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ABSTRACT

Real-Time Beamforming Algorithms for the Focal L-band Array

on the Green Bank Telescope (FLAG)

Mark William Ruzindana

Department of Electrical and Computer Engineering, BYU

Master of Science

A phased array feed (PAF) provides a contiguous, electronically synthesized wide field of

view for large-dish astronomical observatories. Significant progress has been made in recent years

in improving the sensitivity of PAF receivers though optimizing the design of the antenna array,

cryogenic cooling of the front end, and implementation of real-time correlation and beamforming

in digital signal processing.

FLAG is a 19 dual-polarized element phased array with cryogenic LNAs, direct digitization

of RF signals at the front end, digital signal transport over fiber, and a real time signal processing

back end with up to 150 MHz bandwidth. The digital back end includes multiple processing modes,

including real-time beamforming, real-time correlation, and a separate real-time beamformer for

commensal radio transient searches. Following a polyphase filterbank operation performed in field

programmable gate arrays (FPGAs), beamforming, correlation, and integration are implemented

on graphical processing units (GPUs) that perform parallelized operations. Parallelization greatly

increases processing speed and allows for real-time signal processing.

During a recent test/commissioning of FLAG, Tsys/efficiency of approximately 28 K was

measured across the PAF field of view and operating bandwidth, corresponding to a system tem-

perature below 20 K. To demonstrate the astronomical capability of the receiver, a pulsar (PSR

B1937+21) was detected with the real-time beamformer.

This thesis provides details on the development of the FLAG digital back end, the real-time

beamformer, and reports on the commissioning tests of the FLAG PAF receiver developed by the

National Radio Astronomy Observatory (NRAO), Green Bank Observatory (GBO), West Virginia

University (WVU), and Brigham Young University for the Green Bank Telescope (GBT).
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CHAPTER 1. INTRODUCTION

1.1 Motivation

A phased array feed (PAF) is a 2-D planar array of antennas (order of 1/2 wavelength apart)

placed at the focus of a large telescope dish that spatially samples the focal plane. PAFs are ideal

for wide-field and survey instruments where it is desired to cover large fields of view over short

periods of time [1], [2].

PAFs are primarily used to steer multiple simultaneous beams across a field of view and

this is referred to as beamforming [3]–[6]. In radio astronomy (the study of radio sources in deep

space), this field of view is the sky, and is much larger than would be achieved with the traditional

single pixel horn feed [1], [2]. Due to the large field of view, the survey speed also increases. Other

advantages of PAFs include sensitivity optimization and radio frequency interference mitigation.

PAFs are being developed to detect radio sources such as transients which move rapidly

over time. This requires real-time beamforming to detect transients such as pulsars or fast radio

bursts (FRBs) [7]–[9]. Real-time is achieved when the computation speed is less than or equal

to the sample rate. The beamforming algorithms can be executed on devices such as a field pro-

grammable gate array (FPGA) or a graphical processing unit (GPU). While FPGAs have proven to

be capable of such speeds, GPUs are faster and computationally more efficient [10].

The Focal L-band Array for the Green Bank Telescope (FLAG) is a wide-field astronomical

PAF receiver with broadband signal processing and operational science observation capability [11].

The backend of this instrument is currently in development by Brigham Young University (BYU)

and West Virginia University (WVU). This instrument is expected to perform fine/coarse channel

correlation as well as real-time beamforming. This thesis describes the real-time beamforming

algorithms implemented on GPUs, as well as the overall development of the backend system, and

the results obtained from the Green Bank Observatory (GBO).

1



1.2 Related Work

At Brigham Young University, the x64 DAQ digital receiver system, a 20 MHz digital sig-

nal processing (DSP) module for data acquisition, was developed for a 64 element PAF [12]. The

system FPGA firmware was developed using the Collaboration for Astronomy Signal Process-

ing and Electronics Research (CASPER) Reconfigurable Open-Architecture Hardware (ROACH)

environment [13], [14].

All 64 elements were frequency channelized to DFT lengths of 256, 512, and 1024. With

a 512-length DFT, up to 59 frequency channels across all 64 ADC inputs were streamed to disk

on a server PC. This system was deployed at the Arecibo observatory and was tested with a 19-

element dual-polarized PAF created by Cornell University. The team was able to measure critical

performance parameters of the Cornell feed, such as sensitivity, system noise temperature, and

beamwidths.

Prior to the x64 system, a group of graduate students from BYU, Vikas Asthana, Taylor

Webb, and Mike Elmer, developed two PAF digital back ends both supporting an analog bandwidth

of 450 KHz [1], [15], [16]. Initially, a 20-input back end was developed for a 19-element single-

polarization thickened dipole PAF by Asthana and Elmer. This back end was then modified to 40

inputs when the group completed their first 19-element dual-polarization array. This backend was

developed by Webb and Elmer.

Both systems were deployed at the Arecibo Observatory, and while accurate and stable

results were obtained, data could be acquired for approximately 60 seconds at most. The 450 KHz

bandwidth was also too small to be useful to astronomers.

The x64 and 450 KHz systems were the predecessors of the digital backend designed for

FLAG. The development of these systems enabled the design of a 150 MHz back end capable of

acquiring data over long periods of time.

1.3 Contributions

The contributions made by the author are summarized in the following list:

• Implemented signal processing code that enabled pulsar detection with the first cryogenic

astronomical phased array feed (PAF).
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• Conducted experiments in Green Bank, West Virginia, that enabled the measurement of a

Tsys/η of 28 K, comparable to that of a single pixel horn feed.

1.4 Thesis Outline

Chapter 2, discusses the theory behind the processing algorithms used for the digital back

end for FLAG (PAF beamforming, calibration, and sensitivity calculation).

Chapter 3 provides a FLAG system overview and discusses the work that went into the

development of the real-time beamformer for FLAG.

Chapter 4, 5, and 6 discuss the tests that were run on the system, the overall development

of the back end, and the results obtained from the Green Bank observatory. Each of these tests

was called a commissioning, and involved several hours of data acquisition split over two to three

weeks.

Chapter 7, offers a summary on the results obtained and work that could be done in the

future.
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CHAPTER 2. BACKGROUND

This chapter discusses the mathematics, algorithms, and basic theory necessay to under-

stand the remainder of this thesis. It is not meant to be exhaustive, but to provide a basic under-

standing of the theory behind PAF beamforming, calibration, and sensitivity calculation used in

the digital back end for FLAG.

An introduction to radio astronomy practices and theory can be found [17], [18]. For more

details on beamforming, and array signal processing, refer to [3]–[6].

2.1 PAF Beamforming

As mentioned in the previous chapter, beamforming is a signal processing technique used

by PAFs to form multiple simultaneous beams over a field of view [3]–[6]. Figure 2.1 shows the

structure of a beamformer.

Figure 2.1: The structure of a beamformer with a P element PAF generating multiple simulataneous

beams.
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The P element PAF produces a length P×1 data vector, x[n], at time sample n. The array sample

voltage signal vector, x[n], is complex baseband bandshifted, and is modeled as

x[n] = a(θi)s[n]+ηηη [n], (2.1)

where s[n] is a random process that models the baseband volatge of the signal of interest (SOI) at

a given time sample, n, a(θi) is a normalized array response to a unit amplitude point source in the

far field at directions, θi, corresponding to s[n], and ηηη [n] is the complex random vector representing

the noise.

Using weight vectors computed with the calibration procedure detailed in the next section,

the beamformed output is given by

bi[n] = wH
i x[n], (2.2)

where wi is the vector of complex weights required to steer the beam to the ith direction, and H is

the conjugate transpose of the vector.

Beamformer weights can be calculated in various ways depending on the application. Some

of the algorithms used to calculate weights include; maximum signal to noise ratio (SNR), mini-

mum variance distortionless response (MVDR), linearly constrained minimum variance (LCMV),

subspace projection and others. When calculating the weights used in this thesis, the maximum

SNR algorithm was chosen in order to produce beamformed output with high SNR. The signal

and noise covariance matrices were also available, and were used for calibration as well as SNR

calculation [3]–[6].

2.2 PAF Calibration

In order to calculate beamformer weights, a calibration scan is performed on a known

source. The calibration is performed by steering the dish across the source and calculating covari-

ance matrices at each point [9]. An “on” covariance matrix is calculated from “on” pointings (dish

steered across the source), and an “off” covariance matrix from the “off pointings” (data steered

off of the source). These covariance matrices are calculated as follows
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Rx = E{x[n]xH [n]}, (2.3)

Rη = E{ηηη [n]ηηηH [n]}, (2.4)

where Rx is the “on” covariance matrix (the sample spatial covariance matrix for both signal and

noise), Rη is the “off” covariance matrix (noise covariance matrix), and E{} is the expectation.

Figure 2.2 shows an example of a 6×6 calibration grid used to calculate the covariance matrices.

Figure 2.2: An example of a 6×6 calibration grid with 36 on-pointings, 6 off-pointings, and the

source in the center of the grid.

The steering vectors corresponding to each point on the grid were estimated using the

following

R−1
η R̂xR−1

η â(θi) = λR−1
η â(θi), (2.5)

where â(θi) is the estimated steering vector. Let ã(θi) = R−1
η â(θi), then

R−1
η R̂xã(θi) = λ ã(θi). (2.6)

Using eigen decomposition, ã(θi) is found to be the dominant eigenvector. Therefore, the

estimated steering vector is
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â(θi) = Rη ã(θi), (2.7)

After estimating the steering vectors, the max-SNR beamformer weights can be calculated by

wi = R−1
η â(θi), (2.8)

2.3 Sensitivity Calculation

With the weights calculated, if we let Px = wHRxw, the signal plus noise power, and Pη =

wHRηw, the noise power, we can calculate the SNR using the following equation,

SNR =
Px −Pη

Pη
. (2.9)

The sensitivity can then be calculated by

SNR =
10−26 1

2
FsAeB

kBTsysB
, (2.10)

Ae

Tsys
=

2kB

10−26Fs
SNR, (2.11)

where Ae is the effective aperture area, Tsys is the system temperature and the ratio between them

is the sensitivity. kB is Boltzmann’s constant (∼ 1.38×10−23m2 kg s−2 K−1), B is the bandwidth,

and Fs is the signal flux density of one polarization of the source in Jansky (Jy) [3]–[6].

2.4 Summary

Using the theory and calculations from this chapter, we can process and analyze the data

acquired with FLAG. The data is processed with a digital back end comprising of digital signal

processing boards and high performance computers among other devices. These devices will be

discussed in the following chapter starting with a FLAG system overview.
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CHAPTER 3. FLAG SYSTEM AND BEAMFORMER IMPLEMENTATION

In radio astronomy, in order to detect transient sources with a PAF, beamformer compu-

tational speed must be fast enough to keep with the rotational period of the source. The FLAG

system achieves this speed with the use of GPUs. Each GPU processed 1/10 of the bandwidth.

This is described in more detail in the following sections.

This chapter discusses the theory and work done to achieve real-time beamforming with

FLAG. It first describes the FLAG system on a high-level. The front end is briefly described since

this thesis focuses on testing as well as work done on the digital back end.

3.1 FLAG System Overview

FLAG is a 19 element, dual-polarization, cryogenic PAF with direct digitization of RF

signals at the front end, digital signal transport over fiber, and a real time signal processing back

end with up to 150 MHz bandwidth [11]. This system has new science observation capability, and

will be used to discover more than 50 new pulsars within the inner galactic plane and study diffuse

HI around galaxies [11]. A high-level block diagram of the system can be seen in Figure 3.1.

The PAF receiver front end has a 19 element dual-polarization array (as previously men-

tioned), cryogenically cooled low noise amplifiers (LNAs), and a digital down converter [19], [20].

The receiver can be seen in Figure 3.2 where it was placed in the outdoor test facility at GBO.

The FLAG back end is located in the Green Bank Telescope (GBT) equipment room called

the Jansky lab. It consists of five digital optical receiver cards, five ROACH II FPGA boards [14],

[21], an ethernet switch, and five HPCs (See appendix A). These parts are all connected in the

order listed. A picture of the back end can be seen in Figure 3.3. Specifications of theses devices

are provided in the appendix.
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Figure 3.1: A high-level block diagram of FLAG showing details on the front end, and back end.

The digitized signals from the front end are serialized and sent over 40 optical fibers [22]

to the optical receiver cards which are connected to the ROACH II boards. The boards channelize

the approximately 150 MHz bandwidth into 512 channels each with a bandwidth of 303 KHz.

The data is then reduced to 500 frequency channels and packetized into 10 user-datagram

protocol (UDP) packets each containing 50 frequency samples for eight antennas across 20 time

samples. These packets are streamed over 10-Gbe/40-Gbe breakout cables into a 12-port 40-GbE

network switch, which redirects packets into the HPCs such that each one receives 100 frequency

samples for all 40 antennas.

Each HPC then takes these 100 frequency samples and divides them evenly between two

GPUs, which contain the real-time beamformer and coarse/fine channel correlator algorithms.

Within each HPC is a real-time operating system (RTOS) called HASHPIPE used for thread man-

agement and pipelining, and a user interface called dealer/player. These are described in the next

sections.

3.2 HASHPIPE Implementation

HASHPIPE is an RTOS that pipelines tasks into separate threads with semaphore-controlled

shared memory buffers in between each thread [23]. The buffers are circular and consist of the
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Figure 3.2: The L-band PAF receiver in the outdoor test facility at GBO. This instrument is placed

at the feed of the Green Bank Telescope.

Figure 3.3: The five high performance computers in the Jansky lab at GBO.

number of blocks of data required by the nest thread. Each buffer is controlled by semaphores

that signal threads when data is available/unavailable. The semaphore value is set to one when the

buffer is filled, and set to zero when it is free. If the block’s semaphore is set to zero, any thread that

requests the block’s data will hang until the semaphore is set to one. The structure of HASHPIPE

can be seen in Figure 3.5.
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Figure 3.4: The five ROACH II FPGA boards in the Jansky lab at GBO. The four 10 Gbe cables

seen on the board combine into a 40 Gbe cable which is connected to the ethernet switch.

Various HASHPIPE threads have a shared object that defines the thread and shared memory

buffer parameters. These shared objects are called HASHPIPE plugins and provide the threads with

functionality. The plugins use multiple threads to perform a task and align the threads accordingly.

The threads of importance to this thesis are the net, transpose, correlator, and beamform

thread. This requires two HASHPIPE plugins; a correlator and beamformer plugin. Both correlator

and beamformer plugins comprise of a net, and transpose thread and an operational mode thread

(correlator and beamformer respectively). The thread layout can be seen in Figure 3.6.

The net thread is a network sniffing thread which listens on the network for UDP packets

from ROACH boards. The transpose thread reformats the data so that the time samples are aligned

correctly in memory. And the operatonal mode thread correlates or beamforms the data depending

on the chosen mode. The data is then written to flexible image transport (FITS) files using a FITS

writer (this was developed by students at West Virginia University) and saved to a Lustre disk

array [24].
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Figure 3.5: An example of the structure of HASHPIPE. Between each thread is a semaphore

controlled buffer that transfers data when the buffer is full. After processing the data is stored in

the Lustre file system at GBO.

Figure 3.6: A single HASHPIPE instance with a FITS writer and Lustre file system. The net thread

captures the data, the transpose thread restructures the data, the beamformer/correlator thread pro-

cesses the data, and the data is sent to the FITS writer which stores it in FITS files.

3.3 Dealer/Player

HASHPIPE is managed by an interface called dealer/player. The dealers and players are

part of a distributed system written in Python called the digital backend system (DIBAS) spec-

trometer control software [25]. The system consists of back end servers, each running on a HPC,

designated players.

There are four players per HPC and each player manages an instance of HASHPIPE code

and FITS writer. Each player/HASHPIPE instance processes 25 frequency bins of data. The

players can be run interactively or as daemons (as a background process that may remain running

indefinitely).
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The players are controlled and coordinated by a simple client library called the dealer. It

may be run interactively or may be imported into scripts.

The dealer/player interface is controlled by a configuration file which outlines the parame-

ters for each player and the various operational modes that the player can run. Most of this thesis

focuses on the beamformer operational mode which is described in the following sections.

3.4 Beamforming

When generating beamformer output for FLAG, an additional dimension of frequency, is

considered. The beamformer output is given by

bk, j[n] = wH
k, jx[n], (3.1)

where k is the coarse channel index, and j is the beam index.

The beamformer output is then reduced (or integrated) in order to obtain sample correla-

tions or integrated spectra per short time integration (STI) window. The integrated spectra is given

by

Sc
k, j =

1

N

N−1

∑
n=0

bk, j[n]b
∗
k, j[n], (3.2)

where N is the number of samples. A block diagram of the beamformer and integrator is shown in

Figure 3.7.

Figure 3.7: Block diagram of the beamformer and integrator at a frequency bin index, k, and

polarization, j.

For beam index j, 1 ≤ j ≤ J denotes x polarized beams, and J + 1 ≤ j ≤ 2J denotes the

corresponding y polarized beams where J = 7 dual polarization beams. Integrated spectra, Sc
k,( j, j̄)

,
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include both self (xx∗,yy∗) and cross (xy∗) polarized terms, and all three are stored. For self polar-

ized spectra, j̄ = j and for cross polarized spectra, j̄ = j± J.

The data in the FLAG digital back end is distributed across five high performance comput-

ers (HPCs) at a sample rate of approximately 303 KHz. Each HPC processes 50 coarse channels

with a total bandwidth of 15 MHz. There are two GPUs within a HPC that process half of the

15 MHz bandwidth each (7.5 MHz, 25 coarse channels). The following sections discuss the work

done to achieve real-time beamforming with these HPCs.

3.5 Specifications for Beamformer

The specifications for the beamformer were as follows; a data vector with 4000 time sam-

ples, 38 elements and 25 frequency bins, and a weight vector with seven dual polarization beams,

38 elements, and 25 frequency bins. These 25 frequency bins are not contiguous due to the require-

ments of the fine channel correlator/polyphase filter bank (PFB). This correlator produces 160 fine

channels from five of the 25 frequency channels. So the 25 frequency bins are split across the total

500 bins in chunks of 5. Details on the PFB can be seen in [26]. Figure 3.8 shows the structure of

these frequency bins at each HASHPIPE instance.

Figure 3.8: Structure of frequency bins at each HASHPIPE instance. This figure shows the non-

contiguous frequency bins at each instance. There are sets of five every 100 bins.
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Each bank represents the 25 frequency bins processed by each HASHPIPE instance. Since

there are four instances per HPC, it follows that there are four banks per HPC.

After beamforming, the beamformer output would then need to be reduced (or integrated)

in order to obtain sample correlations or integrated spectra per short time integration (STI) window

of which there are 100 with 40 samples each. These values are adjustable, but were otherwise

chosen because they allow real-time to be achieved and they are divisible by the 4000 time samples

specified.

3.6 Beamformer Implementation

The beamforming algorithm was written in three different programming languages, MAT-

LAB, C and CUDA. The algorithm was written in MATLAB and C first, in order to determine the

approach for writing it in CUDA.

3.6.1 MATLAB Implementation

MATLAB was used to understand the algorithm concepts of beamforming and the math-

ematics behind it. Initially, the specifications for the beamformer were set as a data vector with

1000 time samples, 38 elements and 25 frequency bins, and a weight vector with seven beams, 38

elements, and 25 frequency bins.

The data and weight array elements were all set equal to one in order to easily identify when

the beamformer was working correctly. This method was used again when testing the beamformer

in C++, and in CUDA. After verifying that the beamformer worked in MATLAB and understanding

the mathematics behind it, code was written in C.

3.6.2 C Implementaion

The same specifications were used when writing code in C. This time, however, simulated

data and weights were employed in order to further verify correct output, and get closer to achiev-

ing the goal of a real-time beamformer. The data and weights contained complex values as they

should. An unconventional, but effective method of converting the data and weights from chars to
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complex values was used. The real and imaginary components were interleaved in the vectors and

were converted to complex vectors by

complex[k] = data[2i] + 1j*data[2i+1],

where k is the complex vector index, and i is the char vector index. These complex vectors were

represented in rectangular coordinates rather than polar coordinates.

The beamformer algorithm was written in C by using a common method of matrix multi-

plication using for loops. Since there are three dimensions per array, nested for loops were used.

Another for loop was used to reduce/integrate 25 STI windows with 40 samples each. The

result of these reductions were loaded into MATLAB and pre-written code generated plots of two

different frequency bins which showed the time average power across seven beams. Examples of

the plots generated can be seen in the next section.

While the beamformer in C produced correct results, it was too slow to use in practice

since the code was serial. To speed up the beamformer computation so that it could run in real-

time, parallel programming using GPUs was implemented.

3.6.3 GPU Implementation

A parallel computing platform created by NVIDIA, CUDA, was used to parallelize the

beamformer algorithm and achieve real-time speed [27]. CUDA is a language built around C++

(C++ with parallelism). The most important concept to understand in CUDA was how the memory

works. There are three different kinds of memory; local, shared and global memory. Each thread

has access to local memory which is private to that thread. The thread can read and write from

local memory. Threads share memory in a block (collection of threads) which is called shared

memory. And every thread can read and write to global memory across blocks. The local memory

is faster than the shared which is in turn faster than the global memory [27]. A block diagram of

the GPU memory model can be seen in Figure 3.9.

Understanding how the memory works is important because the biggest issue faced in GPU

coding was indexing. This was more difficult to debug than the same problem in serial program-

ming due to the greater complexity in memory structure. Debugging the indexing definitely took

the longest time, but enabled a better understanding of the GPU memory structure.
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Figure 3.9: GPU memory model showing memory associated with threads. Each thread can read

and write to local memory. A block of threads can read and write to shared memory. And every

thread can read and write to global memory. The CPU has its own memory which is called host

memory in CUDA. Data is copied to and from host memory to global memory on the GPU.

The code was written using the same matrix multiplication method used in C, but paral-

lelized with a reduction algorithm developed for CUDA [27]. The beamformer output was then

integrated using the same reduction algorithm.

After debugging this code, the beamformer was capable of real-time (real-time is calculated

by dividing the number of time samples by the sample rate) and produced correct results. While this

was good, some modifications had to be made to the beamformer due to changes in specifications.

The polarization of the beams changed from single to dual polarization beams making the

total number 14 rather than 7, and the final output of the beamformer after integration had to

include the self polarized (xx∗,yy∗), and cross polarized (xy∗, x∗y) products. The total number of

time samples also changed from 1000 to 4000. After these specifications were met, the beamformer

computation time was within three milliseconds of real-time (real-time being 13.2 milliseconds)

excluding copies from the CPU to the GPU. The total processing time was higher than real-time

so something needed to be done to increase computation speed.
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Fortunately, CUDA contains a library called cuBLAS (CUDA Basic Linear Algebra Sub-

routines) that has functions that can perform simultaneous multiplication of batches (small arrays

contained within large arrays) [28]. Batches can also simply be thought of as multiple matrices

within arrays. The function needed for beamforming was called cublasCgemmBatched() [28].

The format of data and weight arrays being multiplied can be seen in Figure 3.10.

Figure 3.10: Structure of data, weights, cublasCgemmBatched() output, and integrated beam-

former output. The data had dimensions 4000× 38× 25, the weights had 38× 14× 25, the di-

mensions of the output from cublasCgemmBatched() were 4000×14×25, and after integration,

100× 7× 25× 4. The first dimension is the 100 STI windows, and the last dimension is the 4

polarizations (self and cross polarizations).

The dimensions of the data are: number of time samples by elements by frequency bins

(4000× 38× 25), and those of the weights are: number of elements by beams by frequency bins

(38× 14× 25). This function multiplies 25 matrices of data and weights together (the 25 matri-

ces represent 25 frequency bins per HASHPIPE instance) to produce 25 matrices of beamformer

output. The beamformer output is then integrated with the same reduction algorithm as before.

After a little debugging, the beamformer was capable of achieving approximately 843 mi-

croseconds in computation time. Including time taken to copy memory from the CPU to GPU
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and vice versa, the total time was approximately five milliseconds which is well below the 13.2

milliseconds needed to achieve real-time operation.

3.7 Simulated Data and Weights

In order to test the beamformer, simulated data and weights were generated in MATLAB.

The data was modeled as follows:

x[n] = a(θ)s[n], (3.3)

where s[n] is the signal of interest (SOI), and a(θ) is a normalized array response to a unit ampli-

tude point source in the far field at directions corresponding to s[n]. Noise and interference were

not generated for the initial tests out of convenience, but will be added later.

The elements of the steering vector a(θ) are complex exponentials of the form e jφ . The

steering vector can be expressed as

a(θ) =























1

e jφ1(τ)

e jφ2(τ)

...

e jφm(τ)























(3.4)

where

φm(τ) = 2π f mτ, (3.5)

τ =
d cos(θ)

c
, (3.6)

m represents the element index of the aperture array, f is the frequency bin index, τ is the time

delay due to propagation across the elements, d is the distance between elements, θ is the angle of

arrival corresponding to the signal of interest, and c is the speed of light. The equation to calculate
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the phase, φm(τ), is used under the assumption that the frequency is narrow band. For testing

purposes the data was generated for a linear aperture array.

3.8 Testing

The first test was very simple, the steering vector, a(θ), and the weight vector, w, were

equal with the signal of interest being set to a value of one at all time samples. The output should

have had the same value across all beams and time samples which it did. If the weights and the

steering vector have the same values then the conjugate of the weights multiplied by the steering

vector and signal amplitude would result in a vector of ones. This is given by

wHa(θ)s[n] =
[

1 e− jφ1 e− jφ2 · · · e− jφm

]




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e jφ1

e jφ2

...
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
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















s[n]. (3.7)

The second test was also fairly simple with the signal of interest in the direction of the main

lobe of one of the beams. The expected beam pattern was observed at the output. This can be seen

in Figures 3.11 through 3.14, which show the self polarization and cross polarization beams.
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(a) Frequency bin 1 (b) Frequency bin 25

Figure 3.11: X polarized beams with a stationary signal of interest at frequency bin 1 and 25. The

signal was placed in the center beam of seven with 100 STI windows. The power is normalized to

unity.

(a) Frequency bin 1 (b) Frequency bin 25

Figure 3.12: Y polarized beams with a stationary signal of interest at frequency bin 1 and 25. The

signal was placed in the center beam of seven with 100 STI windows. The power is normalized to

unity.
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(a) Frequency bin 1 (b) Frequency bin 25

Figure 3.13: Real cross-polarized beams with a stationary signal of interest at frequency bin 1

and 25. The signal was placed in the center beam of seven with 100 STI windows. The power is

normalized to unity.

(a) Frequency bin 1 (b) Frequency bin 25

Figure 3.14: Imaginary cross-polarized beams with a stationary signal of interest at frequency bin

1 and 25. The signal was placed in the center beam of seven with 100 STI windows. The power is

normalized to unity.

The third test had the signal of interest moving across all the beams which can be seen

below. The signal of interest is clearly seen moving across the beams.
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(a) Frequency bin 1 (b) Frequency bin 25

Figure 3.15: X polarized beams with a moving signal of interest at frequency bin 1 and 25. The

signal moved across the seven beams, and 100 STI windows. The power is normalized to unity.

(a) Frequency bin 1 (b) Frequency bin 25

Figure 3.16: Y polarized beams with a moving signal of interest at frequency bin 1 and 25. The

signal moved across the seven beams, and 100 STI windows. The power is normalized to unity.
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(a) Frequency bin 1 (b) Frequency bin 25

Figure 3.17: Real cross polarized beams with a moving signal of interest at frequency bin 1 and

25. The signal moved across the seven beams, and 100 STI windows. The power is normalized to

unity.

(a) Frequency bin 1 (b) Frequency bin 25

Figure 3.18: Imaginary cross polarized beams with a moving signal of interest at frequency bin 1

and 25. The signal moved across the seven beams, and 100 STI windows. The power is normalized

to unity.

The previous tests were all done to test the self polarizations (XX∗,YY ∗). The last test was

done for the cross polarization (XY ∗) with a signal of interest moving across the X polarized beams

in the opposite direction of the signal of interest moving across the Y polarized beams.
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(a) Frequency bin 1 (b) Frequency bin 25

Figure 3.19: X polarized beams with a moving signal of interest opposite to that of the Y polarized

beams at frequency bin 1 and 25. The signal moved across the seven beams, and 100 STI windows.

The power is normalized to unity.

(a) Frequency bin 1 (b) Frequency bin 25

Figure 3.20: Y polarized beams with a moving signal of interest opposite to that of the X polarized

beams at frequency bin 1 and 25. The signal moved across the seven beams, and 100 STI windows.

The power is normalized to unity.
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(a) Frequency bin 1 (b) Frequency bin 25

Figure 3.21: Real cross polarized beams with a signal of interest moving in opposite directions

corresponding to X and Y polarized beams at frequency bin 1 and 25. The signal moved across the

seven beams, and 100 STI windows. The power is normalized to unity.

(a) Frequency bin 1 (b) Frequency bin 25

Figure 3.22: Imaginary cross polarized beams with a signal of interest moving in opposite direc-

tions corresponding to X and Y polarized beams at frequency bin 1 and 25. The signal moved

across the seven beams, and 100 STI windows. The power is normalized to unity.
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3.9 Real-time Beamformer Test

In order to verify that the real-time beamformer output was correct after integrating the

transpose thread into the CUDA code (discussed in a later chapter), simulated pulsar data was

generated using MATLAB. This data was packetized with MATLAB and sent to the input ports of

the HPC to simulate data acquisition. To simulate the pulsar, the time delay, t2 − t1, between two

observing frequencies (two frequency bins), f1 and f2, was used. Let τk = tk+1 − tk,

τk = 4.1488×10−3( f−2
k − f−2

k+1)DM, (3.8)

where k is the frequency channel index and is within the range 0 to 498, DM is the dispersion

measure which is the number of free electrons between the observer and the pulsar per unit area.

The larger the DM, the slower the pulsar.

After calculating the time delay, it is then applied to the phase of the pulsar as shown in

Equation 3.10,

φ(t) = 2πm fk(t − τk), (3.9)

p(t) = Ae jφ(t), (3.10)

where k is the frequency channel index and is within the range 0 to 499, m is the element index, and

A is the signal amplitude. A simulation can then be generated and shown with a time vs frequency

plot as shown in Figure 3.23. An additional plot is provided showing the pulsar change in a lower

number of frequency bins and time samples.

In order to compare results with the real-time beamformer, additional code was written to

simulate the beamformed output. This was done using a weight vector whose elements were all

equal to one and using the same weights when running the real-time beamformer.

Both sets of data had a dispersion measure of 10. The output of the real-time beamformer

appears to be more precise than that of the simulated MATLAB output. This is probably due to

higher precision in the real-time beamformer compared to the simulated MATLAB output. From

this test, it can be seen that the real-time beamformer generates correct output and can be used for

detection of radio transients.
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Figure 3.23: A plot of the simulated pulsar as a function of frequency with a dispersion measure

of 10.

Figure 3.24: Plot of the simulated pulsar in Figure 3.23 showing a clearer change in frequency

over time by focusing on a smaller number of frequency bins and time samples.
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(a) Simulated in MATLAB (b) RTBF output

Figure 3.25: Beamformer output generated in MATLAB with the same dimensions of data and

weights in (a). Real-time beamformer output using the same simulated pulsar data in (b).

3.10 Summary

Real-time beamforming was achieved with the help of the cuBLAS library, and with a few

changes made to the code. The time taken for beamforming, and short time integration is approx-

imately 843µs with the total duration of time being approximately 5 ms (this includes memory

allocation, as well as copies from the CPU to GPU and vice versa). The beamformer CUDA

code was then integrated into HASHPIPE with the same results using the same simulated data and

weights.

During one of the live tests of the system at GBO, the data restructure in the transpose

thread of the beamformer HASHPIPE code was integrated into the CUDA code. This resulted in

the removal of the beamformer transpose thread which was tested with simulated pulsar data. The

following chapters provide details on the live tests of the FLAG back end as well as modifications

made between tests.
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CHAPTER 4. JULY 2016 FLAG COMMISSIONING

4.1 Introduction

The following chapters provides details on the FLAG back end tests carried out at the Green

Bank observatory. Each of these tests was called a commissioning, and involved several hours of

data acquisition split over two to three weeks. A continuous set of hours spent acquiring data

was called a session, and was spent testing the operational modes of the back end. The following

sections describe each of the commissioning runs and show results obtained.

In this chapter, the work done, and results acquired during the July 2016 commissioning of

FLAG are discussed. A few details of the digital back end are addressed in this chapter and more

will be discussed later on.

As mentioned previously, there are four players per HPC and five HPCs total. The HPCs are

designated FLAG one to five and only two of the five HPCs were used during this commissioning,

FLAG two and three. The players can either be run interactively or as daemons. They were run as

daemons during the entire commissioning. The players are controlled and coordinated by a simple

client library called the dealer. It may also be run interactively or may be imported into scripts.

Both methods were used for different reasons. The dealer was run interactively in order

to debug or change certain parameters, such as the integration length, faster and it was run from a

script when no debugging or change of parameters were needed (usually during a scan which refers

to the telescope moving towards, moving away or dwelling on a source). During observation times,

all that needed to be done was starting the dealer and players. The players were run as daemons

and the dealer waited for a scan to start.

The first test that we ran was called the simulator 3 test (the third of simulator tests run

on the back end). This test was done to make sure that the back end was working as expected.

Simulated data was stored on the binary random access memory (BRAM) of the ROACH II FPGA

[21], and was used to test the back end of the system. All that needed to be done was a simple
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change in a configuration file to ensure that data from the BRAM was used rather than data from

an actual scan.

4.2 Bit/Byte lock

After we verified that simulator 3 worked, the next step was to incorporate the front end

and test the full system. This test was basically the same on our end, start the players and dealer

and wait for data. But before a scan was started, the data needed to be bit and byte locked [29]. Bit

locking is a process that ensures that the first bit of the inphase or quadrature 8-bit word received

is indeed the first bit of that 8-bit word. Byte locking is a process that makes the distinction

between inphase and quadrature (which eight bits are the inphase component and which ones are

the quadrature component).

After the bit and byte locking process was complete, the scan was started. Initially, we

were loosing a lot of packets of data or all of the data using one or two players on FLAG three.

This was because a few of the packets would come in late which led to the rest of the packets

being seen as late. This was fixed by advancing to the next m-count (one m-count consists of five

packets) despite having a few late packets at the beginning of the scan. 10 to 15 minute long scans

were run after this bug was fixed and we were able to acquire quite a bit of data despite our short

observation windows. FLAG two was added to increase the amount of bandwidth that we were

scanning over. Each player acquired data at a bandwidth that we scanned.

Since four players were running per HPC, we acquired four times the bandwidth of one

player (The bandwidth acquired by one player was 7.5 MHz). On FLAG two, only two players

were working so together with FLAG three, we acquired six times the bandwidth of one player

(3/10 of the total bandwidth).

One other problem was the bits were not locking for some of the X-polarized elements and

a few of the Y-polarized elements. This was out of our control and given the limited time we had,

we had to deal with it. The front end was also experiencing some heating issues. Despite these

problems, we were still able to acquire useful data during our observation windows.
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4.3 GBT Results

With the data that we acquired, we were able to plot sensitivity maps, beam patterns, and

element patterns. Each one of these plots can be seen in the figures below. The x and y axes of the

figures are the azimuth and elevation offsets, respectively. This data was acquired from a grid scan

of a source called 3C295.

(a) Frequency bin 1 (b) Frequency bin 25

Figure 4.1: Formed beam sensitivity maps of the first and last frequency bin indices (1360 MHz

and 1483 MHz respectively).

The maximum sensitivity of 70 dB means that the system temperature (Tsys) is high given

a high antenna efficiency (η). At this point, the Tsys is approximately 85 K which is quite high, but

significantly better than the 200 K that was calculated earlier. This was troubling since the goal

Tsys/η was approximately 28 K (a single pixel feed Tsys/η). Fortunately, we were able to measure

much lower Tsys/η during the next commissioning due to fixes made to the front end by the Green

Bank Observatory. Figures 4.3 and 4.3 show beam and element patterns respectively for the same

frequency bins as the sensitivity maps in Figure 4.1.
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(a) Frequency bin 1

(b) Frequency bin 25

Figure 4.2: Beamformed patterns of the first and last frequency bin indices (1360 MHz and 1483

MHz respectively).
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(a) Frequency bin 1

(b) Frequency bin 25

Figure 4.3: Y-polarized element patterns of the first and last frequency bin indices (1360 MHz and

1483 MHz respectively). The blank element patterns are due to non responsive elements.
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4.4 Summary

During the July 2016 commissioning, despite the fact that we were not able to run the real-

time beamformer due to limited time and a few bugs we had to fix in the overall code, we were

able to process post-correlated beamformed data. This verified that at the very least, our code was

working.

We were also able to to learn the bit/byte locking procedure which ensured the acquisition

of accurate data. This is currently being integrated into the back end code to eliminate the time

spent using the bit/byte lock GUI.

The Tsys/η seen in this commissioning was much higher than expected due to issues in the

front end. Fortunately, these were resolved in time for the May 2017 commissioning.
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CHAPTER 5. MAY 2017 FLAG COMMISSIONING

5.1 Introduction

In this chapter, the work done, and results acquired during the May 2017 commissioning

of FLAG are discussed. More detail is given of the digital back end as well as modifications made

since the last commissioning.

During this commissioning, our primary objectives were to acquire data with much lower

system temperature (Tsys) than the last commissioning, acquire data with the coarse channel corre-

lator, the fine channel correlator, and the real-time beamformer.

Upon my arrival at Green Bank, the PAF was not scheduled to be put on the telescope for

a week, so we obtained measurements and tested our code by acquiring data per scan with the

PAF in the outdoor test facility (OTF). Data was acquired at night when the temperature was lower

because if it exceeded a particular threshold, the system would shut down. The PAF also had to be

cooled with ice water that was replaced manually and on a regular basis.

While testing our code with the PAF in the OTF, the priority was acquiring data with low

Tsys. In order to calculate the Tsys, on and off source data needed to be acquired. On source data was

acquired with the OTF roof closed, and off source with the roof opened. The roof reliably acted

as a deep space source under observation which was used to calculate Tsys. Each data acquisition

was over a duration of 60 seconds with an integration length of 0.5 seconds which is a dump rate

of 1000 samples every 500 milliseconds.

Before acquiring data in the OTF, the data needed to be bit and byte locked (defined in the

previous section). Scripts had been written to ensure bit and byte lock before data was acquired,

but during the OTF tests, we realized that they were not ready so we resorted to a graphical user

interface (GUI) that was used prior to the scripts.

The bit and byte lock procedure, as seen from the GUI, was as follows. Use a generated

noise source from the PAF front end for bit lock. Plots were used to determine whether there was
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bit lock. Single gaussians meant that the data was bit locked while multiple meant that it was not.

Then a test tone was turned on for byte lock. Spectral plots were used to determine byte lock. A

tone appearing in either sideband meant that the data was byte locked. This was called sideband

separation. Finally, after the data was bit and byte locked, the noise source and test tone were

turned off.

After the bit and byte lock procedure, data was acquired using the dealer/player interface

addressed in the previous section. A few modifications were made to the interface since the last

commissioning which include; a multiple scans feature, code that properly closes FITS files was

added, a set weight file parameter, a channel select parameter, and a dealer/player GUI.

5.2 DIBAS Modifications

During the last commissioning, we were not able to consecutively acquire data simply by

starting another acquisition in the dealer/player interface. The mode and the parameters associated

with it had to be reset, and then the acquisition was started which took quite a while and required

detailed knowledge of the interface.

We needed to modify the dealer/player code so that we could acquire data consecutively

one scan after another. This is what we called the multiple scans feature. The problem was that

the code used to write data to FITS files (referred to as the FITS writer) was not enabled by the

dealer/player code after other scans were started.

To fix this problem, the stop FITS writer function, located in a file called “Beamformer-

backed.py”, was overloaded with another stop function that stopped the FITS writer when a scan

finished. This allowed it to start when another scan started. Despite having solved the multiple

scans issue, another problem arose involving the FITS files. They appeared to be empty while

analyzing the data acquired from the OTF during remote testing carried out at BYU after the last

commissioning.

The issue was that the files were not being closed properly after the first data acquisition due

to a signal handler issue in the FITS writer as well as a memory clean up issue in the HASHPIPE

code. These issues were resolved by replacing the signal handler with a stop function rather than

an interrupt and adding a condition in the transpose and correlator threads of HASHPIPE, that

ensured data was not being processed during memory cleanup.
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However, before this was accomplished, I had to manually close the FITS files which re-

quired the transfer of the files from one HPC to another. This HPC contained the libraries necessary

to close these FITS files. This problem was addressed and fixed before the next commissioning.

After we were confident that data was being acquired and processed correctly with each

scan, some modifications needed to be made to the dealer/player interface to make it more user

friendly. One of those modifications was a set weight file parameter.

This would enable a user to change the weight file depending on the source position or area

being scanned. Code needed to be modified in the dealer/player code as well as the HASHPIPE

code. This modification was implemented by creating flags in shared memory that would alert the

back end when a weight file was changed, and update the file being used in the beamform thread.

These flags were keywords in shared memory written to in the ”Beamformerbackend.py” file.

In order to test the functionality, I generated different weight files and run the real-time

beamformer, changing the files with each scan. Similar changes were made for a channel select

parameter created for the polyphase filter bank (PFB) mode [26].

Another modification that was tested during the latest commissioning, but that is still being

worked on, is the dealer/player GUI. This GUI is capable of selecting the players that need to be

run, setting the appropriate mode (correlator, real-time beamformer, etc.), setting the integration

length, weight files, selecting channels, starting data acquisition and stopping it. The GUI was

tested and is only capable of acquiring data given certain conditions and needs to be worked on a

little more.

These fixes and modifications led to good results during the May commissioning that will

be discussed further in the following sections.

5.3 OTF Results

Data was acquired and processed from the OTF and the GBT. As mentioned before, the

data acquired in the OTF was used to determine Tsys and to verify that the post-processing code

worked. Tsys in the OTF was calculated using the following equation

Tsys =
Thot −TcoldY

Y −1
, (5.1)
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where Y (the Y factor) is the ratio of on source power (roof closed) to off source power (roof

open), and Thot and Tcold were approximated to be 7.5 K and 290 K respectively. The on and off

source power were calculated by taking the real part of the diagonal elements of the corresponding

covariance matrices.

The Tsys was calculated over 475 frequency channels rather than 500 since one the HPCs

(FLAG five) was having trouble acquiring data due to hardware problems. A plot of the initial Tsys

result can be seen in Figure 5.1 where each curve represents a single element.

Figure 5.1: Tsys (K) vs. Relative LO frequency (MHz). Each curve represents the Tsys of a single

element. The quantization gain was set to 10 and shows a decrease in the transition bands which

is inaccurate.

This was suspicious since the Tsys was improving in the transition band. The Tsys should

increase as it gets closer to the edges of the band because the signal is attenuated in the transition
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band. If the signal is attenuated, the sensitivity decreases as well which leads to an increase in Tsys

due to the inverse proportionality.

We theorized that the re-quantization of the data in the ROACH was causing our off source

measurements to be abnormally low, which made our Y factors high and Tsys unusually low. In

order to account for this re-quantization, the quantization gain, which was set to 10 in Figure 5.1,

needed to be changed.

At the output of the ADC in the ROACH and after the sideband separation step for bit and

byte locking, the data, as a 42 bit word, is converted to an eight bit word (one byte). Before the 42

bit word is converted, it is multiplied by a quantization gain which toggles the bits to an acceptable

point for conversion. We found that increasing the quantization gain resulted in a more accurate

depiction of the Tsys versus frequency as seen in Figure 5.2.

Figure 5.2: Tsys (K) vs Relative LO frequency (MHz). Each curve represents the Tsys of a single

element. The quantization gain was set to 20 which shows an increase in the transition band.

40



The Tsys increases at the edges of the band as expected due to the increase in quantization

gain to 20. The irregular curves are due to faulty elements of the PAF. One of the elements was

dead and the other two were not well connected. Figure 5.3 shows an increased quantization gain

of 40.

Figure 5.3: Tsys (K) vs Relative LO frequency (MHz). Each curve represents the Tsys of a single

element. The quantization gain was set to 40 and produced lower Tsys results in the pass band

relative to Figure 5.2.

A quantization gain of 40 produced accurate Tsys results and was the gain chosen when acquiring

data with the GBT.
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5.4 GBT Results

When the PAF was placed on the feed of the GBT, we were given five sessions to acquire

data and three of them will be discussed (session two, three, and five). The X polarization elements

from session one malfunctioned so the data obtained was unreliable. The results from session five

were similar to session four so only the latter of the two are discussed. During each session, we

collected data from multiple scans discussed before hand. Each session contained peak and focus

scans used to determine pointing and focus offsets respectively, calibration scans used to calculate

beamformer weights, and other scans of interest such as; pulsar and HI scans.

After each session, post processing codes were run in order to analyze the data. Data was

analyzed using sensitivity map, system temperature, beam pattern, and element pattern plots that

will be shown after a description of the session.

During the second session, we were able to perform a continuous 30×30 PAF calibration

scan, and attempted a pulsar scan. A continuous 30×30 PAF calibration scan is one with 30×30

on pointings on a grid. For this scan we decided to have an off pointing every other row. The on

and off pointings, in this case, are points on and off the grid respectively, formed from the scan.

Each pointing represents a beam and each of them is three arcminutes (one arcminute is 1/60 of a

degree) wide. The data from this calibration scan was acquired using the coarse channel correlator

and the source used for calibration was 3C295.

Unfortunately, the pointing offsets were inaccurate with the off pointings at a lower ele-

vation than the grid. And the covariances in post processing were calculated using the closest

off-pointing to a corresponding row so they were calculated using only one which would not be

the case with accurate pointing offsets. This issue was not resolved during this commissioning.

Additionally, the coordinates provided by the telescope coordinator were in right ascension

(RA) and declination (DEC). Therefore the sensitivity map does not look as it would with elevation

and cross-elevation offsets that can be seen in the next sessions. While the pointing offsets were

inaccurate and the coordinates were in RA and DEC, this was the session with the lowest recorded

Tsys/η of 28.2 K. The sensitivity map and Tsys/η plot formed from the calibration grid can be seen

in Figure 5.4 and 5.5 respectively.
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(a) X polarization (b) Y polarization

Figure 5.4: Formed beam sensitivity maps of X and Y polarizations at 1404.74 MHz from session

2. This is a 30×30 grid with beams that were each three arcminutes wide. The grid orientation is

due to the RA and DEC coordinate system.

(a) X polarization (b) Y polarization

Figure 5.5: Tsys/η of X and Y polarizations from session 2. The lowest Tsys/η was 28.2 K in the

X polarization. The blank spots were the missing bandwidth from the unused HPCs as well as

masking of RFI.

During the third session, we performed the same continuous 30×30 calibration scan along

with an attempt at an HI source scan. Unfortunately, the fine channel correlator had a few issues to
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resolve so the most useful data acquired from this session was that of the coarse channel correlator.

This grid was generated with elevation and cross-elevation offsets rather than RA and DEC so it

looks as it should. The grid along with the Tsys/η plot of both the X and Y polarizations can be

seen in the figures below.

(a) X polarization (b) Y polarization

Figure 5.6: Formed beam sensitivity maps of X and Y polarizations at 1404.74 MHz from session

3. This is a 30×30 grid with beams that were each three arcminutes wide.

(a) X polarization (b) Y polarization

Figure 5.7: Tsys/η of X and Y polarizations from session 3. The lowest Tsys/η was 32.6 K in the

X polarization. The blank spots were the missing bandwidth from the unused HPCs as well as

masking of RFI.
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In the forth session, we acquired a grid with a daisy scan which is performed by drifting

the telescope along a petal-like structure. We also acquired seven discrete pointing scans around a

calibrator source (3C295) in order to produce quick weight files to run the real-time beamformer

and track pulsar sources. The daisy scan was tested because it is a faster scan than the continuous

calibration scan (also called a raster scan), but the amount of data stored was large enough to greatly

slow down post processing. The daisy scan was not used in the next commissioning because of

this problem. The figures below show the sensitivity map using the daisy as well as the Tsys/η .

(a) X polarization (b) Y polarization

Figure 5.8: Formed beam sensitivity maps of X and Y polarizations at 1404.74 MHz from session

4. These were the daisy scans generated by drifting the telescope along the petal-like structure.

This is a 30×30 grid with beams that were each three arcminutes wide.

Using the steering vectors and weights acquired from the sensitivity/SNR calculation, we

were able to plot beam patterns to characterize the beams, and plot element patterns as well. Both

patterns were derived with the same equation, but different weights as seen in equation 4.2.

p j,k,l = |wH
j,k,l âk,l(θ)|

2, (5.2)

where j is the element index and only changes when generating element patterns, k is the beam

index, and l is the frequency index.
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(a) X polarization (b) Y polarization

Figure 5.9: Tsys/η of X and Y polarizations from session 4. The lowest Tsys/η was 32.5 K in the

X polarization. The blank spots were the missing bandwidth from the unused HPCs as well as

masking of RFI.

The weights used to generate beam patterns were calculated using equation 2.8 while those

used to generate element patterns were set to zero in every element except the one being analyzed

which was set to one. The beam and element patterns of this commissioning can be seen in Figure

5.10 and 5.11 respectively.

Using the weights acquired from the seven discrete pointing scans, we were also able to

track two pulsars, B1933 and B1937, for 10 minutes each. Figure 5.12 shows plots of B1937 which

were generated by Kaustubh Rajwade, a PhD student from West Virginia University. The signal is

seen to move across frequency as the time samples advance (before dedispersion which aligns the

signal across time samples and sums across frequency channels) [7], [30]. This is expected of a

pulsar.

5.5 Summary

During the May 2017 commissioning, although we had issues with the coordinate system

and inaccurate pointing offsets, these tests went quite well. We were able to track pulsars, B1933

and B1937, with the real-time beamformer, and further test the coarse channel correlator.
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(a) X polarization

(b) Y polarization

Figure 5.10: Beamformed patterns of X and Y polarizations at 1404.74 MHz for session 3.
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(a) X polarization

(b) Y polarization

Figure 5.11: Element patterns of X and Y polarizations at 1404.74 MHz for session 3. The blank

element pattern is due to a non-responsive element.
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Figure 5.12: Pulsar (PSR B1937+21) detection in beam 1. Before dedispersion (top), dedispersed

(middle), and power integrated over frequency (bottom).

The tests run in the OTF proved that we needed to use a quantization gain of 40 for coarse

channel correlation. The quantization gain still needed to be tested with the fine channel correlator

and in the next commissioning, it was found to be 10.

We were also able to achieve a Tsys/η of 28.2 K during one of our sessions. This showed

that the PAF was capable of achieving system temperatures of a single pixel feed (the Tsys/η goal

was 28 K). Finally, the post-processing code developed during this commissioning enabled us to

use our time more efficiently in July 2017.
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CHAPTER 6. JULY 2017 FLAG COMMISSIONING

6.1 Introduction

In this chapter, the work done, and results acquired during the July 2017 commissioning of

FLAG are discussed. Details on the improvements made to the system as well as those that still

need to be made are addressed. As in the previous two chapters, details on the data acquired during

this commissioning are discussed as well. In terms of system performance, this appeared to be the

best of the three commissioning runs.

While there were still a few unresolved issues, this commissioning proved to be the best

of the three. A lot of the improvement was due to the changes made during and after the May

2017 commissioning. Changes made to the HASHPIPE code managed to improve data acquisition

issues that were problematic during the last commissioning. Code was also written to correct

sample delay from element to element on the array. This was called word lock and is described in

detail in [26].

The availability of the post-processing code was one of the most important changes/additions

that made the run quite smooth. Pointing offset issues were also resolved which lead to accurate

cross-elevation and elevation values from the calibration grid to be used for post-processing. Un-

fortunately, an issue inherent to the PFB was discovered prior to this commissioning and due to

time constraints was not solved, but solutions have been addressed.

The data acquisition procedure remained the same as the last commissioning except word

lock needed to be done after bit/byte lock. Bit/byte lock was still done manually using the same

GUI from the May 2017 commissioning.
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6.2 DIBAS Modifications

Quite a few modifications were made to the DIBAS code to make it more efficient as well

as fix some issues seen in previous commissioning runs. One issue that has been consistent through

all commissioning runs was problematic data transfer between HASHPIPE threads.

Between each HASHPIPE thread is a semaphore controlled ring buffer which transfers data

to the next thread based on whether the buffer is full or empty (clean). The problem is that during

data acquisition, the threads did not seem to keep up with each other. So we received some blocks

of data with the incorrect number of packets (which we refer to as bad blocks) or data acquisition

stops before a scan is complete (which we refer to as stalling). And sometimes a stream of bad

blocks would cause stalling.

The major reason for the large number of bad blocks and stalling was the FITS writer. The

problem was that for all instances of HASHPIPE on an HPC, the FITS writers were using the same

processor cores. This caused a higher demand of memory access that the HPCs could not handle.

After distributing the FITS writers to different cores on the HPC, there was a significant decrease

in bad blocks as well as stalling. Therefore, we were able to acquire data over a higher bandwidth.

Despite an increase in bandwidth with the FITS writer fix, there was still stalling and a few

bad blocks mainly in the real-time beamformer due to its high data rate. To increase the bandwidth

further, HASHPIPE and CUDA code had to be optimized.

There were a few memory leaks (memory that was not freed) from the initialization in the

code. This was easily fixed by freeing the memory after each run of the beamformer. The major

change was integrating the algorithm used in the transpose thread into the data restructure kernel

in the CUDA code.

While debugging, the transpose thread was seen to run much longer than the other threads.

This seemed to be causing much of the stalling while running the beamformer. So the transpose

thread was eliminated, and its algorithm was integrated into the data restructure kernel of the

beamformer. The algorithm used in the transpose thread restructured the data to combine all 40

input ports from the five ROACHES. The equations below show output of the net thread (input of

the transpose thread) and the output of the transpose thread.

Net = i + Ni*c + Nc*Ni*t + Nt*Nc*Ni*f + Nf*Nt*Nc*Ni*m,
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Tr = e + Ne*c + Nc*Ne*t + Nt*Nc*Ne*m,

where Ni is the number of inputs per F-engine/ROACH and i are the input indices, Nc is the

number of frequency channels and c are the channel indices, Nt are the number of time samples

and t are the sample indices, Nf are the number of F-engines/ROACHES and f are the F-engine

indices, and Ne are the total number of elements/input ports and e are the element indices.

Integrating the transpose thread into the CUDA code reduced the number of stalled in-

stances to the point that we lost at most 20% of the bandwidth rather than 50%. Although this was

a great improvement in performance, the stalling issue still needs to be completely resolved. Two

of the possible solutions that are still being tested and understood are changing the buffer sizes and

HASHPIPE thread optimization.

6.3 Pointing Offset Correction

Some modifications were made to the post processing code, specifically when calculating

the cross-elevation and elevation offsets. Initially, the cross-elevation was inaccurately calculated

as though it was azimuth. In order to calculate these pointing offsets, encoder values (antenna

position) as well as the observer’s command positions (on-sky beam position) were used.

The encoder and observer command elevation/cross-elevation offsets were calculated first.

This is done to estimate the actual elevation and cross-elevation offsets. The encoder and observer

elevation offsets were calculated as follows

mntEloff = mntEl - smntcEl,

obscEloff = obscEl - sobscEl,

where mntEl and smntcEl are the encoder elevation at the point in a scan and command at the

scan midpoint respectively. obscEl and sobscEl are the observer elevation at the point in a scan

and command at the scan midpoint respectively.

The encoder and observer cross-elevation offsets were calculated as follows

mntXEloff = (mntAz - smntcAz)cos(mntEl),

obscXEloff = (obscAz - sobscAz)cos(mntEl),
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where mntAz and smntcAz are the encoder azimuth at the point in a scan and command at the scan

midpoint respectively. obscAz and sobscAz are the observer azimuth at the point in a scan and

command at the scan midpoint respectively. Since we are calculating the cross-elevation rather

than azimuth, the difference is multiplied by the cosine of the encoder elevation.

The elevation and cross-elevation offsets were calculated by taking the difference between

the encoder and observer values as follows

elOff = mntEloff - obscEloff,

xelOff = mntXEloff - obscXEloff.

These modifications, as well as a few others, ensured that we were able to process the

data more efficiently and accurately than the last commissioning. However, the results, while

good, were not as impressive as they were in the last commissioning. The sensitivity during this

commissioning was slightly higher than the last commissioning overall.

6.4 GBT Results

During this commissioning, we were able acquire and process data from three sessions.

The procedure for data acquisition remained the same as previous commissioning runs, except for

the additional word lock step. Sources 3C295, 3C123, and 3C147 were used for calibration during

each session respectively. Unfortunately, the data acquired with the real-time beamformer during

this run appeared to be inaccurate. There seemed to be significantly high power at the edges of

the frequency band compared to the center. This issue is still under investigation with the problem

possibly being low quantization gain.

While three different sources were used, one session’s plots can be used to illustrate the

results from the run. A continuous 30×30 calibration scan was used during each session. An off

pointing was placed every five rows rather than every other row as in the previous run. Due to the

pointing offset corrections applied during this run, the plots used for analysis were better aligned

in elevation and cross-elevation compared to the previous run. The sensitivity map and Tsys/η for

the second session can be seen in Figure 6.1 and 6.2 respectively.
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(a) X polarization (b) Y polarization

Figure 6.1: Formed beam sensitivity maps of X and Y polarizations at 1404.74 MHz from session

3. This is a 30×30 grid with beams that were each three arcminutes wide.

(a) X polarization (b) Y polarization

Figure 6.2: Tsys/η of X and Y polarizations from session 3. The blank spots were the missing

bandwidth from stalled HASHPIPE instances as well as masking of RFI.

As with the previous sessions, quite a few of the Y-polarized elements were non-responsive.

The sensitivity map with the Y-polarized elements is indicative of this issue. This can also be seen

in the beam and element patterns in Figure 6.3 and 6.4 respectively.
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(a) X polarization

(b) Y polarization

Figure 6.3: Beamformed patterns of X and Y polarizations at 1404.74 MHz for session 3.
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(a) X polarization

(b) Y polarization

Figure 6.4: Element patterns of X and Y polarizations at 1404.74 MHz for session 3.
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6.5 Summary

The July 2017 commissioning was more efficient than the previous two due to the additions

and improvements made to the back end between commissioning runs. Despite the issue with the

real-time beamformer output, we were able to acquire data in all modes with little problem. We

were also able to generate an HI map which was not done in the previous commissioning [26].

After the problem with the beamformer output is solved, more improvements will be made

to the system. A GUI has been created, but has not been fully tested. And the HASHPIPE code

needs to be modified to increase speed and improve data integrity. This can be done by eliminating

the need to copy data to and from the GPU and modifying the HASHPIPE threads.
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CHAPTER 7. CONCLUSION AND FUTURE WORK

In radio astronomy, phased array feeds are used to achieve larger fields of view than the

traditional single pixel feed. This has been achieved with FLAG, and as expected with a PAF,

greater complexity in the receiver and higher data rate are introduced.

The data is transmitted from the front end receiver to the digital back end through optical

fibers at a data rate of 303.75 kHz. The data is then processed and packetized by ROACH II

boards, and a 10 Gbe switch respectively. The data from the switch is then processed by five

HPCs each containing two GPUs. Each GPU processes 1/10 of the receiver bandwidth. The code

implemented on the GPUs is integrated into a real-time operating system called HASHPIPE. This

RTOS is run by a user interface called dealer/player that runs the appropriate mode for a scan.

During a scan, the modes vary from coarse/fine channel correlation, beamforming or commensal

mode which is when the correlator and beamformer are run in parallel.

During observations made in July 2016, May 2017, and July 2017, we were able to test the

FLAG back end. Data was acquired and verified by analyzing the sensitivity over a field of view

and system temperature over the 150 MHz bandwidth. These values are obtained by calculating

weights and using the correlation matrices acquired from the correlator. The weights are also used

for real-time beamforming when detecting radio transient sources.

In May 2017, a pulsar (PSR B1937+21) was detected with the real-time beamformer prov-

ing that FLAG is capable of detecting radio transient sources.

7.1 Future Work

A few additions and improvements to the system still need to be made or tested. The

specifications of FLAG were to design a back end with the fine/coarse correlator and beamformer

working in parallel. This mode is referred to as commensal mode, and it has not been tested yet.

This should be one of the priorities moving forward with FLAG.
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Bit/byte/word lock also needs to be fully integrated into the code in order to remove the

time wasting manual procedure. This has already been done and just needs to be tested.

A weight generation/calibration thread should be added to the system to reduce the time

spent post-processing. Currently, weight files are generated in MATLAB using data from the

correlator after a calibration scan. A thread should be added to HASHPIPE that quickly calculates

weights using the GPUs. Real-time analysis tools should also be incorporated into the system to

provide live updates as well as reduce the time spent post-processing even more.

In order to greatly speed up processing, the GPUs need to be better utilized. The CUDA

code needs to be optimized in such a way that the number of memory copies to and from the device

are greatly reduced. This could possibly be done by integrating HASHPIPE into the GPUs which

at the very least would eliminate the initial copy from host to device.
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APPENDIX A.

A.1 Introduction

The following appendix provides details on improvements and additions made to the FLAG

back end. The details in this appendix are ones that I have worked on. Others can be found in

Richard Allen Black’s dissertation, and Mitchell Burnett’s thesis.

This appendix will provide details on the hardware, post-processing code, dealer/player

interface, and real-time beamformer code.

A.2 Hardware

A.2.1 40 Gbe Switch

This is a Mellanox SX 1012 12-port 40 Gbe network switch which redirects packets into

the five HPCs so that each HPC receives 100 frequency bins for all 40 elements.

A.2.2 HPCs

Each HPC is a Mercury GPU408 4U GPU Server purchased from Advanced HPC (part

number AH-GPU408-SB14). The machine comes with two Intel Xeon six-core processors orga-

nized onto two independent PCI-E busses. A table of specifications for each HPC can be found in

Table 1.
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Table A.1: HPC Specifications

Feature Description

Processors 2x Intel Xeon E5-2630 v2 2.60 GHz six-core 80 W processors

Memory 32 GB DDR3 ECC

Hard Drives 2x 500 GB SATA 7200 RPM disks in RAID 1 configuration

Drive Bays 8x hot-swappable 3.5 inch drive bays (unpopulated)

PCI-E Slots 4x PCI-E 3.0 x16 slots (double width, two per processor)

2x PCI-E 3.0 x8 slots (one per processor)

1x PCI-E 2.0 x4 slot

Network Integrated Intel i350 dual port GbE LAN

Power Supply 1620 W platinum level efficiency redundant power supply

Height 4U

Rack Mountable Yes

Graphics Cards

Two models of graphics cards are used in the FLAG back end: the NVIDIA GeForce GTX

780 Ti and NVIDIA GeForce GTX 980 Ti. Two of the GPUs are the 780 Ti model since they were

purchased just prior to their abrupt removal from the market by NVIDIA. Pertinent specifications

for both cards are summarized in Table A.2 and A.3.
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Table A.2: GeForce GTX 780 Ti Specifications

Specification Value

# CUDA Cores 2880

Base Clock Speed 875 MHz

Texture Fill Rate 210 GigaTexels/sec

Memory Clock Speed 7.0 Gbps

Memory 3 GB

Memory Interface Width 384 bits

Memory Bandwidth 336 GB/sec

Minimum Power Requirement 600 W

Table A.3: GeForce GTX 980 Ti Specifications

Specification Value

# CUDA Cores 2816

Base Clock Speed 1000 MHz

Texture Fill Rate 176 GigaTexels/sec

Memory Clock Speed 7.0 Gbps

Memory 6 GB

Memory Interface Width 384 bits

Memory Bandwidth 336.5 GB/sec

Minimum Power Requirement 600 W

The differences between the two cards in all critical performance specifications are mini-

mal, thus we do not anticipate any new throughput bottlenecks resulting from the swap.
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Network Cards

Each HPC is equipped with three network cards; two dual-port SFP+ 10-GbE cards for

receiving packets from the ROACH boards and an Infiniband Card for fully processed data transfers

to a Lustre disk array.

A.3 Post-Processing Code

The post-processing code can be found on any of the Green Bank observatory machines

under /home/groups/flag/matFlag/. The following items are a list and description of the files and

functions used in post-processing.

sensitivity map.m This is a matlab file that uses the covariance matrices obtained from a scan using

the correlator operational mode, and calculates and plots the sensitivity over the field

of view and system temperature. It also generates weights, and steering vectors.

extract covariances.m This is a function that extracts covariances from the FITS files generated

by HASHPIPE when using the correlator operational mode.

get antenna positions.m A function used to calculate the elevation and cross-elevation offsets.

These help determine the position of the beams on the grid.

get steering vectors.m A function used to generate steering vectors.

plot beam patterns.m A file that plots 7 beam patterns using the weights generated by sensitiv-

ity map.m. It also creates weight file from the weights.

get grid weights.m A function used in plot beam patterns.m that selects 7 beams from the weights

generated by sensitivity map.m. The total number of beams correspond to the total

number of on-pointings on the grid.

get element patterns.m A file that plots the element patterns using the steering vectors generated

by sensitivity map.m
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RTBF data analysis.m A file that plots output of the real-time beamformer. Provides intensity

plots for short time integration (STI) windows vs. frequency bins. It also plots the

power over the STI windows.

bf tf power.m Also plots output of the real-time beamformer operational mode. Plots power over

the frequency bins

extract bf output.m Extracts the data from the FITS files generated by the real-time beamformer.

These files were too large to be read by the fitsread() function in MATLAB. Low-

level functions were used to interact directly with CFITSIO library functions. These

functions allow the user to read a fraction of the data from the fits files rather than

the entire file.

snoop lock.m & compare lock.m Compute the sample delay relative to the first element.

scan table.m Contains global parameters used by various files.

A.4 Dealer/Player

This section describes how to run dealer/player with the real-time beamformer operational

mode. This procedure is very similar to other modes aside from a few parameter changes.

After a calibration scan, weight files are generated with the post-processing codes. These

weight files are used by the real-time beamformer mode.

To run the beamformer:

• Go to the python directory on the HPCs.

• Start the players on the appropriate HPCs. The following line is to be entered in each linux

terminal (20 terminals, 4 on each HPC):

– ipython player.py "bank name in capital letters e.g. BANKA"

• Open another terminal for the dealer (this can be on any HPC) open ipython and in the python

directory and enter the following lines:
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– import dealer

– d = dealer.Dealer()

– d.add active players(d.list active players())

– d.set mode(‘FLAG RTBF MODE’)

– d.set param(weight file = ‘weight file name (Bank added automatically)’)

• If you are running a scan without the scan coordinator:

– d.startin(‘sleep time’, ‘scan length’)

• If you are running a scan with the scan coordinator:

– sc = scanOverlord()

– sc.addDealer(d)

– sc.goLive()

– sc.start overlord()

A.5 Real-time Beamformer

The real-time beamformer is implemented on a Graphics Processing Unit (GPU) using

CUDA (A parallel computing platform and application programming interface (API) created by

NVIDIA). The specifications for the beamformer are as follows; 19 dipole elements, 25 coarse

channels with 15MHz total bandwidth at a sample rate of 303k samp/s, and 7 dual polarization

beams. In order to achieve real-time, the total duration of beamforming, and integration must be

at most the number of samples (N) divided by the sample rate. The two processes that utilized

the GPU the most were beamforming and integration. A data restructure was also processed by

the GPU in order to accommodate for a function used by the beamformer. This section describes

the functions used to run the real-time beamformer. The code was structured in such a way that it

could be easily integrated into HASHPIPE.
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A.5.1 Function Descriptions and Returns

init beamformer() - This function allocates memory to all the arrays used in the code. It also

sets up all the arrays used by the cublasCgemmBatched() function.

update weights(char * filename) - As the functions name implies, this function updates the

weights, but it also transposes the weights to accommodate for the cublasCgemmBatched() func-

tion. The file name of the weights file is required as an input.

data restructure(signed char * data, cuComlplex * data restruc) - A kernel that re-

structures the data to accommodate for the cublasCgemmBatched() function and replace the

transpose thread in HASHPIPE. The array of pointers, data, is required as an input of the ker-

nel and data restruc is its output.

signed char * data in(char * input filename) - Reads the data file, and returns it as an

array of pointers. The file name of the data file is required as an input.

void beamform() - Contains the cublasCgemmBatched() function that performs the beamform-

ing operation. The cublasCgemmBatched() function is found in the cublas library and performs

a matrix-matrix multiplications of an array of matrices.

void sti reduction(cuComplex * data in, float * data out) - A kernel that performs

the short time integration using a reduction algorithm commonly used on GPUs to reduce the num-

ber of threads per block. The kernel requires the output of the beamform() function as its input,

data in, and produces an output, data out.

void run beamformer(signed char * data in, float * data out) - This function calls

the data restructure, beamform and sti reduction functions. The returned value of data in() is

required as its input, and its output is the short time integration kernel’s output.

69


	Brigham Young University
	BYU ScholarsArchive
	2017-12-01

	Real-Time Beamforming Algorithms for the Focal L-Band Array on the Green Bank Telescope
	Mark William Ruzindana
	BYU ScholarsArchive Citation


	Title Page
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1   Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Contributions
	1.4 Thesis Outline

	Chapter 2   Background
	2.1 PAF Beamforming
	2.2 PAF Calibration
	2.3 Sensitivity Calculation
	2.4 Summary

	Chapter 3   FLAG System and Beamformer Implementation
	3.1 FLAG System Overview
	3.2 HASHPIPE Implementation
	3.3 Dealer/Player
	3.4 Beamforming
	3.5 Specifications for Beamformer
	3.6 Beamformer Implementation
	3.6.1 MATLAB Implementation
	3.6.2 C Implementaion
	3.6.3 GPU Implementation

	3.7 Simulated Data and Weights
	3.8 Testing
	3.9 Real-time Beamformer Test
	3.10 Summary

	Chapter 4   July 2016 FLAG Commissioning
	4.1 Introduction
	4.2 Bit/Byte lock
	4.3 GBT Results
	4.4 Summary

	Chapter 5   May 2017 FLAG Commissioning
	5.1 Introduction
	5.2 DIBAS Modifications
	5.3 OTF Results
	5.4 GBT Results
	5.5 Summary

	Chapter 6   July 2017 FLAG Commissioning
	6.1 Introduction
	6.2 DIBAS Modifications
	6.3 Pointing Offset Correction
	6.4 GBT Results
	6.5 Summary

	Chapter 7   Conclusion and Future Work
	7.1 Future Work

	References
	Appendix A   
	A.1 Introduction
	A.2 Hardware
	A.2.1 40 Gbe Switch
	A.2.2 HPCs

	A.3 Post-Processing Code
	A.4 Dealer/Player
	A.5 Real-time Beamformer
	A.5.1 Function Descriptions and Returns



