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Humans in hazardous environments take actions to reduce unnecessary risk, including
limiting exposure to radioactive materials where ionising radiation can be a threat to human
health. Robots can adopt the same approach of risk avoidance to minimise exposure to
radiation, therefore limiting damage to electronics and materials. Reducing a robot’s
exposure to radiation results in longer operational lifetime and better return on investment
for nuclear sector stakeholders. This work achieves radiation avoidance through the use of
layered costmaps, to inform path planning algorithms of this additional risk. Interpolation of
radiation observations into the configuration space of the robot is accomplished using an
inverse distance weighting approach. This technique was successfully demonstrated
using an unmanned ground vehicle running the Robot Operating System equipped with
compatible gamma radiation sensors, both in simulation and in real-world mock inspection
missions, where the vehicle was exposed to radioactive materials in Lancaster University’s
Neutron Laboratory. The addition of radiation avoidance functionality was shown to reduce
total accumulated dose to background levels in real-world deployment and up to a factor
of 10 in simulation.
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INTRODUCTION

Robots are an excellent technology for completing dull, dirty, and dangerous tasks in nuclear facilities
whilst removing humans from unnecessary danger from radiological, chemical, or physical hazards.
In the United Kingdom, robotics has been highlighted by the Nuclear Decommissioning Authority as
a critical part of the ongoing decommissioning of legacy facilities, which represents a projected cost
of £130 billion over the next 120 years (Nuclear Decommissioning Authority, 2020a). The use of
robotics can reduce financial costs, accelerate adoption of key activities, and help protect human
health (Nuclear Decommissioning Authority, 2020b).

Despite mobile robots already performing some routine inspection and maintenance tasks in the
nuclear sector (Nuclear Decommissioning Authority, 2020b), there is an aspiration for a 50%
reduction in human-led activities in hazardous environments by 2030 (Nuclear Decommissioning
Authority, 2021). Therefore, the uptake of robotics needs to increase dramatically to reach these
targets. Furthermore, these robots will be expected to operate in increasingly hazardous
environments compared to current activities.

Though robotic systems are generally far more tolerant of ionising radiation than humans, they
are still vulnerable to ongoing damage that causes component and material degradation, unexpected
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behaviour, mechanical faults, and eventual demise. Total ionising
dose (TID), accumulated exposure over the lifetime of a
component, is used as a primary indicator of component
health rather than instantaneous dose rate.

Radiation tolerance must be considered as part of both robot
and mission design for missions in extreme environments (Zhang
et al., 2020; Yirmibeşoğlu et al., 2019; Nagatani et al., 2011;
Tsiligiannis et al., 2020). An exemplary case is the failure of
early robots at Chernobyl as a consequence of ionising radiation
(Tsitsimpelis et al., 2019). Furthermore, information from
sensors used for inspection or robot situational awareness,
such as cameras (Meng et al., 2003) and range-finding sensors
(Cao et al., 2012; Diggins et al., 2015), may also become degraded
or compromised, rendering the data they collect unsuitable to
stakeholders. As such, robot design and mission planning may
need to specifically factor in the monitoring and replacement as
preventative maintenance of such equipment to avoid total
system failure. For reconnaissance robots deployed at
Fukushima, cameras and lidar units were most likely to fail
with exposure to gamma rays after 120 Gy (Nagatani et al.,
2011), with computers capable of withstanding similar
exposure (West et al., 2021a).

Designing robots to be more radiation tolerant is the standard
approach taken to mitigate the impacts of ionising radiation. This
is typically achieved through the addition of shielding materials
(Zhao et al., 2020; Nagatani et al., 2011), or by replacing
vulnerable components with radiation-hardened equivalents.
Radiation-hardened electronic components offer higher TID
performance, but can be three orders of magnitude more
expensive than their commercial off-the-shelf (COTS)
equivalents (Merl and Graham, 2016) and may fall short of
the required computational resources used in many modern
robotic and AI solutions. Autonomous behaviours such as
collision avoidance, mapping, path planning, and object
recognition (Tsitsimpelis et al., 2019; Schneider and
Wildermuth, 2011; Groves et al., 2021) are becoming reliant
on more powerful algorithms and even specialist GPU
acceleration hardware, particularly for machine learning and
vision processing. Furthermore, the UK nuclear sector has
expressed a preference for COTS parts and components over
bespoke systems to reduce cost and time to deployment and
provide better technology readiness levels and evidence of
continued operation (Smith et al., 2020). Therefore, use of
radiation-hardened components in robots for the civil nuclear
sector is unlikely for all but the most extreme environments.

Shielding with materials such as lead or tungsten can protect
sensitive electronic components, limiting the TID experienced by
components, but introduces additional mass (West et al., 2021a).
This extra mass is not only a significant inconvenience for
operators, especially in emergency response scenarios
(Kawatsuma et al., 2017), but also places greater requirements
on motors and power electronics, as well as reduces mission run
time for battery powered systems. Furthermore, optical or range-
based sensors such as cameras, lidar, radar, and ultrasound
cannot be completely shielded with opaque materials.

For the reasons stated previously, a complementary mitigation
strategy is required to prolong robot lifetime by reducing

radiation exposure whilst not relying solely on radiation
hardening or shielding. The approach developed in this work
aims to reduce radiation exposure irrespective of the radiation
tolerance of the robot, by providing the robot with situational
awareness of the radiation field and the ability to take action
based on this information. Human practices for dose mitigation
can act as an inspiration for possible robotic approaches.

Humans working in hazardous environments may adopt a
principle called ALARP (as low as reasonably practicable)
(Baybutt, 2014) or ALARA (as low as reasonably achievable),
where risk from ionising radiation and other hazards should be
minimised where possible. Robots destined for nuclear
environments currently do not practice ALARP. However, by
enabling robots to autonomously or semi-autonomously act to
minimise their radiation exposure, they can provide a greater
return on investment by prolonging their operational lifetime,
increasing the reliability of systems, and acquiring better-quality
survey data from on-board instrumentation.

As the robot traverses an environment, if it can deliberately
take action to avoid regions of increased ionising radiation, then
the overall accumulated dose for the same required task will be
reduced. By avoiding ionising radiation to begin with, the TID
requirements over the robot lifetime can be reduced, requiring
less shielding mass or removing the need for specific radiation-
hardened devices. If mobile robots can avoid damage from
ionising radiation, the more attractive the use of affordable
COTS hardware becomes, enabling the uptake and
deployment of robotics to accelerate in these hazardous
environments. These systems can be lighter, longer-lasting,
more affordable, and more reliable during autonomous tasks
than previous solutions.

To achieve awareness and avoidance based on radiation
intensity, this work proposes the use of layered costmaps to
provide additional information to path planning when radiation
hazards exist. Path planning algorithms then penalise navigation
through regions of increased radiation, preferring less-radiation-
intensive routes, possibly at the expense of longer path lengths.
The accumulated dose for a robot is, therefore, reduced with every
mission, prolonging its total lifetime and that of its accompanying
sensors. Moreover, this work provides a method to adapt point
radiation observations, from on-board radiation monitoring
instruments, into broader robot configuration space relevant
information for a layered costmap from sparse, noisy, low-
spatiotemporal-resolution data. This solution is demonstrated
both in simulation and using a mobile robot exposed to a Cf-252
neutron source, with the method incorporated into the Robot
Operating System (ROS).

MATERIALS AND METHODS

Previous literature on minimisation or avoidance of radiation
exposure has been understandably focused on humans walking
through nuclear environments (Pachter and Pachter, 2001;
Khasawneh et al., 2013; Liu et al., 2014, Liu et al., 2016; Chao
et al., 2018; Wang and Cai, 2018). In emergency scenarios, quick
path planning can guide radiation workers to a point of egress
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whilst minimising dose. Primarily, investigations have trialled
different path planning algorithms such as Dijkstra, A*, and
RRT* to increase the speed at which a solution is found whilst
assessing the compromises made in total dose along the path if
non-optimal (Adibeli et al., 2021). This use case is intended for
time-critical one-off emergency response scenarios rather than
the continuous re-planning that modern mobile robots employ.

These human-centric previous works focus on the
minimisation of radiation dose only, with some including
binary obstacles (Liu et al., 2016; Chao et al., 2018; Wang and
Cai, 2018), and are, therefore, incapable of incorporating other
risks, including dynamic obstacles such as humans and including
optimisation regarding path length. Furthermore, they all assume
total a priori knowledge of the radiation field in an environment
with mostly holonomic human agents, which does not hold for all
robots.

Robots being deployed into radioactive environments are
often the first witnesses of conditions inside facilities
(Tsitsimpelis et al., 2019; Nagatani et al., 2013). Therefore,
there is no prior knowledge of the radiation fields inside; ergo,
previous methods are unsuitable without modification. Robots
need to be able to react in real time to new information from
radiation sensors and make updated path planning decisions with
incomplete knowledge. Moreover, mobile robots lack the
dexterity and improvisation skills of humans when traversing
cluttered, unstructured environments. A priority for a mobile
robotic systemmay not be necessarily dose minimisation, but safe
and reliable traversal of otherwise challenging terrain without
contacting obstacles, which may include humans. Path
minimisation on dose rate alone could be potentially
dangerous to robotic systems and their mission objectives.

For modern robotic platforms leveraging ROS, operators have
a variety of global and local path planners at their disposal. From
the standard ROS navigation stack, it is possible to choose from
common Dijkstra and A* approaches, amongst others, as global
planners, with a variety of local planners. Critically, these path
planners are often chosen due to the physical specifications of a
robot platform and its locomotion, rather than their speed of
computation. An example would be a planner chosen for
Ackermann steering, a non-holonomic system. Therefore
previous works which are based around the holonomic
movement of humans may not necessarily transfer. Layered
costmaps are largely planner agnostic and could be used with
most of the human-specific path planning algorithms employed
in previous work. They allow for the inclusion of a variety of risk
vectors, including static and dynamic obstacles, and also
behavioural modifications such as no-go zones, providing
humans with additional personal space, or travelling on a
particular side of a corridor (Lu et al., 2014). This work also
provides a method for a costmap to be updated in a robot-
contextualised manner in real time.

Costmaps, an evolution of occupancy grids, are a common
approach to monitoring obstacles and other hazards for path
planning and avoidance. A metric map of an environment is
either provided or created using SLAM (Simultaneous
Localisation And Mapping), based on a regular grid of cells of
set physical size, effectively discretising an environment into a

downsampled finite representation. This is most commonly
performed in two dimensions; however, it can be extended
into higher dimensions using voxels.

The value in each cell is a representation of additional risk
associated with environmental features located in that physical
space. Path planning algorithms can, therefore, calculate grid-
based optimised paths whilst accounting for environmental
features. Costmaps allow for scalable assessment of risk over
earlier binary/trinary occupancy grids, greatly increasing the
granularity with which systems can plan paths around
environmental features. An exemplar of costmap granularity is
the inflation of obstacles into the configuration space of a robotic
system, including a decreasing function to provide additional
clearance and smoothing of manoeuvres through congested
spaces (Zheng, 2017). The costmap implementation used in
this work is handled by the ROS costmap_2d1 package,
allowing simple integration into ROS path planning and
navigation handlers such as move_base2.

Path planning occurs at two levels, global and local. Global
path planning handles optimisation of paths between two
waypoints and is calculated relatively infrequently along the
total path, often on a coarser resolution costmap. Local path
planning then acts to keep the robot on that optimised trajectory
whilst responding to new information, for example, transient
obstacles such as people or where obstacles are unexpected, such
as furniture being re-positioned. In ROS, two costmaps can exist
for each respective path planner: a global costmap that can
increase in size to accommodate new locations and store
previous information and a local costmap that is of fixed size
around the centre of the robot. For a robot to employ this
navigation system and avoid ionising radiation, it must be
capable of providing costmaps at a local and global level.

The implementation proposed in this work produces a metric
costmap based on the risk associated with ionising radiation,
suitable for many robot designs and locomotion schemes. This
can be used exclusively or with other information, including
obstacles and preexisting occupancy grids maps, at both a local
and global level.

Layered Costmaps
Layered costmaps allow for the holistic inclusion of multiple data
types and sources. They consist of individual layers of costmaps,
which are combined to produce a single monolithic representation
of hazards in an environment to be passed to a navigation
implementation (Lu et al., 2014). An obvious benefit to layered
costmaps is the simple and, more importantly, flexible inclusion of
various behaviours or sources of hazard, which only need to be
updated in their respective layer. Use of layered costmaps is
supported in the standard installation of ROS, and this work
provides a specialised plugin for the costmap_2d package.

Layered costmaps have been used to great effect to modify
mobile robot behaviour in social interactions, ensuring that
humans are afforded a reasonable amount of personal space,

1http://wiki.ros.org/costmap_2d.
2http://wiki.ros.org/move_base.
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navigate around moving people or crowds, and maintain social
conventions (Lu et al., 2014; Kollmitz et al., 2015; Fang et al.,
2020). The layers in a costmap are arranged in a hierarchy, which
are then combined to produce the flattened monolithic costmap.
Figure 1 demonstrates how the hierarchy of layers may dictate
the behaviour of other layers and their combinations. Colours
represent different layers, with darker colours indicating higher
costs, lighter colours indicating lower costs, and white being
indicative of no additional cost. This monolithic costmap is then
used for path planning optimisation, incorporating risk from all
relevant environmental factors.

The output monolithic costmap, used by the navigation stack,
consists of three layers in this example. The first is an obstacle
layer, referring to data from lidar, depth cameras, etc., to identify
solid, possibly moving, objects in the vicinity. To convert into the
configuration space of a robot, the inflation layer adds a region of
increased cost around lethal (could be collided with) obstacles,
including a decaying component. The radiation layer acts
independently; however, to update the cost of the monolithic
costmap on a per cell basis, a combination policy must be chosen.

There are typically three modes for combining layers:
overwriting all other values, maintaining the maximum value,
or simple addition of cost on a cell-by-cell basis. If the radiation
layer simply overwrites other layers, then critical navigation
features such as obstacles may be removed. To reiterate the
previous discussion, obstacle avoidance and manoeuvrability of
the mobile robot should be a primary consideration. Therefore, in
this instance, radiation information is more suited to addition or
maintaining maximum values. In this work, a map provided by
SLAM and an obstacle inflation layer are used to facilitate basic
navigation and path planning in conjunction with radiation
awareness.

Cost Allocation for Ionising Radiation
Path planning algorithms for point-to-point navigation are
typically centred around minimising the distance travelled, to

provide an optimised route from start to goal. In a discretised
metric description, as is the case with costmaps, distance is
represented by assigning a cost to visiting a particular cell in a
costmap. To disincentivise visiting certain cells, for example,
because they are close to an obstacle, an additional cost is
given, mimicking a longer path length. In the costmap_2d
implementation for layered costmaps, both the monolithic and
individual layers are limited to integer values ranging from 0 to
255 in each cell. The values 1–252 represent a linear progression
of cost, with 0 representing free space, i.e., no additional cost. For
cells with no information, the value 255 is reserved; furthermore,
values 254 and 253 are reserved for obstacles and circumscribed
obstacles (inflation), respectively (Zheng, 2017).

For the ROS 2D navigation stack, the cost of visiting a costmap
cell, Gi, is given by

Gi � αci + n, (1)
where α is a cost scaling factor, n is the neutral cost, and ci represents
an additional cost between 0 and 252. When no additional risks are
present, the cost of visiting a cell in free space (ci = 0) is set by only
the neutral cost. Therefore, minimisation of cost also minimises the
number of cells visited, achieving the shortest path. The total path
cost P for a given path is given by

P � α∑
i

ci + np. (2)

Once again, in the case that no additional costs are present
(i.e., ∑ici = 0), the optimal path will minimise the total neutral
cost, n, multiplied by the path length, p, and, hence, the distance
travelled. Additional costs, e.g., in close proximity to an obstacle,
mimic additional costs due to a longer candidate path and are,
therefore, undesirable and, hence, avoided. This model of cost can
be directly mirrored to radiation dose on a per cell visited basis
and motivates the use of costmaps for describing ionising
radiation risk. Assuming a robot travels at a fixed velocity, it

FIGURE 1 | Monolithic costmap used for path planning is generated with combined information from multiple layers (A). Inclusion of additional cost due to
environmental risk may alter the optimal path (B).
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is assumed the time taken to traverse a cell will be constant.
Therefore, exposed dose as a function of time is directly
proportional to path length and the number of cells traversed.

The low levels of background ionising radiation dose are not
treated as a concern under usual operation; therefore, regardless
of robot motion, there is an equivalent neutral dose (analogous to
neutral cost) associated with travel in general, even with no
additional nuclear materials. The concept of a neutral dose
rate is in alignment with ALARP principles, where “broadly
acceptable risks” are not subject to additional mitigating
actions (Baybutt, 2014). Accumulated dose can be modelled as
an analogous neutral cost due to background levels, with the risk
of additional dose from sources in an environment beingmodeled
as an additional cost. Along a given path length p, background
neutral dose rate b, and cell-wise additional dose vi, accumulated
dose D along a path is given by

D � ∑
i

vi + bp. (3)

By comparing Eq. 2 with Eq. 3, it is possible to create a direct
relationship between additional radiation dose and the integer
values of additional cost in a costmap by imposing a condition
where additional radiation exposure is treated as analogous to an
increase in path length. As stated previously, the total ionising
dose is of greater importance to component integrity than
instantaneous dose rate; hence, minimisation of integrated
dose along the path is considered in this approach. Though
path lengths may be longer with radiation-aware planning, the
total dose will be reduced.

As an example, the hypothetical shortest path, p0, passes cells
with an additional dose above the neutral background dose rate,
whilst another possible path, p1, is longer but does not pass any
cells with additional dose. If the extra neutral dose of the longer
path is less than the additional source dose of the shortest path,
i.e., b(p1 − p0) <∑ivi, then the lower-dose path is preferred despite
being longer. With appropriate values for v and b, the lowest-cost
path should normally be the lowest-dose path, but may have
considerably longer path lengths.

Radiation dose rate is on a continuous scale and may be
measured in a variety of units and time scales, such as counts per
second (cps) or Sieverts per hour (Sv/h). These values obtained by
using instruments need to be converted to a 0–252 representation
of additional cost to be integrated as part of a costmap layer. For
radiation dose value v, the cell cost is given by

Ci � 252 ×
vi − tl
tu − tl

⌊ ⌉. (4)

The lower threshold tl allows for observations below this
threshold to be regarded as free space, i.e., neutral dose with
no additional cost, defining an acceptable background rate, or a
rate which would not greatly impact the operational lifetime of
the robot. The upper threshold tu ensures that all readings above a
certain threshold are marked as having the maximum additional
cost. This allows for a linear ALARP region of dose to be defined,
with dose rates above this classed as an unacceptable risk. This
implementation does allow the user to set the scale factor to 252

(non-lethal) or 254 (lethal) in Eq. 4, meaning that regions of
elevated radiation can be completely excluded as they are classed
as lethal obstacles. This is generally not recommended, as it can
have unintended negative consequences for path planning if a
route becomes impassable as a result, for example, a robot being
stuck behind a virtual wall of radiation and unable to return
to base.

The neutral cost, n, and cost scaling factor, α, in Eq. 1 are
usually chosen by a user to generate desired path planning
properties or behaviours (Zheng, 2017; Lu et al., 2013).
Obstacle avoidance and operator management are typically
greater concerns for the operational reliability of mobile robots
than radiation. The majority of robot failures in general disaster
response are due to collisions, mobility failures, getting stuck, or
tethers becoming severed or damaged (Murphy, 2014).
Therefore, these factors should be considered first for other
costmap layers such as obstacles and inflation layers. As the
cost in a layer is limited to 0–255, the cost of visiting a cell Gi is
also capped between 0 and 255; therefore, as a general rule, it is
necessary to keep the neutral cost per cell low, so as to enable finer
fidelity due to additional cost, rather than a planner being
dominated by minimising path length.

Interpolation Into Robot Configuration
Space
For effective path planning, a planner must be able to predict
conditions in the future along a path. This is straightforward for
obstacle avoidance with the use of range sensors such as lidar,
depth cameras, radar, or ultrasonic ranging sensors. Not only are
future obstacles predictable but also the range of these sensors is
much greater than the configuration space of the robot, affording
information for a costmap in a whole robot’s relevant context.
Radiation measurements in comparison are typically point
measurements made within or in close proximity to the
configuration space of a mobile robot, offering no additional
future spatiotemporal information.

Point radiation measurements, therefore, require inflation to
length scales similar to the configuration space of a robot
platform to ensure it can correctly avoid an enlarged region
around a radiation observation. Inflation of binary obstacles and a
given robot length scale is trivial and performed routinely, but for
radiation, it must contend with fluctuating values of radiation
intensity and adequately account for gradients that may exist,
particularly for gamma radiation.

To predict a radiation intensity value at the location of cell
centres that do not have a direct measurement, an inference must
be made from observations in the vicinity. Though there are
many interpolationmethods available, an approach is needed that
can incorporate irregularly spaced observations as the robot
moves around the environment, including repeat
measurements if the robot is stationary. As radiation
measurements naturally fluctuate due to the stochastic nature
of radioactive decay, theymust also be able to handle observations
with associated variance and finally be quick to compute.

The method of inverse distance weighting was chosen for
interpolation, which relies on the principle that locations close to
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each other are more highly correlated than distant locations, and
by using surrounding observations, a value at a new location can
be inferred. The use of an inverse distance weighting approach
has benefits over other approaches in that it can handle
fluctuating, sparse, and repeat measurements, which many
interpolation techniques cannot (West et al., 2021b), but is
considerably quicker to compute than more accurate methods
such as Gaussian process regression.

Inverse distance weighting interpolation is performed by
taking the arithmetic mean of observations, with a weighting
based on how close observations are to the interpolated
position. The interpolated positions in this case are the
centres of each costmap cell. The spatially weighted averaged
value for a given cell, v, for all observations, θ, and weighting, w,
is given by

v � ∑ θi × wi( )
∑wi

. (5)

Under the assumption that observations closer to a cell are
more likely to describe the conditions in that cell, observations
that are closer have greater weighting than those further away.
The weighting assigned is based on a Gaussian expression, given
as follows:

wi � exp − d2
i

2s2
( ). (6)

The weighting given to a particular observation, w, is a
function of the Euclidean distance, d, between the observation
and a given cell centre and a scale factor, s, which is user defined.
As very distant observations are not expected to represent the
conditions in a cell, observations made outside a defined region of
influence are not included in the interpolation to save on
computational requirements. This region can be expressed as a
simple radius or as a specific polygon.

It would be inefficient for both computation speed and
memory use to store all observation position and intensity
values to recalculate the average of every cell upon each new
observation if using Eq. 5 directly; instead, upon a new
observation, only cells within a region of interest are updated
given the procedure in Algorithm 1. This approach not only
allows for interpolation of values to inflate radiation values into
the configuration space of the robot but also acts to average
inherently randomly fluctuating radiation observations, whilst
maintaining gradients in the measured radiation field.

Algorithm 1:. Radiation Layer Update Routine

For each cell in the costmap, there are two equivalent cells held
in arrays of identical size to the costmap: the one which holds the
average radiation intensity value, denoted by V, and the one
which holds the accumulative weighting of all observations that
updated that cell, denoted by W. The cell is updated via an
arithmetic mean with the previous value and weighting and the
value and weighting of the new observation. The calculated
average value is then finally converted to a cost using Eq. 4,
and the costmap layer is updated. By storing cell-wise average
radiation values, V, it is possible to change intensity thresholds
and, therefore, cost, on an ad hoc basis.

RESULTS

With the advent of recently benchmarked ROS-compatible
radiation simulation in the physics simulator Gazebo (Wright
et al., 2021), this work uses gamma sources with a single
uncollimated detector to assess the methodology before
testing in an active environment at the Lancaster
University Neutron Laboratory. Access to suitable ionising
radiation sources can be prohibitive for research
experimentation due to the availability of facilities and
safety issues. Previous studies have used proxies for
radiation sources, such as radio emitters (Groves et al.,
2021). However, in the current work, experiments are
performed in both simulation and in an active
environment with real ionising radiation sources. The
robot modelled in simulation is a Clearpath Jackal,
reflecting the hardware used in active deployments (Bird
et al., 2018; West et al., 2021b; Tsitsimpelis et al., 2021),

FIGURE 2 | Path taken by the robot from x = −6m to x = +6m; when the
robot conducts path planning with radiation awareness, it can avoid the
gamma source located at the origin. Red circles are a visual aid of different radii
from the source.
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equipped with a single front-facing lidar sensor, utilising the
GMapping3 package for SLAM. The robot uses a four-wheel
skid-steer drive for forward/reverse locomotion and yaw
control.

Single Gamma Source
Figure 2 shows the path taken by the simulated robot in response to
a single gamma source located at the origin in an open environment.
The source strength at 1 mwas 250 arbitrary units per second, with a
neutral cell cost of 10 units, an interpolation radius of 0.5 m, and a
scale factor of 0.15 m, with the lower radiation costmap threshold at
10 units and the upper threshold set at 50 or 100 units to be more or
less cautious of radiation exposure, respectively. The robot was
commanded to traverse from the starting position at x = −6 m to
the goal position at x = +6 m, with different levels of knowledge
regarding radiation. When radiation information was not included,
the robot took a straight path towards the goal position and passed
directly over the source. For an unknown radiation field, the robot
begins to approach the source before initiating avoidance
manoeuvres when the cost of continuing is too great, whereas
for a known radiation field, the robot clearly takes a wider arc
around the source from the beginning. When cost scaling is set so
that lower intensities of radiation result in larger cell costs (upper
threshold of 50), labelled as “more cautious” in Figure 2, for both the
known and unknown radiation avoidance scenarios, the robot keeps
a greater distance from the source.

Figure 3A shows the clear increase in dose rate as the robot
approaches the source when not avoiding radiation. It further shows
an identical initial trend in dose rate for the unknown cases until the
robot takes action when the dose rate becomes too high. By adjusting
the threshold values, this can be triggered earlier or later depending
on the radiation tolerance requirements of a robot platform, as
evidenced by the earlier response of the cautious thresholding.

The resultant total absorbed dose for the task is shown in
Figure 3B, calculated as the integrated dose rate over time. A

considerable reduction in accumulated dose is conferred when
radiation awareness is enabled, including unknown radiation
fields. For known radiation environments, the accumulated dose
is greatly reduced, but with a trade off of increased time to complete
the task as the robot is more cautious, therefore taking a more
circuitous route. As the optimisation of cost is directly related to the
minimisation of dose, despite longer path lengths, total dose should
beminimised over all allowable routes.When navigating a radiation
environment, even in an unknown condition, with an appropriately
cautious upper threshold, the total dose can be readily reduced by an
order of magnitude compared to the worst case.

A disadvantage of a more cautious cost thresholding scheme is
the time taken tomake avoidancemanoeuvres. If the robot can avoid
the very central region where the dose rate is extremely high, due to
the 1/r2 relationship of intensity with distance from a point isotropic
source, even mild radiation avoidance behaviours can deliver a
considerable reduction in accumulated dose. Therefore, heavily
penalising radiation dose is not necessary for all applications.
Furthermore, this better maintains the preference for planning
around other environmental features such as obstacles that pose
a more immediate threat. Finally, less-cautious thresholding will
result in more direct paths, making better use of other limited
resources such as operator time and battery capacity.

The compromise between time taken and dose can be updated
in real time in this approach by altering thresholds at any time,
either by the operator or autonomous agent decision making. This
could be based on the internal state of the robot, e.g., when the
battery is low, the robot may prioritise more direct paths or avoid
radiation more after an increased dose (Wright, 2018), or to enable
greater trust for end-users who typically dislike robots behaving
with higher risk in nuclear environments (Bridgwater et al., 2020).

Autonomous Exploration With Multiple
Sources
To demonstrate how radiation avoidance may be used in a
deployment scenario, a simulated robot was instructed to
perform frontier exploration of an environment with radiation

FIGURE 3 | (A) Radiation dose rate as a function of time; instantaneous dose rate is lower when the robot is radiation aware; however, paths can take longer to
complete. (B) Accumulated radiation dose as a function of time; total dose is decreased when the robot is radiation aware.

3https://wiki.ros.org/gmapping.
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sources located throughout the space. This was performed 20
times, both for simple obstacle avoidance navigation and obstacle
avoidance navigation including radiation awareness. The end
point of an exploration session was used as the starting
location for the next round, to provide varied routes through
the environment. For all cases, the radiation environment was
unknown along with the spatial layout, so the robot was acting
based on entirely new information during each exploration. This
real-time response and ability to adapt may be critical for initial
inspection missions in poorly documented environments.

The radiation sensor was installed at the front left corner of the
chassis, but did not extend beyond the footprint of the robot. Five

sources were placed in the environment, all of the 300 arbitrary
units’ intensity at 1 m, with lower and upper radiation cost
threshold values of 50 and 250, respectively. The interpolation
distance was 1.0 m with a smoothing scale factor of 0.15 m. The
frontier exploration capability was provided by the Explore Lite
ROS package (Hörner, 2016).

Figure 4 shows the generated SLAMmaps of the environment,
with example paths taken by the robot for both radiation-aware
and traditional navigation. Under both schemes, the robot is
capable of completing the exploration task, but when using
radiation avoidance, the paths deliberately circumvent passing
in close proximity to sources whilst continuing to goal locations.

FIGURE 4 | Paths taken by a simulated robot during autonomous exploration of an unknown environment, with no radiation awareness (A) and radiation
awareness (B), superimposed on the SLAMmap generated during the trial, with radiation sources indicated with red markers. Snapshots are reported (i–v) from start to
finish, and the path taken by the robot is highlighted. The additional interpolated cost due to radiation during exploration is expressed from blue (lowest threshold) to
yellow (higher cost). The robot takes a circuitous path to avoid radiation sources when radiation awareness is enabled.

FIGURE 5 | Results from autonomous exploration trials of an unknown environment. (A) Accumulated dose is reduced on average when using radiation-aware
navigation; (B) an increased time to complete tasks due to longer path lengths when avoiding radiation.
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Coloured regions indicate elevated regions of additional cost for
radiation sources at the end of exploration, with blue indicating
low cost through green and yellow indicating higher cost. As the
robot approaches a source, the costmap is populated with
additional costs and the path planner produces an alternative
route. This re-planning is performed regularly, allowing the robot
to circumvent the source whilst attempting to reach an
exploration target.

The total dose received by the robot when including radiation
avoidance was reduced by approximately half on average, as
shown in Figure 5A for the environment and thresholding
scheme used in these trials. However, due to the longer path

lengths required to avoid traversing close to sources, the time to
complete the exploration did increase on average, as seen in
Figure 5B. As discussed previously, by manipulating the costmap
thresholds, the compromise between increased time and
radiation dose can be tuned and can even be altered in real
time based on the robot’s internal state or preferences of the end-
user.

Lancaster University Neutron Laboratory
To assess the use of costmaps to avoid radiation from real sources,
a Clearpath Jackal UGV (Unmanned Ground Vehicle) was
equipped with radiation sensing capabilities and deployed at
the Lancaster University Neutron Laboratory, Lancaster,
United Kingdom. The radiation sensor consisted of a CeBr3
scintillator detector, twinned with a mixed field analyser for
event analysis. The count rate was reported to the robot via
ROS at a rate of 1 Hz, integrated over an energy range of
300–2,500 keV. More details regarding the platform and
radiation sensing can be found in the work of Tsitsimpelis
et al. (2021) and West et al. (2021b). An annotated picture of
the deployed platform is shown in Figures 6, 2D. Lidar (SICK
TiM571) was used for SLAM, and an RGB webcam (Logitech
C930) was used for operator awareness during initial manual
navigation.

The facility consists of a cuboid shielding container at roughly
the center of the space. A 13 MBq Cf-252 neutron source is
housed in a container surrounded mostly by water, and when
operational, it is exposed on one side of the container, leading to a
segment of the space being subject to a flux of neutrons and
gamma rays. Figure 7A shows a photograph of the container at
the facility and the side where the source is exposed. The shielding
of the container helps to limit radiation exposure around the
other three sides. Therefore, paths around these non-exposed
sides offer safer routes.

Before autonomous navigation was enabled, the robot was
driven manually around the environment from a remote position
outside the laboratory to build up a SLAM map and also to

FIGURE 6 | Clearpath Jackal platform, equipped with dual 2D lidar for
SLAM, an RGB camera for operator awareness, and a mixed field analyser
and scintillator detector for gamma ray detection.

FIGURE 7 | Annotated photograph taken by the robot at the starting position in the Lancaster University Neutron Laboratory (A); paths planned by the robot in the
presence of a Cf-252 radiation field with avoidance enabled or disabled (B). Interpolated radiation field from a single pass is shown, indicating with blue (lowest threshold)
to orange (high cost) increased cost to pass in front of the source.
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sample the radiation field in front of the radiation source.
Therefore, in this experiment, the robot is operating in a
known radiation environment. The robot was then requested
to traverse to a goal position autonomously, where the shortest
path would take it past the exposed radiation source. Figure 7B
shows a SLAM map generated by the robot, with planned paths
when the radiation costmap layer was enabled or disabled, with
the approximate location of the radiation source highlighted.
With radiation-aware navigation, it is clear the robot has a
preference for taking a longer path with a lower accumulated
dose, whereas for the shortest path, the robot is subject to
radiation exposure in close proximity to the source.

Figure 8 shows the difference in dose rates and accumulated
dose measured by the on-board detector. Part 1) shows the count
rate, with a clear increase as the robot passes the source, this
results in a much greater accumulated dose, as shown in part (b).
The accumulated dose (total recorded counts during navigation)
for the enabled and disabled cases was 72 and 325, respectively,
with a reduction by a factor of approximately 4.5 and the heavily
shielded container providing a significant reduction in dose rate
along the longer path. Effective shielding provides a route at
similar rates to background; therefore, dose reduction can be
extended indefinitely if the robot has an alternative path away
from high-intensity sources. This demonstrates the utility of this
approach to reduce radiation exposure to real-world robots
operating in the presence of real-world radiation sources.

DISCUSSION

Tuning of Navigation
For radiation avoidance to work effectively, there are steps when
tuning a robotic system that can improve performance. These
spatiotemporal factors are associated with radiation sensor update
rate, robot velocity, and configuration space interpolation of
radiation observations. The radiation sensor update rate dictates
how often the radiation costmap is updated; for this discussion, a
rate of 1 Hz is assumed for simplicity.

First, the velocity of the robot should be limited so as not to
cover a significant distance before a new radiation observation is

made. The term “significant” is in reference to two factors.
Gradients in a radiation field can increase quickly due to an
inverse square relationship of intensity with distance. Therefore, a
robot travelling quickly can enter a high-radiation-field region
with little prior warning. Furthermore, shielding materials may
mask the presence of radiation sources until the robot is clear of
these obstructions. If a robot covers more distance than the
interpolation footprint, individual radiation observations will
not be correctly averaged with other observations, resulting in
a poor representation of the radiation field. It was found that
linear velocities below 1 m/s are appropriate as a compromise
between the spatial dimensions of the robot and, therefore, the
interpolation distance whilst covering ground in a reasonable
time, but this should be altered based on sensor update rate.
Velocities that are too slow, though beneficial for radiation
interpolation, leave a robot incapable of responding to threats
in a timely manner.

Second, both the interpolation region of interest around the
robot and the smoothing parameter s can have an impact on the
accuracy of the reconstruction. It is suggested that the
interpolation distance be larger than the product of the
radiation sensor sample period and robot linear velocity. For
example, a sample rate of 1 Hz is a period of 1 s, and a default
Clearpath Jackal linear velocity of 0.4 m/s yields a distance of
0.4 m. A radius of between 0.5 and 1.0 m was used during the
testing in this work. The smoothing parameter should be of scale
lengths closer to that of the robot chassis itself; in this work, a
value of 0.15 m was used.

Finally, the path planner of choice and the monolithic costmap
must be able to update faster than the update rate of the radiation
sensor; i.e., they can respond accordingly to new information. It is
advised to update the path planner at least five times more
frequently than the sensor update rate, as was used in this
work. When using generic ROS path planners, it is advised to
use radiation awareness primarily with a global planner for
convenience. When using a radiation-aware local planner, it
may need to be retuned to allow for enough deviation from
the global path to avoid radiation. Furthermore, it is ensured the
local and global planners allow for variable values of cost in their
planning, not only lethal obstacles. The local and global planners

FIGURE 8 | Radiation dose rate as a function of time (A) and accumulated dose (B). The radiation dose increases when the robot passes in front of the radiation
source when not avoiding radiation.
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used in this work were Timed Elastic Band4 and Global Planner5,
respectively.

Sensor Placement
As discussed previously, range sensors such as lidars provide a
robot with the capability to effectively predict future costs based
on its current velocity and the costmap that is generated from the
lidar scan. By placing radiation sensors forward of the robot
navigation centre (for ROS, this is typically known as base_link
frame6), it grants an asymmetry biased to future positions the
robot may be in. As costmap cells are on the order of centimetre
scale, placing the sensor forward grants a few additional cells of
forward planning for a path planner. The benefit is that the robot
is much more likely to retreat away from radiation sources earlier
in an unknown scenario.

For the experiments in this work, the radiation sensor was
placed either at the navigation centre, as was the case for the single
source, or placed slightly ahead of the robot navigation centre. In
the case of real-world deployment at the Lancaster University
Neutron Laboratory, only 10 cm, for frontier exploration
simulation, this was 20 cm of forward displacement. Given a
costmap resolution of 5 cm, this yields a few extra cells of
planning range compared to the navigation frame.

For both the real-world and autonomous exploration
experiments, the sensor was placed off-axis to the left or right
side of the chassis. This offset leads to the robot’s having a
preference whether to head left or right after encountering a
source. This greatly decreases any oscillation in replanned paths,
and it was found to be more reliable at repeatedly probing and
eventually skirting around sources. Use of multiple sensors left
and right would confer better interpolation and more robust
behaviour.

Variable Speed
This work assumes a constant linear velocity to simplify
demonstration both mathematically and experimentally of how
this approach can reduce radiation exposure, primarily through
increasing the distance between the robot and ionising sources.
Risk mitigation strategies such as ALARP/ALARA also leverage
time as a dimension, as well as space, to reduce exposure for
humans.

By increasing the speed of the robot in regions of increased
dose, less time is spent in its vicinity, decreasing total exposure for
the same manoeuvre. When twinned with operating at an
increased distance as presented in this work, it is possible to
further reduce total exposure. Variable speed is not advised for
unknown environments, as it may negatively impact
interpolation of the radiation field as previously discussed.
Moreover, it may have unintended consequences on robot
motion; for example, the robot is exposed to a occluded
source and accelerates into the region of high radiation before
path planning has accounted for the new information.

In known environments where there are no alternative routes,
minimising time spent in view of an ionising radiation source in a
predictable manner can further increase robot lifetime, with some
possible penalties to other mission criteria such as battery life,
which would otherwise limit nominal velocities.

CONCLUSION

By having mobile robots practice radiation safety principles like
their human counterparts, accumulated ionising radiation dose
can be reduced, therefore increasing the operational lifetime of
the robot before damage to components or materials leads to
faults. The use of layered costmaps allows for risk from ionising
radiation to be introduced into path planning and navigation
approaches, with scalable thresholding to tune the response to
this threat. By interpolating point observations into the
configuration space of the robot, it is possible to avoid regions
of high-intensity radiation and reduce accumulated dose
significantly. In real-world trials at the Lancaster University
Neutron Laboratory, rates were reduced to background levels,
leading to a reduction in dose of approximately ×4.5, with
simulations indicating an order of magnitude reduction is
readily possible. This approach is applicable to unknown
environments and for autonomous activities such as
exploration, with the capability to adjust the response to
radiation in real time.
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