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ABSTRACT

We start from the state-of-the-art Bag of Words pipeline
that in the 2008 benchmarks of TRECvid and PASCAL
yielded the best performance scores. We have contributed
to that pipeline, which now forms the basis to compare var-
ious fast alternatives for all of its components: (i) For de-
scriptor extraction we propose a fast algorithm to densely
sample SIFT and SURF, and we compare several variants
of these descriptors. (ii) For descriptor projection we com-
pare a k-means visual vocabulary with a Random Forest.
As a preprojection step we experiment with PCA on the de-
scriptors to decrease projection time. (iii) For classification
we use Support Vector Machines and compare the χ2 kernel
with the RBF kernel. Our results lead to a 10-fold speed
increase without any loss of accuracy and to a 30-fold speed
increase with 17% loss of accuracy, where the latter system
does real-time classification at 26 images per second.

Categories and Subject Descriptors

I.4.7 [Image Processing and Computer Vision]: Fea-
ture Measurements; I.4.8 [Image Processing and Com-

puter Vision]: Scene Analysis

General Terms

Algorithms, Measurement

Keywords

Bag of Words, Computational Efficiency, Image Retrieval,
Feature Extraction, Random Forest

1. INTRODUCTION
For the past few years, systems based on a Bag of Words

framework produced the best results on several large scale
content based image and video retrieval benchmarks, such
as the Pascal VOC challenge [2] and the TRECvid Video
Retrieval task [18]. Upon examination of these systems
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it becomes apparent that more is better [10, 19]: Densely
sampling many regions outperforms interest point detectors
sampling fewer regions. Using more descriptor variants is
better. Larger visual vocabularies give higher performance.
Larger datasets give better results. As a result standard Bag
of Words systems have become computationally expensive.

This paper investigates various faster alternatives to the
standard Bag-of-Words pipeline for all of its components:
obtaining region descriptions of an image, projecting these
descriptions on a visual vocabulary, and classification. Our
main contributions are the following: (a) We provide a mod-
ified way to compute (dense) SIFT for the descriptor step.
(b) In the same step we turn SURF [1] into a densely com-
puted feature and prove its effectiveness in classification. (c)
We show that the Random Forests [14] used in combination
with Principle Component Analysis are an efficient and ef-
fective alternative to k-means for the projection step. We
evaluate performance on the Pascal VOC 2007 dataset and
achieve real-time classification.

2. RELATEDWORK
Jurie and Triggs [7] showed that sampling patches on a

regular dense grid outperforms the use of interest points
as used for example in the evaluation of Zhang et al. [21].
We exploit the regularity of this dense sampling method to
reduce computation time for calculating the region descrip-
tors.

Mikolajczyk and Schmid [13] did a comparison of different
descriptors and found SIFT [9] or SIFT-like descriptors to
be the best for matching under different invariances. Miko-
lajczyk et al. [11] then showed that SIFT also performs best
for object recognition.

To speed up the calculation of SIFT, Grabner et al. [5]
proposed to remove the Gaussian weighting around the ori-
gin of the descriptor, which allows the use of integral images
which are fast in combination with interest point detectors.
We will remove this Gaussian weighting scheme to exploit
the spatial nature of SIFT by reusing its components.

Bay et al. [1] proposed SURF, a spatial descriptor sim-
ilar to SIFT based on Haar wavelet responses rather than
oriented gradients. Haar wavelets are cheaper to compute
than the Gaussian derivatives that are used in SIFT. As
with SIFT, we will exploit the spatial nature of SURF in
combination with the dense sampling strategy to reuse its
components.

Large visual vocabularies created with unsupervised k-
means clustering gives good performance (e.g. [21, 10, 20])
and we will use this as our baseline.



Several tree-based algorithms have been proposed to speed
up the projection step, [12, 15, 16], allowing for a logarithmic
rather than a linear projection time in the number of visual
words. The most interesting seems the work on a supervised
random forest of Moosmann et al. [15]: besides a computa-
tional advantage it is the only method also reporting a higher
accuracy on their four-class dataset. Intuitively, trees can be
less tailored to the specific target classes if the number of
these classes increase. This paper will verify whether their
results extends to more classes than four.

Support Vector Machines (SVMs) are a very popular clas-
sifier due to its robustness against large feature vectors and
sparse data. They are successfully used in Bag of Words
methods. The choice of SVM-kernel has a large impact on
performance. Both Zhang et al. [21] and Jiang et al. [6] de-
termined that the χ2-kernel gives the best accuracy. We will
redo part of their experiments but also take computational
efficiency into account.

Lazebnik et al. [8] proposed the spatial pyramid, intro-
ducing a weak form of spatial information by increasingly
subdividing the image and obtain a codebook frequency
histogram for each region separately. This results in a 5-
10% performance increase on the Pascal VOC dataset (data
not shown) at a very limited computational projection cost.
However, resulting codebook frequency histograms and with
that classification time will increase with a factor n, where n
is the number of image regions. Because we are focusing on
speed in this paper and because the spatial pyramid seems
intuitively equally powerful for all descriptors and projec-
tion methods we do not have to include this method in our
experiments.

3. FAST BAG-OF-WORDS COMPONENTS

3.1 Fast Dense Sampling
This section introduces our novel, fast, and simple way

of calculating densely sampled descriptors. Both SIFT and
SURF are spatial descriptors: each descriptor is constructed
out of four by four subregions whose pixel-wise responses are
summed. In the case of SIFT the responses are oriented gra-
dients calculated using image convolutions, for SURF these
are Haar wavelet responses calculated using simple summa-
tions and subtractions.

First we observe that if the Dense Sampling rate is the
same as the size of a subregion we can reuse these subregions
for the other descriptors. For the original 4 by 4 SURF and
SIFT descriptors this means a factor 16 speed improvement
for doing the summations over the pixel responses.

The original SIFT uses a Gaussian weighting over the
complete image patch, attributing greater importance to the
middle region of the descriptors. This is incompatible with
the reuse of subregions. Unlike when using interest points
however, the middle region of the descriptor does not seem
more important than the rest when using Dense Sampling.
We will therefore omit this Gaussian weighting.

We now present an efficient way to sum the responses
within each subregion by using two matrix multiplications:
One to sum in the row direction and the other to sum over
the column direction. For example, consider that we cal-
culated the pixel-wise responses R from an image. Now
we want to sum these responses over subregions of 3 by 3
pixels. We can calculate this by the matrix multiplication
ARB, where A sums over elements in the row direction and

has the form
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Matrix B sums over the column direction and looks like the
transpose of A but has a different size depending on R.

For robustness against small shifts in position of the de-
scriptor, SIFT uses a linear weighting to divide the responses
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where the top left number is 1 rather than 2/3 due to the
boundary effect. A similar variation enables a Gaussian
weighting scheme.

Doing the summation of the regions with these two matrix
multiplications is highly efficient: As opposed to a simple
for-loop over the regions we obtain a ten-fold speed increase
for images of 300 by 500 pixels which are in our dataset.

3.2 Random Forest
We create a Random Forest [14] using the extremely ran-

domized trees algorithm of Geurts et al. [3]. Unlike k-means,
this algorithm is supervised. To learn a tree we use 250,000
labelled descriptors D from our training set, where the labels
come from the global image annotations (i.e. annotations at
image level). Learning is done recursively. At each node n, s
random splits are proposed by choosing a random dimension
of the descriptors and a random threshold t. This splits the
set of descriptors Dn at node n in Da and Db. Each split is
evaluated using the information gain, defined as [17]

∆E = −
|Da|

|Dn|
E(Da) −

|Db|

|Dn|
E(Db), (1)

where E(Da) is the Shannon Entropy of the class labels
of Da. The split with the highest information gain is then
adopted. Training then continues with Da and Db and stops
if a specific depth is reached or if a set is empty.

4. EXPERIMENTAL SETUP
Our paper compares various alternatives to the traditional

Bag of Words pipeline to obtain better computational effi-
ciency at a minimal loss of classification accuracy. For conve-
nience we divide our experiments into three categories which
represent different parts of the Bag-of-Words pipeline:

Descriptors The features which describe the extracted lo-
cal image patches.

Projection The projection of these descriptors onto the
visual vocabulary, resulting in what we call a codebook
frequency histogram.

Classification The classification of these codebook frequency
histograms.



All experiments were done on the Pascal VOC 2007 chal-
lenge, which is divided into predefined training and set sets
of respectively 5011 and 4952 images. There are 20 differ-
ent object classes and some images contain multiple classes.
To measure accuracy we use the Mean Average Precision
(MAP) over all classes. The Average Precision is defined as

1

m

n
X

i=1

fc(xi)

i
, (2)

where n is the number of images, m is the number of images
of class c, and xi is the i-th image in the ranked list X =
{x1, · · · , xn}. Finally, fc is a function which returns the
number of images of class c in the first i images if xi is of
class c, and 0 otherwise. This measure gives a number in
range (0, 1] where a higher number corresponds to a better
performance.

Computational efficiency is measured in milliseconds per
image. Reported classification time is over all 20 classes. All
our measurements on computational efficiency were done on
a single core of a 2.53 Ghz Intel Core Duo E7200 processor.

4.1 Baseline
Our baseline Bag-of-Words system is modelled after the

best systems of the Pascal VOC challenge 2007 and 2008
[10, 19].

We use the intensity based SIFT descriptor extracted by
our fast Dense Sampling strategy, termed D-SIFT from now
on. We sample subregions of 6 by 6 pixels each 6-th pixel and
use the original spatial configuration of 4 by 4 subregions.

Our visual vocabulary consists of 4096 words created us-
ing k-means clustering. This vocabulary size is kept con-
stant throughout our experiments. New descriptors are pro-
jected to the visual vocabulary using nearest neighbour as-
signment. Classification of the resulting codebook frequency
histograms is done using a SVM with a χ2 kernel.

The resulting Bag-of-Words pipeline for the baseline ex-
periment is presented in figure 1. Note that the pre-projection
step is currently empty but will be used by two of our ex-
periments.

Subsequent experiments will always affect a single element
of this baseline pipeline.

4.2 Descriptors
In this experiment we compare various fast alternatives

to the SIFT descriptor, where we focus on computational
efficiency for both the extraction of the descriptors and the
projection time because the dimensionality of the descriptors
influences projection time.

We compare our implementation of the original 4x4 SIFT
descriptor which includes the Gaussian weighting with our
D-SIFT version which does not include this weighting. Both
have 128 dimensions. We also compare this with our Dense
SURF implementation, D-SURF, which has 64 dimensions.
Our D-SURF descriptor differs from the normal SURF in
that, as in SIFT, we include the linear weighting over the
subregions to improve robustness against small changes in
location of the descriptor. Preliminary results showed this
weighting results in slightly better classification accuracy
(data not shown).

We also experiment with the spatiality of the descriptors.
The original SIFT and SURF descriptors consist of 4 by 4
subregions. For D-SIFT and D-SURF we also test a 2 by

2 version (i.e. 2 × 2) and a non-spatial (i.e. 1 × 1) version.
Speed improvements for these descriptors will mainly occur
in the projection phase due to their lower dimensionality.
Arguably a more fair comparison of the spatiality would
be if the exact pixel regions are used for calculating the
descriptors. We included this for the 2 by 2 descriptors
which we denote as 2×2*. An overview of the dimensionality
and region sizes of the descriptors is given in table 1.

4.3 Projection
The projection time when using the standard nearest neigh-

bour assignment is dependent on three factors: the size of
the visual vocabulary, the number of descriptors generated
per image, and the dimensionality of the descriptors. In this
paper we discuss experiments on the number and dimension-
ality of the descriptors. We do not experiment with the size
of the visual vocabulary: these experiments were already
done extensively in other papers (e.g. [14, 6]). Furthermore
a larger vocabulary also means increased classification time
for the Support Vector Machine.

We decrease the number of descriptors per image by a
random sub-sampling strategy.

The size of the descriptors is reduced by Principle Compo-
nent Analysis. We drop the translation component of PCA
as it has no influence on the resulting codebook frequency
histograms but has a negative influence on projection time.

We also experiment with the Random Forest [14] which
is a fast alternative to k-means and nearest neighbour pro-
jection. Interestingly enough, each node of a tree acts on
a single value of the descriptor so unlike nearest neighbour
projection computation time should not be influenced by the
dimensionality of the descriptor.

4.4 Classification
We will compare the RBF with the χ2 kernel for the Sup-

port Vector Machine (SVM) that we use as classifier. Ear-
lier, Zhang et al. [21] and Jiang et al. [6] showed that χ2

gives the best classification performance. This paper will
also take computational efficiency into account.

4.5 Implementation Details
For the SIFT and SURF descriptors we sum responses

over subregions of 6 by 6 pixels. The responses for SIFT are
calculated using an oriented Gaussian derivative filter with
a sigma of 1. For SURF we calculate for each 2nd pixel a
Haar Wavelet response of 4 by 4 pixels. In total we generate
about 4500 descriptors per image.

One visual vocabulary is created using k-means on 250,000
descriptors. Because both SIFT and SURF are normalized
to unit vectors, distances are proportional to the angles be-
tween these vectors, which are in turn proportional to the
inproduct of the vectors. So we project the descriptors onto
the visual vocabulary using the maximum inproduct rather
than the minimum distance. Results are exactly the same
but we obtain a speed improvement of about a factor 2. Note
that the inproduct used in conjunction with PCA will only
work if the translation component is ignored.

We learn the Random Forest using 250,000 descriptors.
We set the number of proposed random splits s to 15, roughly
in accordance with [3]. A Random Forest of four trees gave
good results for Moosmann et al. [14], so our forests are made
of four trees of depth ten resulting in 4096 visual words.

All our implementation is done using highly efficient Mat-



Descriptor Region size #dimensions
SIFT 4 × 4 24 by 24 128
D-SIFT 4 × 4 24 by 24 128
D-SIFT 2 × 2* 24 by 24 32
D-SIFT 2 × 2 12 by 12 32
D-SIFT 1 × 1 6 by 6 8

Descriptor Region size #dimensions
- - -
D-SURF 4 × 4 24 by 24 64
D-SURF 2 × 2* 24 by 24 16
D-SURF 2 × 2 12 by 12 16
D-SURF 1 × 1 6 by 6 4

Table 1: Region size and dimensionality of the various descriptors used.

lab code making heavily use of its fast matrix manipulations.
Only for the χ2 distance and the Random Forest projection
we created a C++ implementation (MEX-file), and for cal-
culating the diagonal gradients for SIFT we used the imple-
mentation of Geusebroek et al. [4].

5. RESULTS

5.1 Baseline
Our baseline pipeline is illustrated in figure 1. Its Mean

Averate Precision (MAP) is 0.448. This performance is com-
parable to [10, 20]. Descriptor extraction takes 138 millisec-
onds (ms) per image. Projection takes 1028 ms per image.
Projection time can be further subdivided: Calculating the
inproduct takes 710 ms, taking the maximum of this matrix
per column takes 265 ms and finally counting the number of
assignments per visual word takes 53 ms. Finally, classifica-
tion takes 97 ms for all classes. Classification can again be
subdivided into calculating the SVM kernel matrix, which
takes 89 ms, and the actual classification for all 20 classes,
which takes 8 ms per image.

Figure 1: An overview of the Bag-of-Words classifi-

cation pipeline as used in the baseline experiment.

Note that the projection time provided here is obtained by
using the nearest neighbour assignment of section 4.5. Using
a fast vectorized squared Euclidean distance function instead
of the inproduct takes 1496 ms instead of 710 ms, almost
doubling projection time. A simple C++ implementation of
the Euclidean distance takes up to 10 seconds(!) per image.

Note that the matrix multiplication order is important. If
for the resulting inproduct matrix the maximum should be
taken over non-sequential elements in the memory, taking
this maximum takes 560 ms rather than 265 ms.

5.2 Descriptors
We first observe that there is no significant difference in

classification accuracy between the original SIFT with the
Gaussian weighting and our implementation: SIFT 4 by 4
has a Mean Average Precision (MAP) of 0.443 and D-SIFT
4 by 4 a MAP of 0.448. However, the difference in time for
extraction is a factor 5. This result is more positive than

those of Grabner et al. [5], who reported a slight loss of
accuracy in removing the Gaussian weighting in the context
of descriptor matching.

D-SURF4× 4 has a MAP of 0.441, almost the same as D-
SIFT 4×4. But the time to extract the descriptors is about 6
times as fast for D-SURF. The projection time is 27% faster
which can be attributed to its lower dimensionality.

The 2×2 versions of D-SIFT are equally good as the 4×4
version. This also holds for the D-SURF 2 × 2∗. However,
D-SURF 2 × 2 is slightly worse with a MAP of 0.419. The
projection times of the 2×2 versions are better than their 4×
4 counterparts: projection time for D-SIFT is reduced from
1082 ms per image to 702 ms, for D-SURF this is reduced
from 786 ms to 632 ms.

5.3 Projection

5.3.1 Random Forest

We used the Random Forest on all descriptors of our pre-
vious experiment. As can be seen in figure 3, Projection
time for the Random Forest is 40-60 times faster than near-
est neighbour assignment. Interestingly enough, although
theoretically the Forest should not be too sensitive to the
number of dimensions, projection time still decreased when
using fewer dimensions: D-SIFT 4×4 takes 29 ms per image
to project and D-SIFT 2 × 2∗, which has a quarter of the
number of dimensions, takes 13 ms per image. While the
number of operations are exactly the same (same number of
descriptors with the same number of tests), this means that
memory access takes quite some time.

We can see from figure 3(a) that most of the time near-
est neighbour projection is slightly better than the Random
Forest. However, given the large increase in computational
efficiency Random Forests would be a good choice in Bag-
of-Words approaches.

Because both Random Forests and SURF are not a de-
facto standard, we will include the Random Forest and D-
SURF 4 × 4 descriptor in our subsequent experiments.

5.3.2 Subsampling

As expected, by using a random sub-sampling strategy
classification accuracy as well as the projection speed de-
creases which can be seen in figure 4. The projection speed
decreases linearly. The classification accuracy goes down
more or less logarithmically: at 70% of the descriptors there
is less than 5% performance loss for all tested pipelines. For
k-means the sub-sampling seems a viable strategy to reduce
total computation time. But if speed is an issue it is better
to resort to a Random Forest, and for the Random Forest
the speed increase is only marginal compared to the whole
Bag of Words pipeline. This makes sub-sampling a poor
strategy for reducing computation time.

5.3.3 PCA
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(c) Projection Time

Figure 2: Classification accuracy and computa-

tion speeds for various descriptors. Speed is for

both descriptor extraction and projection using

nearest neighbour with a k-means visual vocabu-

lary.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

D−SURF 1x1

D−SURF 2x2

D−SURF 2x2*

D−SURF 4x4

D−SIFT 1x1

D−SIFT 2x2

D−SIFT 2x2*

D−SIFT 4x4

SIFT 4x4

Accuracy in Mean Average Precision

 

 

Kmeans

Forest

(a) Classification Accuracy

0

200

400

600

800

1000

1200

C
o
m

p
u
ta

ti
o
n
 T

im
e
 i
n
 m

ill
is

e
c
o
n
d
s

 

 

S
IF

T
 4

x
4

D
−

S
IF

T
 4

x
4

D
−

S
IF

T
 2

x
2
*

D
−

S
IF

T
 2

x
2

D
−

S
IF

T
 1

x
1

D
−

S
U

R
F

 4
x
4

D
−

S
U

R
F

 2
x
2
*

D
−

S
U

R
F

 2
x
2

D
−

S
U

R
F

 1
x
1

Kmeans

Forest

(b) Projection Time

0

5

10

15

20

25

30

35

40

C
o
m

p
u
ta

ti
o
n
 T

im
e
 i
n
 m

ill
is

e
c
o
n
d
s

 

 

S
IF

T
 4

x
4

D
−

S
IF

T
 4

x
4

D
−

S
IF

T
 2

x
2
*

D
−

S
IF

T
 2

x
2

D
−

S
IF

T
 1

x
1

D
−

S
U

R
F

 4
x
4

D
−

S
U

R
F

 2
x
2
*

D
−

S
U

R
F

 2
x
2

D
−

S
U

R
F

 1
x
1

Kmeans

Forest

(c) Projection Time (close-up of 3(b))

Figure 3: Random Forests versus k-means near-

est neighbour projection: Classification accuracy

and projection speeds for various descriptors.
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Figure 4: Classification Accuracy and Projection

Speed when using fewer descriptors of the image.

Dashed lines denote the baseline scores.
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Figure 5: Classification Accuracy and Projection

Speed when using Principle Component Analysis to re-

duce the number of dimensions. Dashed lines denote

the baseline scores.
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Figure 6: Comparison of χ2 and an Euclidean distance matrix for classification Accuracy and classification

speed. Classification speed is measured for a single image for all twenty classes. Classification speed is

dependent only on the size of the visual vocabulary which is the same for all methods.

Results for the Principle Component Analysis experiment
are given in figure 5.

Interestingly enough, results for the Random Forest go
up while using PCA. The decorrelation of the dimensions
have a positive influence on the decision boundaries of the
Random Forest. This is especially noticeable for D-SURF
4 × 4 whose performance goes up 9% from 0.416 to 0.454.

PCA has a positive influence on projection speed. Kmeans
projection time can go down 15-20% without losing any ac-
curacy. Without any dimensionality reduction the projec-
tion speeds of Random Forests is slower due to the extra
costs of the PCA conversion. But better results are achieved
at the same projection speed by dropping some dimensions:
drop 50% of the dimensions for D-SIFT4 × 4 and 25% for
D-SURF4 × 4 . So it is always beneficial to perform PCA.

5.4 Classification
In this experiment we compare the RBF kernel with the

χ2 kernel. Results are presented in figure 6.
Classification time for the χ2 kernel takes 97 milliseconds

per image for all twenty classes. For the RBF kernel it takes
13 milliseconds, 7.5 times as fast. As mentioned earlier, com-
putation time of the classification can be further divided into
calculating the kernel matrix and doing the classification it-
self. For χ2 the calculation of the total kernel matrix for our
test set takes 441 seconds, which amounts to 89 milliseconds
per image. The RBF kernel takes 25 seconds to compute,
which is 5 milliseconds per image. For both kernel matrices,
classification takes 8 milliseconds for all 20 classes, which is
less than half a millisecond per class per image.

While the RBF kernel is ten times as fast, it is also 10%
less accurate as was reported before [6, 21]. Hence the RBF
kernel is only a good choice if speed is essential.

The experiments presented here are done without using
the spatial pyramid [8]. Using the spatial pyramid in the
same way as the top Pascal VOC performers [10, 19] in-
creases the size of the final codebook frequency histogram
and hence the calculation time of the kernel matrix with a
factor 8. This makes the calculation of the kernel matrix the

current bottleneck of the presented Bag-of-Words pipeline.

6. CONCLUSIONS
We recommend D-SURF4× 4 descriptors and a RBF ker-

nel if speed is essential. Two good choices of a fast Bag-
of-Words pipeline are given in figure 7. D-SURF 2 × 2 de-
scriptors, Random Forest projection and the RBF kernel as
presented in figure 7(a) give a Bag of Words pipeline which
does classification at a speed of 38 milliseconds per image
at a Mean Average Precision (MAP) of 0.370. At 26 images
per second this amounts to a real-time classification system.
Using D-SURF 4×4, PCA retaining all dimensions, Random
Forest projection and a RBF kernel takes 60 milliseconds per
image at a MAP of 0.391.

If speed is of lesser importance, the question is what pipe-
line will result in the maximum accuracy with a minimal
computational effort. Two such pipelines are presented in
figure 8. Figure 8(a) presents a pipeline with D-SURF 4×4,
PCA retaining all dimensions, Random Forest Projection
and a χ2 kernel, resulting in a classification speed of 144
milliseconds per image for a MAP of 0.454. Figure 8(b)
presents a pipeline with D-SIFT4 × 4 , PCA while keeping
75% of the dimensions, Random Forest projection and a χ2

kernel, resulting in a MAP of 0.462. These pipelines are
5 and 10 times faster than our baseline and have a better
accuracy.

In the proposed Bag-of-Word pipeline the primary bottle-
neck is the calculation of the χ2 kernel, especially consid-
ering that the spatial pyramid [8] was not even included in
our experiments. Because the calculation of the χ2 kernel
seems highly suitable for parallelisation, a possible solution
would be to implement it on a computer graphics card.

To summarize, our paper presented a fast way to obtain
both SIFT and SURF descriptors on a densely sampled grid.
Furthermore we showed that Random Forests combined with
PCA perform as good as a k-means vocabulary with near-
est neighbour projection on this dataset and is 20-30 times
faster. The RBF kernel is 7.5 times as fast as the χ2 kernel
but results in about 10% accuracy loss and is therefore only
advisable when speed is of primary importance.



(a) (b)

Figure 7: Two good Bag-of-Words pipelines when focus lies on speed.

(a) (b)

Figure 8: Two good Bag-of-Words pipelines for obtaining maximum accuracy with minimal computational

effort.

Our results led us to propose several fast Bag-of-Words
pipelines in figure 7 and 8, one of them which achieves real-
time classification.
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