequency of just above 5 MHz, together with a heterodyne mixing technique. 
Our design is capable of resolving phase shifts in the received light signal of the 
order of 0.10 over a 50 dB dynamic range. 

The rotating optical scanner gives a complete 3600 scan approximately every second 

during navigation. The minimum-distance classifier is used to compare this scan x 
with the k patterns Uj recorded at each node during training. If we use a Euclidean 
metric for the comparison, this is equivalent to identifying the pattern Uj for which: 

(1) 

is a minimum. The first term in the above equation is the same for all i and can be 
ignored. We can therefore write: 

( 1 T 2 T 
gj x) = - '2 ( - 2w j x + Uj) = Wi X + WjQ (2) 

where gj(x) is a linear discriminant function, Wi = Uj and WjQ = -~u;, Thus each 
Wj vector is one of the learnt patterns Ui and the discriminant gi(X) matches the 
input x with Uj, point by point. If we let W j = {Iij} and x = {Vj} and assume 
that there are n range values in each scan, then we can write: 

j=n 

gj(x) = E Iij Vj + WiO (3) 

j=l 

Thus the synaptic weights are an exact copy of the patterns recorded at each grid 
point during learning and the neurons can be thought of as processors which com­

pute distances to those patterns. During navigation, the nearest node is identified 
with a network of k neurons evaluating k discriminant functions in parallel, followed 
by a ''winner-take-all'' network to pick the maximum gj(x). This is the well-known 
implementation of the nearest-neighbour classifier on a neural network architecture. 

Since the ui's are analog input vectors, then the synaptic weights Iij will also be 
analog quantities and this leads to a very efficient use of the pulse-stream analog 
VLSI technology which we have recently developed for the implementation of neural 
networks (Murray et ai, 1990). 

With pulse-stream arithmetic, analog computation is performed under digital con­
trol. The neural states are represented by pulse rates and synaptic multiplica­
tion is achieved by pulse width modulation. This allows very compact, fully-



Real-time Autonomous Robot Navigation Using VLSI Neural Networks 427 

programmable, synapse circuits to be designed (3 or 4 transistors per synapse). 
We have already applied one set of our working chips to the nearest-neighbour clas­
sification task described in this Section. They were evaluated on a 24-node test 
environment and full results have been reported elsewhere (Brownlow, Tarassenko 
and Murray, 1990). It was found that the E Iij Vi scalar products evaluated by our 
VLSI chips on this test problem were always within 1.2% of those computed on a 

SUN 3/80 workstation. 

5 OBSTACLE DETECTION/AVOIDANCE 

A more appropriate name for this module may be that of local navigation. The 
module will rely on optical flow information derived from a number of fixed optical 
sensors mounted on the robot platform. Each sensor will include a pulsed light 
source to illuminate the scene locally and the light reflected from nearby objects 
will be focussed onto a pair of gratings at right angles to each other, before being 
detected by a photodiode array. From the time derivatives of the received signals, 
it is possible to compute the relative velocities of nearby objects such as moving 
obstacles. We plan to use previous work on structure from motion to pre-process 
these velocity vectors and derive from them appropriate feature vectors to be used 
as inputs to a low-level neural network for motor control (see Figure 3 below). 
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Figure 3: Sensory-motor associative network for obstacle avoidance 
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The obstacle avoidance network will be taught to associate appropriate motor be­
haviours with different types of sensory input data, for example the taking of the 
correct evasive action when a moving object is approaching the robot from a par­
ticular direction. This module will therefore be responsible for path adjustment in 
response to dynamic obstacles (with a bandwidth of around 100 Hz), but the path 
planner of Section 3 will continue to deal with path reconfiguration at a much lower 

data rate (1 Hz), once the dynamic obstacle has been avoided. Our work on this 
module has, so far, been mainly concerned with the design of the input sensors and 

associated electronics. 

6 CONCLUSION 

We have implemented the path planning and localization modules described in this 
paper on a SUN 4 workstation and used them to control a mobile robot platform 
via a radio link. This capability was demonstrated at the NIPS'90 Conference with 
a videotape recording of our mobile robot navigating around static obstacles in 
a laboratory environment, using real-time infra-red data for localization. It was 
possible to run the path planner in near real-time in simulation because no resistor 
value need be changed in a static environment; in order to achieve real-time path 
planning in a dynamic environment, however, the hardware solution of Section 3 
will be mandatory. Our aim remains the implementation of all 3 modules in VLSI 
in order to demonstrate a fully autonomous real-time navigation system with all 
the sensors and hardware mounted on the robot platform. 
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