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Abstract. The amount of data produced within health informatics has grown to be quite vast. The large

volume of data generated by various vital sign monitoring devices needs to be analysed in real time to alert the

care providers about changes in a patients condition. Data processing in real time has complex challenges for the

large volume of data. The real-time system should be able to collect millions of events per seconds and handle

parallel processing to extract meaningful information efficiently. In our study, we have proposed a real-time

BigData and Predictive Analytical Architecture for healthcare application. The proposed architecture comprises

three phases: (1) collection of data, (2) offline data management and prediction model building and (3) real-time

processing and actual prediction. We have used Apache Kafka, Apache Sqoop, Hadoop, MapReduce, Storm and

logistic regression to predict an emergency condition. The proposed architecture can perform early detection of

emergency in real time, and can analyse structured and unstructured data like Electronic Health Record (EHR) to

perform offline analysis to predict patient’s risk for disease or readmission. We have evaluated prediction

performance on different benchmark datasets to detect an emergency condition of any patient in real time and

possibility of readmission.
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1. Introduction

BigData refers to the unprocessed, unstructured and com-

plex data in volumes on the range of exabytes (1018) and

beyond processed at high velocity. BigData is identified by

volume, variety, velocity, storage, processing and manage-

ment of data. In such volumes, our traditional approach such

as relational database systems is not only tedious but also

very costly. Such volume exceeds the capacity of current

traditional storage and processing systems [1]. Healthcare

devices generate a large amount of data. In healthcare,

BigData generally refers to electronically generated health

records or datasets. These health records include clinical

data from written notes and prescriptions by physicians,

medical images (like X-rays, sonography, etc.), laboratory

reports, pharmaceutical reports, insurance records and other

data. Similarly, a large volume of data is generated by

monitoring devices from hospitals and in-home devices.

These generated data are so large and complex that it is

nearly impossible for a traditional system to store, manip-

ulate and manage these data in an efficient manner.

Small physician clinics to a large group of hospitals and

large healthcare organisations effectively use BigData.

Predictive modelling in BigData can be used for more tar-

geted research and development pipeline in drugs and

devices, which will be leaner and faster, and can result in

lower attrition as well. Structured and unstructured data like

Electronic Health Record (EHR), medical and operational

data, and genomic data jointly analysed to match outcomes

of treatment can predict risk for diseases or risk for read-

mission and can help in providing adequate care. Similarly,

data obtained from various monitoring devices can be cap-

tured and analysed further for safety monitoring and adverse

event prediction. Modern healthcare facilities are looking to

provide more proactive care to their patients by constantly

monitoring vital signs. New sensor technology has made it

possible to monitor essential signs anytime–anywhere. The

data from various vital sign monitors need to be stored and

analysed in real time to alert the care providers, so they

know instantly about changes in patients. Also, by contin-

uously monitoring vital signs of patients, the condition of

emergency can be predicted. For example, if we could look

back at each patient’s vitals for the 3 h preceding a heart

attack, we would predict when the other patient might have

a heart attack. Data processing in real time is a very*For correspondence
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challenging and complex task. Generally, BigData is cate-

gorised into volume, velocity and variety of data. Managing

this velocity and variety of data is not an easy task. In our

study, we have proposed a real-time BigData and Predictive

Analytical Architecture for healthcare application.

The proposed architecture consists of three phases. The

first phase includes data collection from various vital sign

monitoring devices and different health record databases

using Apache Kafka, a distributed messaging system [2],

Apache Sqoop, designed for transferring data between

relational databases, and Apache Hadoop [3]. In the second

phase we have used BigData technologies for storing data,

and for filtering and extracting useful information from

large data volumes. For this purpose, we use MapReduce

(MR) [4], which is designed to perform parallel data pro-

cessing on large clusters, and Apache Hadoop [5], which is

an open source framework written in Java that implements

the MR model. Logistic regression with MR is used on fil-

tered data to build a prediction model for detecting the

emergency condition at an early stage. In the third phase,

real-time processing is performed to predict emergency

condition using the afore-mentioned prediction model. For

real-time processing, we have used Apache Kafka and dis-

tributed stream processing engine, Apache Storm [6]. Using

Apache Kafka and Storm, data streaming in real time can be

conducted reliably. Data velocities of thousands of mes-

sages every second can be handled using Storm and Kafka.

We have evaluated the prediction performance on dif-

ferent prediction and observation windows for early

detection of an emergency condition in real time on Vital

Signs dataset of Queensland University, which was recor-

ded from 32 patients under anaesthesia condition at the

Royal Adelaide Hospital. We have also tested our predic-

tion model for offline analysis on diabetes dataset, which

was recorded during a 10 years (1999–2008) period at US

hospitals to predict the risk of readmission. In healthcare

application, there is a need to predict the health-related

issues of patient. Logistic regression is used when target

variable is categorical. In our work, logistic regression is

used to predict the health-related issue by monitoring the

vital signs of patient.

This paper is organised as follows. Section 2 presents a

brief introduction of related literature, which includes the

Hadoop system architecture, introduction of Kafka and

Storm, and motivation for this study. Section 3 presents the

details of each phase of the proposed architecture. Sec-

tion 4 presents the experimental results. Finally, section 5

presents the conclusion of this study.

2. Related works

In this section, a brief introduction of related literature is

given. The current healthcare system now focuses on

changing its facilities from the traditional treatment to the

prevention, early detection, prediction and warning. To

evaluate the benefits of early detection of emergency in

healthcare systems, a number of surveys, interviews and

reviews have been conducted. In 2001, Agarwal et al [7]

introduced a classifier based on Bayesian network to predict

when a patient might have an emergency. In this work, they

used machine learning and genetic algorithm to maximise

the accuracy of classification results. In 2007, Ramon et al

[8] described data mining algorithms decision trees, Naive

Bayes, First Order Random Forests and Tree Augmented

Naive to predict the emergency condition of patients in an

intensive care unit (ICU). They also discussed the data

mining challenges in healthcare for a large amount of data.

The rate of data generation in health informatics is very

large. To store healthcare records of a large number of

patients, storage of terabytes to petabytes is required. In the

traditional approach, We have to work hard to store it,

access it, manage it and process it. New forms of integra-

tion are required to uncover hidden values from large

datasets that are complex, diverse and of a massive scale.

Google has given a solution to this problem using an

algorithm known as MR. In 2004, Dean et al [4] at Google

Labs introduced a MR algorithm for simplified data pro-

cessing on large clusters. MR technique runs on the large

numbers of a cluster for parallel data processing and it is

highly scalable. A typical MR technique uses thousands of

machines and processes many terabytes of data at a time.

The MR algorithm runs on two important tasks, as the name

suggests, Map and Reduce. Map converts a set of data to

another set of data where each element is further broken

into key-value pairs called tuples. Reduce task takes the

output of tuples from a map as input and combines into a

smaller set of tuples. These tasks are always performed in a

sequence, that is, first map and then reduce. At runtime,

input data are divided into multiple data blocks of the same

size. These same-sized data blocks are then assigned to

nodes that perform parallel map function. After map

function, the generated output is a datum composed of

several \key; value[ pairs. This datum is then passed to

nodes that perform reduce function and generates final

output data. Figure 1 shows the MR flow chart.

Doug Cutting et al developed Hadoop [9], which is an

Open Source project based on the solution provided by

Google. In Hadoop, MR is used to run applications in

which parallel data processing is required on huge amounts

of data. Hadoop Distributed File System (HDFS) and MR

are the two main components of Hadoop. On top of the

Figure 1. Overview of the MapReduce model.
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local file system, HDFS supervises the data processing.

Hadoop adopts master/slave architecture, in which a master

node manages other slave nodes in the cluster. In the MR

model, the master is called JobTracker, and each slave is

called TaskTracker. The JobTracker is a java process,

which is responsible for monitoring the job. JobTracker

manages the Map/Reduce phase, and retries in case of

errors. In the HDFS, the master is called NameNode, and

each slave is called DataNode. Actual data are stored on

DataNode. The file is split into a number of small blocks of

equal size and then these blocks are store stored on dif-

ferent DataNodes. NameNode maintains the metadata of

files. It stores information about a filesystem. Hadoop is a

highly scalable storage platform. We can store very huge

volumes of data across hundreds of data nodes and can

access in parallel. Figure 2 shows an overview of the

Hadoop framework.

In 2001, Vignesh and Sivasankar [10] proposed a

framework that is based on Apache Hadoop to improve the

healthcare informatics systems. They used a distributed

Hadoop platform. It is deployable in different geographic

locations at various healthcare centres. MR and Hadoop can

be input/output intensive. It is not suitable for those

applications that require a quick response on real-time data.

The major challenges in real-time analysis are that real-

time system should be always available to process all the

real-time events; real-time system should be able to process

millions of message per second, so it needs to be highly

scalable and real-time system should be distributed in

nature to process a large amount of data in a parallel

manner. Kreps et al [11] developed a Kafka. It is a dis-

tributed messaging system for log processing. Kafka is

distributed and scalable and offers high throughput; it

allows applications to consume log events and also pro-

vides an API similar to the messaging system: the message

producer, the message consumer and the message broker. It

has categories called topics, which contain feeds of mes-

sages. Producers publish data to the topics of their choice.

The producer chooses which message to assign to which

partition within the topic. This can be done in a round-robin

fashion to balance load or it can be done according to some

semantic partition function, and processes the feed of

published messages. Kafka performs as a cluster compris-

ing one or more servers, each of which is called a broker.

There can be multiple producers and consumers generating

messages and subscribing to a topic. A copy of each mes-

sage for that topic is sent to each subscription. Figure 3

shows an overview of Apache Kafka. This design makes

Kafka highly scalable and capable of processing millions of

messages per second. Parallel processing can be done as a

producer can write messages into the Kafka cluster and a

consumer can consume messages from the cluster.

Twitter has developed a distributed real-time parallel

processing platform called Apache Storm [6]. The Storm is

an open source distributed system, which is used for real-

time computation. Storm topologies are the combination of

bolts and spouts. The topology where the data stream is

injected is called spouts. The data streams that are piped

into it are processed by bolts. Bolts can feed data from

spouts or other bolts. Parallel processing of spouts, bolts

and other data around is taken care of by Storm.

3. Healthcare BigData Analytical Architecture

The proposed architecture consists of three main phases. In

the first phase, offline and real-time data are collected from

various EHRs and monitoring devices. In the second phase,

collected data are stored on HDFS; filtration is performed

on this massive amount of data to extract potentially useful

information and build prediction model with the help of

filtered data using logistic regression. The third phase is for

real-time processing to process real-time patients data

collected from monitoring devices and perform actual

prediction. Figure 4 shows an overview of our proposed

architecture. In this section, we have presented the details

of each phase of the proposed architecture.

3.1 Collection of data

In the modern healthcare system, a wide range of data is

available, which can be helpful in predicting patient’s risk

for disease and in providing effective care. In our work, we

have categorised patient data into two categories: real-time

data and offline data. Real-time data include data obtained

by continuously monitoring patient’s vital signs, including

body temperature, blood pressure, pulse rate, etc., from

various monitoring devices. Offline data include demo-

graphic information of every patient, which includes

information of birth date, birth place, gender, etc., historicalFigure 2. Overview of Hadoop architecture.

Figure 3. Overview of Apache Kafka.
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records of previous illnesses and treatments of every

patient, which may be very useful in the future.

Apart from the data obtained from the patient, several

other sources are also available, which are valuable for data

analysis and decision making. In our work, Apache Sqoop is

used to import offline data from various Public EHR data-

bases into Hadoop and Apache Kafka is used to collect real-

time data from the various monitoring devices at the Kafka

cluster. In modern healthcare scenario, various monitoring

devices are available, which can monitor vital signs in real

time from anywhere using wireless or Bluetooth. As dis-

cussed in section 2, message producer, message consumer

andmessage broker are the three major components of Kafka

and producers publish data to the topics of their choice.

In our work, we have used devices monitoring vital signs

as a Kafka producer. A separate Kafka producer is used for

each patient and data of an individual patient are published

to Kafka cluster with different topic names. For example,

the topic name ’case1’ is assigned to the first patient,

’case2’ to the next patient and so on as shown in figure 5.

The Kafka cluster retains all published data for a config-

urable period. After a datum is published, it is available for

consumption; we use Hadoop and Storm as Kafka con-

sumers in later phases of our architecture.

3.2 Offline data management and prediction model

building

In this phase, offline and real-time data collected in the

earlier phase are stored into HDFS in a parallel manner

using the MR algorithm. In case of offline data, Apache

Sqoop is used to import data from databases to HDFS as

shown in figure 6.

Import using Sqoop is done in four steps:

1. Pull metadata from the database.

2. Submit MapReduce job.

3. Pull data from the database.

4. Write data to HDFS.

The imported data are stored in a directory on HDFS for

further use. In the case of real-time data, Hadoop is used as

a Kafka consumer. Hadoop-based consumer performs many

map tasks to pull data from the Kafka cluster in parallel. In

Hadoop, we can connect external data sources to Hadoop

for parallel processing using MR. Kafka also provides MR

layer that uses Record Reader and to read the records from

the Kafka cluster, records are split into small blocks for

parallel processing. In our case study, we have used open

Figure 4. Real-time BigData and Predictive Analytical Architecture for healthcare application.

Figure 5. Collection of real-time patient data on Kafka.
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source Hadoop-Kafka consumer; it is available in GitHub

[12]. For a given topic, Hadoop consumes data from Kafka.

The Hadoop Kafka consumer keeps track message, which is

consumed and maintained in HDFS. Following three steps

are used to pull data from Kafka server into HDFS:

1. Produce test events to the Kafka server and generate

offset files for each topic.

2. Submit MR job and assign number of mappers equal to

the number of topic offsets.

3. Fetch data into HDFS from the Kafka server up to largest

available offsets.

After data are stored into Hadoop, MR jobs are performed

to filter data for extracting useful information from the

large volumes of data. Later, these filtered data are used to

build a prediction model. To build a prediction model,

logistic regression is used with MR algorithm. Logistic

regression is an algorithm to model the probability of an

event as a function of another variable. Logistic function

x(z) that allows a single variable z can be expressed as

xðzÞ ¼
1

ð1þ e�zÞ
: ð1Þ

Let D be a dataset with binary outcomes. Every data point i

contains a set of n attributes z1;i; z2;i; . . .; zn;i (also called

independent variables). The value of zi is either Oi = 1 or Oi

= 0. When outcome Oi = 1, then it is said to belong to the

positive class, but when Oi = 0 then it belongs to the

negative class. A regression model is created that classifies

experiment zi as positive or negative, that is, whether it

belongs to positive class or negative class. The main aim of

the logistic regression model is to provide a relationship

between the attributes and the outcome so that the result of

the logistic regression can be used to predict a new set of

variables.

To find the relationship between each experiment zi and

its expected result, logistic function is used. This logistic

function is based on the afore-mentioned regression func-

tion; it allows many variables and can be written as follows:

PðZiÞ ¼
1

ð1þ e�ðb0þb1z1;iþb2z2;iþ���þbnzn;iÞÞ
ð2Þ

where b0; . . .; bn are regression coefficients. The regression

coefficients b0; b1; . . .; bn can be grouped into a single

vector b of size nþ 1. Now, the aim is to find out the values

of regression coefficient b such that classification with high

accuracy can be obtained. An extra pseudo-variable z0;i is

added, for every data point i, with a constant value 1, which

corresponds to coefficient b0. The resulting attributes

z0;i; z1;i; z2;i; . . .; zn;i are then grouped into a single vector Zi
of size nþ 1. Linear predictor function can be written as

follows:

f ðb; ZiÞ ¼ bZi: ð3Þ

Thus, we can write the afore-mentioned equation as

PðzÞ ¼
1

�

1þ e�f ðb;ZiÞ
� ð4Þ

and

f ðb; ZiÞ ¼ ln

 

PðZiÞ
�

1� PðZiÞ
�

!

: ð5Þ

Thus, our regression model is

O ¼ PðZiÞ þ e ð6Þ

where e is error term. We can think of an experiment in D

as a Bernoulli trial with mean parameter lðziÞ. For a Ber-

noulli random variable Oi, mean is lðziÞ and variance of the
random variable will be lðziÞð1� lðziÞÞ. There will be only
two values for error e. If O ¼ 1 then e ¼ 1� lðzÞ, other-
wise e ¼ lðzÞ.

The probability of the ith experiment and the result in the

database D, O, can be calculated as

PðZi;OijbÞ ¼
PðZiÞ if O ¼ 1

1� PðZiÞ if O ¼ 0

�

Therefore

PðZi;OijbÞ ¼ PðZiÞ
Oið1� PðZiÞÞ

1�Oi
: ð7Þ

From this expression we may derive likelihood and log-

likelihood of the data D and outcome O with parameters b

as

LðZ;O; bÞ ¼
Y

R

i¼1

PðZiÞ
Oið1� PðZiÞÞ

1�Oi
; ð8Þ

MapReduce

Sqoop

Database

Mapper 2

Mapper n

Mapper 1 HDFS

HDFS

HDFS

(3)

(4)

(2)

(1)

Figure 6. Import using Sqoop.
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ln LðZ;O; bÞ

¼
X

R

i¼1

�

Oi lnPðZiÞ þ ð1� OiÞ lnð1� PðZiÞÞ
�

¼
X

R

i¼1

lnð1� PðZiÞÞ þ
X

R

i¼1

Oiln

 

PðZiÞ

1� PðZiÞ

!

¼
X

R

i¼1

lnð1� PðZiÞÞ þ
X

R

i¼1

Oif ðb; ZiÞ

ð9Þ

For estimation of maximum likelihood, log-likelihood

function is differentiated with reference to the parameters

and the value of derivative is set equal to zero.

d

dbj
ln LðZ;O; bÞð Þ

¼
X

R

i¼1

Oi

d
dbj

PðZiÞ

PðZiÞ
� ð1� OiÞ

d
dbj

PðZiÞ

ð1� PðZiÞÞ

0

@

1

A

¼
X

R

i¼1

Oi

zj;iPðZiÞð1� PðZiÞÞ

PðZiÞ

�

�ð1� OiÞ
zj;iPðZiÞð1� PðZiÞÞ

ð1� PðZiÞÞ

�

ð10Þ

d

dbj
ln LðD;O; bÞð Þ ¼

X

R

i¼1

zj;i Oi � PðZiÞð Þ
� �

ð11Þ

where j ¼ 1; 2; . . .; n and n is the number of attributes.

We are not able to set this to zero and solve exactly. Both the

functions log-likelihood and likelihood are nonlinear functions

in b and it cannot be solved analytically. Hence, numerical

methods (such as Iteratively Re-weighted Least-Square (IRLS)

technique) are typically used to find the maximum likelihood

estimation. If we extend the definition such that PðZÞ ¼

PðZ1Þ;PðZ2Þ; . . .;PðZRÞ
T
, these equations can be written as

ZTðO� PðZÞ ¼ 0: ð12Þ

Define

wi ¼ PðziÞð1� PðziÞÞ ð13Þ

and W ¼ diagðw1; . . .;wRÞ. Each step of IRLS involves

solving a weighted least squares. Step iþ 1 involves

^biþ1 ¼ ðZTWZÞ�1
ZTðWZb̂i þ ðO� PðZÞÞÞ

¼ ðZTWZÞ�1
ZTWv

ð14Þ

where

v ¼ ðZb̂i þW�1ðO� PðZÞÞ: ð15Þ

To accomplish logistic regression, we have used MR job,

where Map and Reduce functions collectively perform a

weighted least-square regression based on the current coef-

ficient values. The mapper computes a weighted sum of

squares and cross-product for each chunk of input data shown

in algorithm 1, and the reducer computes the regression

coefficient estimates from the sums of squares and cross-

products using algorithm 2. Once the prediction model is

built we used it in both real-time and offline prediction.

4. Real-time processing and actual prediction

In this phase, real-time events can get back by Storm pro-

cessing engine from Kafka and perform actual prediction

using the prediction model build in an earlier phase. In

Storm, a stream of tuples are processed in parallel and for

this, we are required to introduce our spouts and bolts, and

also Storm is configured so that it can be optimised for its

parallel processing. If Storm is required to collect the data

from Kafka cluster and data are processed in parallel, a

Storm-Kafka spout is required. Messages are read from the

Kafka with the help of a spout; this data stream is sent to

Storm bolts for the downstream processing. Storm-Kafka

spout is configured, and data can now be read from the

specified Kafka topic. Now Storm will start accessing the

message. To process the tuple streams that can be accessed

from Kafka, another bolt is needed to be configured. In our

work, we have used a topology of Storm-Kafka spout for
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each topic, several bolts to check threshold value, to gen-

erate alert and to predict the emergency condition using the

prediction model. In the real-time processing part, we have

designed a java-based simulator that publishes data of each

patient with different topic names into Kafka after every 10

ms. To read data from Kafka we have created a Storm

topology of one Storm-Kafka spout, one threshold bolt and

one prediction bolt for each topic. Kafka-spout reads data

from Kafka and emits this to the threshold bolt and pre-

diction bolt. For example, we have assigned topic name

case 1 to patient 1, so Storm Kafka spout of topology 1

fetches data from Kafka server of topic name case 1 and

emits this to the threshold bolt and prediction bolt of

topology 1. Threshold bolt split received the message into

separate fields such as blood pressure, pulse rate, respira-

tory rate, etc. and compares the value of each field to a

predefined threshold range of respective field; if this value

is out of range, then an alert is generated. For example, the

threshold range of heart rate is 50–100. If the value in heart

rate field is not in a given threshold range, then an alert will

be generated. Prediction bolt classifies the message col-

lected from spout using the prediction model, and if the

result of the prediction model is positive then prediction

bolt generates an alert. Real-time processing is shown in

Algorithm 3. We have used Kafka and Storm to process

real-time data and persist this data to further offline process

in HDFS. Algorithm 3 describes using Kafka that producer

is responsible for publishing records to Storm for real-time

processing and persisting records into HDFS for offline

processing. Producer publishes the 100 records into HDFS

as mentioned in Algorithm 3 when the value of count is

100. The count value is taken as a parameter; if this value is

Figure 7. Work flowchart.
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large, it increases the publish time of producer. If count is

much less, then persisting time will increase as the per-

sisting process will be used frequently in very less time

span. Hadoop cluster decreases the training time of big data

using MR as algorithms run in each system of cluster in

parallel. Flow chart of the work is shown in figure 7.

5. Experiment and result

In this section, we have presented experiments performed

using the proposed architecture for real-time as well as

offline analysis to perform several prediction tasks on dif-

ferent datasets and results.

5.1 Experimental environment

The experimental environment is shown in table 1. In this

three systems are used; each one has 4 GB RAM, and 500

GB Storage disk. To store data and to implement MR

algorithm we use Hadoop version 2.7.0. For real-time

processing we use Kafka-0.8.2.1 and Storm-0.11.0. To

build prediction model using regression we use Mahout-

0.11.0. We create one namenode and three datanodes. All

the machines use Ubuntu 15.04 as their operating system.

5.2 Real-time analysis

In the real-time analysis, Vital Signs dataset taken from the

University of Queensland was used, which was recorded

from 32 patients for early detection of emergency condi-

tions such as bradycardia, tachycardia, hypertension,

hypotension and hypoxemia using Vital signs such as heart

rate, blood pressure, pulse rate, respiratory rate and oxygen

saturation (SpO2). Out of 32 cases of the dataset, we have

used 20 cases to build a prediction model. Table 2 shows

the information of data attributes used in this case.

Table 1. Experimental environment.

Machine

Specification Amount

4-GB memory; 500-GB

disk 1 master; 3 slaves

Hadoop

version Hadoop 2.7.0 (stable version)

Kafka version

Kafka-0.8.2.1

Storm version

Storm-0.11.0 (stable version

Sqoop version

Sqoop-1.4.6 (stable version)

Table 2. Information about data attributes.

Parameter Normal range for adults

Heart rate 60–100 (beats per minute)

Blood pressure (systolic) 90–120 (mmHg)

Blood pressure (diastolic) 60–80 (mmHg)

Pulse rate 60–100 (beats per minute)

Oxygen saturation (SpO2) 94–99 (%)

Respiration rate 12–16 (breaths per minute)

  237 Page 8 of 12 Sådhanå          (2019) 44:237 



Every vital sign has its importance in detecting an

emergency. For example, in the case of hypotension and

hypertension, blood pressure has more importance than the

rest of the vital signs. Similarly, the heart rate has more

importance when considering bradycardia and tachycardia.

The relationship between vital signs and different disease is

shown in table 3. For detection of a single disease, we have

considered all the vital signs using a logistic regression

model that gives a high level of accuracy and reliable

results for any health event. For example, hypotension can

be predicted only by ’low blood pressure’ without consid-

ering other parameters. In our work, we have considered all

the vital signs instead of taking only blood pressure for

classification to get more accurate results.

We built models for bradycardia, tachycardia, hyper-

tension, hypotension and hypoxemia prediction. To build

prediction model, we used logistic regression with MR on

filtered data. To filter data, two MR jobs are used. In the

first job, we extract vital signs of each patient after 1 min;

in the second job, we combine the extracted vital signs up

to size of observation window. To train our models, we

have used extracted data as attributes.

Table 4 shows the total number of alarms generated by

the proposed system on different predictions and an

observation window for early detection of bradycardia,

tachycardia, hypertension, hypotension and hypoxemia. In

table 5, for bradycardia and hypertension physical sign,

accuracy increases as the size of the observation window

increases. In the case of physical sign tachycardia,

hypotension and hypoxaemia, accuracy increases when the

prediction window increases from 2 to 5, and it also

increases when the prediction window size is fixed at 10

and observation window size increases from 15 to 20. The

highest accuracy is achieved when the observation window

size is 20 in all the 5 physical signs mentioned in table 5.

The maximum accuracy achieved is 80.8%, 82.8%, 81.8%,

82.4% and 79.6% for the physical sign of bradycardia,

tachycardia, hypotension, hypertension and hypoxaemia,

respectively. We have compared our online prediction

model with Artificial Neural Network and Support Vector

Machine as mentioned in [13] and [14]. The comparison

results are shown in table 5. As MR is used with logistic

regression in our model, it helps in reducing the training

time for the model as mentioned in figure 9.

Table 3. Relationship between vital signs and different diseases.

Physical sign Heart rate BP (systolic) BP (diastolic) SpO2 Pulse rate

Bradycardia Below 60 – – – –

Tachycardia Above 100 – – 90–99% –

Hypotension – Below 90 Below 60 – 50–100

Hypertension – Above 120 Above 80 – 60–100

Hypoxaemia – – – Below 90% –

Table 4. Total number of alarms generated by the proposed system on different prediction and observation windows.

Physical sign Observation window Prediction window No. of alerts Accuracy Precision Recall AUC F-score

Bradycardia 5 2 28 0.732 0.687 0.557 0.921 0.631

10 5 19 0.752 0.723 0.621 0.942 0.676

15 10 11 0.778 0.735 0.626 0.952 0.673

20 10 12 0.808 0.757 0.692 0.972 0.683

Tachycardia 5 2 32 0.762 0.707 0.587 0.941 0.641

10 5 23 0.802 0.773 0.671 0.952 0.696

15 10 14 0.798 0.755 0.656 0.955 0.693

20 10 16 0.828 0.737 0.672 0.942 0.677

Hypotension 5 2 24 0.722 0.677 0.547 0.911 0.621

10 5 15 0.782 0.733 0.631 0.922 0.656

15 10 7 0.758 0.715 0.606 0.932 0.653

20 10 8 0.818 0.777 0.702 0.962 0.695

Hypertension 5 2 38 0.762 0.707 0.577 0.951 0.651

10 5 29 0.772 0.733 0.631 0.932 0.656

15 10 20 0.798 0.755 0.646 0.966 0.684

20 10 22 0.824 0.761 0.660 0.955 0.689

Hypoxaemia 5 2 26 0.712 0.675 0.535 0.901 0.609

10 5 17 0.772 0.723 0.631 0.922 0.656

15 10 9 0.758 0.713 0.604 0.930 0.651

20 10 11 0.796 0.735 0.670 0.951 0.675
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Accuracy ¼
no: of correct predictions

total no: of test cases
ð16Þ

Precision ðpÞ ¼
TP

TPþ FP
ð17Þ

Recall ðrÞ ¼
TP

TPþ FN
ð18Þ

F � score ¼
2pr

pþ r
ð19Þ

Sensitivity ¼
TP

TPþ FN
ð20Þ

Specificity ¼
TN

TN þ FP
ð21Þ

where TN is true negative, TP is true positive, FP is false

positive and FN is false negative.

Figure 8 shows accuracy for bradycardia, tachycardia,

hypertension, hypotension and hypoxemia prediction on

different prediction and an observation windows. We can

observe from figure 8 that as we increase prediction win-

dow while keeping observation window constant, the

accuracy of disease decreases and if we increase observa-

tion window while keeping prediction window constant,

accuracy also increases.

Table 5. Accuracy (%) of experimental results on real-time

datasets.

Datasets Logistic regression with MR ANN SVM

Bradycardia 80.8 80.2 79

Tachycardia 82.8 80.0 80

Hypotension 81.8 81.8 78

Hypertension 82.4 82.0 81

Hypoxaemia 79.6 79.6 84

(a)

(c)

(b)

(d)

(e)

Figure 8. Accuracy for bradycardia, tachycardia, hypertension, hypotension and hypoxemia prediction on different prediction and

observation windows.
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5.3 Offline analysis

For offline analysis, we have performed several prediction

tasks on different datasets, which are shown in table 6.

Figure 10 shows the comparison of accuracy using

regression with MR and without MR and figure 9 shows the

comparison in of performance time using regression with

MR and without MR. Accuracies for offline datasets Heart

disease, Breast cancer and Diabetes have been shown in

figure 10. The best accuracy found in our experimentation

for Heart disease, Breast cancer and Diabetes prediction is

96.8%, 94.2% and 75%, respectively, with MR. From the

graph shown it can be observed that using MR algorithm

there is an increase in accuracy for large data but not

considerable change in accuracy for small dataset. How-

ever, execution time becomes almost half with MR.

6. Conclusion

Real-time analysis is required for continuous monitoring of

vital signs to examine any change in patient’s condition.

Monitoring devices generate a huge amount of data and

processing of these data in real time is a difficult task. In

this paper, we have proposed a real-time BigData and

Predictive Analytical Architecture for healthcare applica-

tions. The proposed architecture can perform early detec-

tion of emergency in real time and can analyse structured

and unstructured data to predict patient’s risk for disease or

readmission. We have used Apache Hadoop and logistic

regression with MR for risk prediction. To monitor

patient’s vital signs and predict an emergency, Kafka and

Storm are used, which provide real-time streaming for fast

moving data as Storm and Kafka can handle data velocities

of tens of thousands of messages every second. We have

evaluated prediction performance on different benchmark

datasets for detection of an emergency condition in real

time and possibility of readmission of any patient, and this

performance is evaluated on different prediction and

observation windows. Experimental results demonstrate the

effectiveness of our proposed architecture.
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