
HAL Id: hal-01054267
https://hal.inria.fr/hal-01054267

Submitted on 5 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Real-Time Biologically-Inspired Image Exposure
Correction

Vassilios Vonikakis, Chryssanthi Iakovidou, Ioannis Andreadis

To cite this version:
Vassilios Vonikakis, Chryssanthi Iakovidou, Ioannis Andreadis. Real-Time Biologically-Inspired Im-
age Exposure Correction. 19th IFIP WG 10.5/IEEE International Conference on Very Large Scale
Integration (VLSI-SoC), Oct 2008, Rhodes Island, India. pp.133-153, 10.1007/978-3-642-12267-5_8.
hal-01054267

https://hal.inria.fr/hal-01054267
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Real-Time Biologically-Inspired                          

Image Exposure Correction 

Vonikakis Vassilios, Iakovidou Chryssanthi and Andreadis Ioannis 

Democritus University of Thrace 

Department of Electrical & Computer Engineering 

Laboratory of Electronics 

Xanthi, Greece 

 

Abstract. This chapter presents a real-time FPGA implementation of a 

biologically-inspired image enhancement algorithm. The algorithm 

compensates for the under/over-exposed image regions, emerging when High 

Dynamic Range (HDR) scenes are captured by contemporary imaging devices. 

The transformations of the original algorithm, which are necessary in order to 

meet the requirements of an FPGA-based hardware system, are presented in 

detail. The proposed implementation, which is synthesized in Altera’s Stratix II 

GX: EP2SGX130GF1508C5 FPGA device, features pipeline architecture, 

allowing the real-time rendering of color video sequences (25fps) with frame 

sizes up to 2.5Mpixels. 

Keywords. FPGA, Real-Time Image Enhancement, Human Visual System, 

High Dynamic Range Imaging. 

 

1. INTRODUCTION 

Conventional Standard Dynamic Range (SDR) sensors, which are the case 

in most consumer-electronics cameras, fail to adequately reproduce HDR 

scenes, which can be common in outdoor capturing conditions. The main 

reason for this problem is the low dynamic range of the capturing device, 

compared to the dynamic range of the scene. As a result, the captured images 

usually suffer from under/over-exposed regions, in which, little or no 

information is available to the observer. Adjusting the exposure time is not a 

solution to the problem, since acceptable reproduction can only be achieved 

for the dark or the bright image regions but not for both. This is clearly 

depicted in Fig. 1. 

A straight-forward solution to this problem is the use of HDR capturing 

devices instead of the conventional SDR ones. Nevertheless, HDR cameras 



cannot always provide a practical solution. Their increased cost has limited 

their use, while the majority of the existing vision systems are already 

designed for SDR cameras. Furthermore, an additional algorithm is required 

in order to perform the mapping of the HDR data to an SDR monitor. Another 

possible solution is to acquire an HDR image by combining multiple SDR 

images, captured with different exposures [1]. Nevertheless, this solution can 

be applied only to static scenes, since it is impossible to have multiple 

exposures of a moving object, always, at the same background. Consequently, 

this approach cannot be applied to time-critical applications i.e. video. A third 

solution to the above problem is the use of an unsupervised tone-enhancement 

algorithm, which will compensate for the under/overexposed regions of SDR 

images, without affecting the correctly exposed ones. This approach 

overcomes the limitations of the previous two solutions: it does not increase 

considerably the total cost of the system and it can be used in video sequences 

as well.  

 

 

Figure. 1. There is not a single exposure that can adequately capture both the dark and light 

regions of an HDR scene.  

Several enhancement algorithms have been proposed in this direction, yet, 

very few have been implemented in hardware. Some of the most important are 

the Retinex family of algorithms (Retinex: Retina + Cortex), among which, 

the more widespread are the “Multi Scale Retinex with Color Restoration” 

(MSRCR) [2] and the “Variational Framework for Retinex” [3]. The first has 

been implemented on a Digital Signal Processor (DSP) [4, 5], allowing the 

real-time, single-scale rendering of grayscale images, with sizes up to 

256×256 pixels. A variation of the second has been implemented on an 

Application Specific Instruction-set Processor (ASIP) [6], allowing the 

processing of SXGA (1280×768 pixels) or WXGA (1366×768 pixels) still 

images in 1 sec, or the a real-time rendering of video frames with size 

256×256 pixels and frame rates up to 29 frames per second (fps). Both 

implementations do not meet the VGA standard (color images of 640×480 



pixels size and 25fps) in video rendering. Recently, an alternative 

enhancement algorithm, inspired by the shunting characteristics of the center-

surround cells of the Human Visual System (HVS), has been presented in [7]. 

It exhibits low complexity, as well as the fastest execution times, compared to 

the algorithms of the previous two implementations. Consequently, it 

constitutes a good basis for a hardware implementation.  

This chapter presents an FPGA implementation of this algorithm. It focuses 

on the transformations which are necessary in order to optimize the original 

algorithm for meeting the requirements of an FPGA-based system. The main 

objective is to implement a pipeline architecture, which will allow the real-

time rendering of color video sequences, with sizes greater than the 

contemporary implementations (256×256 pixels). Two alternative 

architectures are presented, both synthesized in Altera’s Stratix II GX: 

EP2SGX130GF1508C5 FPGA device. The first allows the real-time (25fps) 

rendering of color images, with sizes up to 640×480 pixels. The second 

architecture can render, in real-time, images with sizes up to 2.5MPixels. Both 

architectures are designed in a way that easily allows future improvements in 

the core of the algorithm. This, in addition to the FPGA platform, results into 

a low-cost, robust solution, which can be used to other vision systems as 

preprocessing, compensating for the low dynamic range of the SDR image 

sensor.      

The chapter is organized as follows. In Section 2 the structure of the 

original algorithm is briefly described. In Section 3, the transformations of the 

original algorithm, which will make it suitable for hardware implementation, 

are presented. The proposed implementations are presented in Section 4, with 

gate level integrated circuits. The comparison between the hardware and the 

software are provided in Section 5. Finally, conclusions and a discussion are 

provided in Section 6. 

2. STRUCTURE OF THE ALGORITHM 

In this section the original algorithm, which compensates for the 

under/over-exposed regions, will be briefly described in order to underline the 

modifications made in the proposed hardware implementation. A detailed 

description of the algorithm is out of the scope of this chapter. Extensive 

details can be found in [7].  

   The block diagram of the original algorithm is depicted in Fig. 2. In order 

not to distort the colors of the image, the YCbCr color space is employed, 

which decorrelates the chromatic and achromatic information. The original 

method works only on the luminance component and comprises three 

different stages: a linear stretch of the luminance component, a parameter 

estimation block and the local enhancement stage. The core of the algorithm 

is depicted in the equations (1)-(7). Equation (1) stretches linearly the 



luminance values to the interval [0,B], in order to use the full range of the Y 

channel. B is the maximum value of the luminance data (255 for 8-bit values), 

Ymin and Ymax 

 

are the minimum and maximum luminance values of the image, 

while (i, j) denotes the spatial coordinates of the pixel. 

 

 

Figure. 2. The block diagram of the original algorithm used in the hardware implementation. 

min

max min

ij

ij

Y Y
Y B

Y Y

−
′ = ×

−
 (1) 

( )

( )
( )
( )

( )

,

   
2

,

     
2

ij

ij

ij

ij

ij

ij

K
ij

K

K
ij

K
out ij

K
ij

K

K
ij

B A S Y
B

S
A S Y

Y Y S

A S Y B
S

A S B Y

   ′+ ⋅    ∀ < ′+′ = 
 ′⋅
 ∀ ≥
 ′+ −


 (2) 

( )
( ) ( )

( ) ( )

                       
2

         
2

dark

bright

B
M q S d S S

A S
B

M q B S d B S S

  + ⋅ ∀ < = 
  + − ⋅ − ∀ ≥   

(3) 

( ) [ )2
   0, 2

2

B
d x x B

B x
= ∀ ∈

−
 

(4) 

( )
2x

q x
Lobe

=  (5) 



( )2

1

2 1

K K

ij

K K

i b j b
K

yx

y i b x j bK

S Y
b

+ +

= − = −

′=
+

∑ ∑  (6) 

1 2 3
, , ,

, 1 2 3,  with 
3

K K K
out ij out ij out ij

out ij K K K

Y Y Y
Y b b b

+ +
= < <

 

(7) 

 

Equations (2)-(5) describe the enhancement function of the algorithm. As it 

is clearly depicted in Fig. 2, the enhancement function uses two local and 

three global parameters. The local parameters, which depend on the local 

characteristics of the image, are the stretched luminance value Y’ij of the pixel 

and the average luminance S
K

ij of its square surrounding region. K denotes the 

scale upon which the surround is calculated. Equation (6) describes the 

surround calculation. Three different surround sizes are employed, with bK 

denoting the radius of the square surrounding region for scale K. The final 

corrected value Yout,ij for every pixel, is calculated by equation (7) and it is the 

average between the corrected values Y
K

out,ij of the three spatial scales. The 

global parameters, which depend on the global image statistics, are Mdark, 

Mbright

   

 and Lobe. Their exact calculation is described by the following 

equations. 

1 1
3

_ 100

py px

ij

i j

B
u Y

bin low
px py

= =

 ′− 
 

= ×
⋅

∑∑
 

(8) 

( )270
100 _ 30

100
darkM bin low= − +  (9) 

1 1

2
3

_ 100

py px

ij

i j

B
u Y

bin high
px py

= =

 ′ − 
 

= ×
⋅

∑∑
 

(10) 

( )270
100 _ 30

100
brightM bin high= − +  (11) 

_ 100 _ _bin middle bin low bin high= − −  (12) 

( )29
100 _ 1

100
Lobe bin middle= − +  (13) 

 

where px, py are the dimensions of the original image and u(·) is the unitary 

step function. bin_low, bin_middle and bin_high are the bins of a 3-bin 

normalized histogram (bin_low[0, B/3], bin_middle(B/3, 2B/3), 



bin_high[2B/3, B]) that divides the range of the stretched luminance channel  

Y’ into 3 equal tone intervals: dark, medium and bright. For a detailed 

analysis on the characteristics of the global parameters, refer to [7].  

3. ALGORITHM OPTIMIZATION 

3.1 Optimizing the structure of the algorithm 

The straight-forward conversion of an algorithm’s software 

implementation to hardware, usually leads to unsatisfactory results. Most of 

the times many transformations are necessary in order to optimize the 

algorithm for hardware implementation. This section focuses on these 

optimizations. The original algorithm, as depicted in Figure 2, requires three 

different scans of the image, in order to get the final result. This is depicted in 

Figure 3.  
 

 

Figure 3. The structure of the original software implementation. 

The first scan of the image is necessary in order to find Ymin and Ymax. In 

the second scan, equation (1) is applied to all pixels, stretching their 

luminance values to [0,255]. The second scan can be eliminated using a Look-

Up-Table (LUT). Instead of applying the stretching transformation to all 

image pixels separately, equation (1) can be executed only 256 times, one for 



each luminance value. These precomputed values are stored in the “Stretching 

LUT”. Feeding the original luminance value Y ij of a pixel to the 

StretchingLUT module, will output its stretched luminance value Y’ ij

 

, as 

equation (14) indicates. 

ij ijY StretchingLUT Y ′ =    
(14) 

This simple transformation reduces the required scans of the image to two, 

as Figure 4 indicates.  

 

 

Figure 4. The structure of the algorithm after the Stretching LUT transformation. 

3.2 Requirements for a pipelined architecture 

Implementing a pipelined architecture is a primary objective, since it will 

allow a high throughput, which is essential for real-time applications. For this 

reason, two identical modules are needed for the original histogram generator 

(OH1, OH2), the stretching LUT (StretchingLUT1, StretchingLUT2) and the 

global parameters (Parameters1, Parameters2). The first modules process the 

odd frames, while the second modules process the even ones. This is depicted 

in Figure 5. When frame k is in the adjust state, the 1
st
 scan is performed for 

frame k+1. Consequently, OH1 processes frame k, while OH2 generates the 

histogram of frame k+1. When frame k is in the 2
nd

 scan, frame k+1 is in the 

adjust state. Then, StretchingLUT1 processes frame k, while StretchingLUT2 

is being loaded with the stretching values for frame k+1. Similarly, when 

frame k is in the 2
nd

 scan, its image data are enhanced using the global 

parameters from module Parameters1. At the same time, the global 

parameters of frame k+1 are calculated using the module Parameters2.  



 

Figure 5. Double components are necessary in order to achieve a pipelined architecture. 

4. HARDWARE IMPLEMENTATION 

This section presents the key stages of the proposed hardware 

implementation. Figure 6 depicts the block diagram of the system. We assume 

that the frames are fed into the FPGA sequentially, pixel by pixel, in the RGB 

color space format. Consequently, in order to create the second scan, the data 

are fed into a FIFO memory, after the transformation from RGB to YCbCr. 

This FIFO should have an appropriate length in order to introduce a delay to 

the data, equal to the execution time of both 1
st
 scan and adjust stages. Taking 

into consideration that the adjust stage requires 300 clock cycles, the FIFO 

length should comprise 1frame+300 memory elements. As a result, when the 

2
nd

As mentioned in the previous section, two StretchingLUT modules are 

required for a pipelined architecture: one for the odd and one for the even 

frames. Figure 6 however shows that two extra StretchingLUT modules are 

required: one for the luminance value of the pixel Y

 scan is about to begin, the YCbCr data will be ready for processing.  

ij and one for its surround 

luminance S ij. This increases the total number of modules to four. 

StretchingLUT 1A and 1B are identical and are used simultaneously for the 

luminance values Y ij and Sij of the odd frames. Similarly, StretchingLUT 2A 

and 2B are also identical and are used simultaneously for the luminance 

values Y ij and S ij of the even frames. While the odd LUTs are used to 

transform the luminance values, the even LUTs are loaded with data. In the 

following frame, the even LUTs are used for transforming luminance values 

and the odd LUTs are stored with data. 



 
 

Figure 6. The proposed hardware implementation. 

4.1 Color Space Transforms 

The transformations RGB→YCbCr and YCbCr→RGB are the first and 

last processing stages of the system. The original mathematical forms of the 

transformations comprise floating point arithmetic, which can be 

computationally intensive in a straight-forward implementation. In order to 

avoid the floating point operations, the transformations are altered as follows: 
 

  0.230 0.661 0.109

0.101 0.338 0.439 128

  0.439 0.399 0.040 128

  236 677 112
1

        103 346 450 131072
1024

  450 409 41 131072

Y R G B

Cb R G B

Cr R G B

R G B

R G B

R G B

+ +   
   = − − + + =   
   − − +   

+ + 
 = − − + + 
 − − + 

 (15) 



( )
( ) ( )
( )

1.084 1.793 128

1.084 0.534 128 0.213 128

1.084 2.115 128

1110 1836 235012
1

        1110 547 218 97911
1024

1110 2166 277217

Y CrR

G Y Cr Cb

B Y Cb

Y Cr

Y Cr Cb

Y Cb

 + − 
   = − − − − =  
   + −   

+ − 
 = − − + 
 + − 

 (16) 

 

The floating point numbers are multiplied by 1024 and the appropriate 

divider is introduced at the front of the matrix. The number 1024 is selected 

for two reasons. First, the multiplication with any integer number greater or 

equal to 1000 results to another integer number, thus, avoiding the decimal 

points of the original transformation. Second, 1024 is a power of 2 (2
10

 

=1024) 

and, therefore, the divider can be implemented with 10 right shifts of the final 

result. The implementation of equations (15) and (16) is depicted in Figure 7 

and Figure 8, respectively.  

 

 

Figure 7. Implementation of the RGB→YCbCr transformation. 

 



 
 

Figure 8. Implementation of the YCbCr→RGB transformation. 

 

The above implementations employ many multiplications, which are 

considered to be computationally intensive operations. For this reason these 

multiplications are implemented with parallel shifts, as the following example 

indicates. 

 
 

Figure 9. Implementation of one of the multiplications of Figures 7 and 8. 



4.2 Calculation of StretchingLUT modules 

The stretching function of equation (1) comprises among others, a 

multiplication and a division. A straight-forward implementation of these 

operations would be inefficient, since they are considered expensive in terms 

of recourses. For this reason, equation (1) is implemented in an incremental 

way. 

  

( ) ( ) [ ]min max

max min

255
1 ,Stretching x Stretching x x Y Y

Y Y
= − + ∀ ∈

−
 (17) 

 

The idea behind this alternative approach is that the stretching 

transformation divides the luminance channel into equal increments whose 

size is determined by the incremental factor 255/(Ymax–Ymin

 

). Consequently, 

every stretched value differs from the previous and from the next by the 

incremental factor. This means that a LUT could store all the possible 

incremental factors and feed the appropriate to an accumulator, which would 

calculate the stretched luminance values. This is depicted in Figure 10a. 

 
Figure 10. a. Calculation of the StretchingLUTs. b. Calculation of the 3-bin histogram. 



Similarly to the previous subsection, in order to avoid floating point 

arithmetic and maintain the accuracy of the calculations, the LUT stores the 

incremental factors multiplied by 1024. The final result is calculated by 10 

right shifts (division by 1024). This is depicted in the following equations. 

 

( ) ( ) [ ]min max

max min

255 1024
1 ,accumulator x accumulator x x Y Y

Y Y

×
= − + ∀ ∈

−
 

with ( )min 0accumulator Y =  
(18) 

( ) ( )
1024

accumulator x
StretchingLUTs x =   (19) 

4.3 Global parameter calculation 

The global parameters, which are necessary for the main enhancement 

function, depend upon a 3-bin histogram of the stretched luminance 

component, as equations (8)-(13) indicate. Figure 10b depicts their 

implementation. The stretched luminance value Y’ is driven into two 

comparators, while the original luminance value Y is driven into the address 

bus of the appropriate original histogram (OH1 for odd frames or OH2 for 

even frames). The data output of the original histogram is sent to two 

accumulators. Depending on the output of the two comparators, the 

corresponding accumulator is activated and sums the number of pixels having 

the current Y’ luminance value. When all the luminance values of the interval 

[Ymin, Ymax

Figure 11 depicts the proposed implementation for the calculation of the 

global parameters. The 3-bin histogram is correlated with the desired values 

of the global parameters. These are 2-bit parameters which can have four 

different values. Their values are inversely proportional to the percentage of 

image pixels that a particular bin has. If for example bin_low occupies more 

than ¾ of the image size, the value of M

] have been processed, the three registers, that are depicted in 

Figure 10b, will store the number of pixels of the stretched luminance 

component that belong to the high bin (light tones), the middle bin (mid-

tones) and the low bin (dark tones). Despite the fact that the accumulators are 

19-bit wide, only the 8 most significant bits are registered, since high 

precision is not vital for global image statistics. 

dark will be 00. On the contrary, if 

bin_low occupies less than ¼ of the image size, Mdark will be 11. The same 

associations hold for bin_middle with the Lobe parameter and bin_high with 

Mbright

 

.  

 

 

 



 
Figure 11. Implementation of the global parameters. 

4.4 Surround calculation  

The average surrounding luminance of every pixel is a key local parameter 

of the main enhancement function. Its calculation introduces a considerable 

challenge: the surround calculation is principally a parallel operation, since 

many pixel values have to be averaged instantly, while the pixel values are 

fed to the system sequentially from the camera. For this reason, a serpentine 

memory architecture [8] is employed, allowing parallel access to many pixel 

values. Figure 12a depicts a 3×3 serpentine architecture. 



 
 

Figure 12. a. A 3×3 serpentine architecture. b. The proposed serpentine architecture.  

 

The original enhancement algorithm requires large surround sizes of three 

different spatial scales. In order to implement this, a wider serpentine 

architecture is employed. The whole layout of the serpentine memory consists 

of 61×61, 24-bit registers and (60 × py)-61 wide FIFOs, (where py is the 

width of the picture). Five different types of registers are located in the 

proposed mask.  At every clock cycle the central register contains the original 

luminance value of the pixel to be enhanced. The registers that appear white 

in Figure12b are not used in the computation, while the three different 



concentric areas of registers S1, S2, S3

 

 represent the three scales of 

surrounding neighborhoods. The number of registers in each spatial scale has 

been carefully selected in order to be a power of 2. This bypasses the 

expensive divisions, which are required for averaging, by using right shifts in 

the final result.  

   The third scale (S3

 

) is different than the other two. Some of the registers 

participating in the computation are symmetrically scattered, in order to 

minimize the number of needed registers and cover a wider area of pixels. In 

order to sum at the same time the registers of the serpentine, large parallel 

adders are employed as Figure 13 depicts. 

 
Figure 13. Parallel summation of the serpentine registers. 

1 1 1 1 1 128S S a S b S c S d pixels= + + + =  (20) 

2 1 2 2 2 2 1024S S S a S b S c S d pixels= + + + + =  (21) 

3 2 3 3 3 3 2048S S S a S b S c S d pixels= + + + + =  (22) 

1
1

128

S
Surround =

 
7 right shifts (23) 

2
2

1024

S
Surround =

 
10 right shifts (24) 

3
3

2048

S
Surround =  11 right shifts (25) 



The final multiscale surround value is obtained by averaging the three 

surround values as follows:  

1 2 32

4

S S S
S

× + +
=  (26) 

For every pixel (i,j) its luminance value Y ij and its multiscale surround 

value S ij

 

 are fed to the StretchingLUT modules, in order to get the stretched 

values. This is depicted in Figure 14.  

 
Figure 14. Calculation of the local parameters. 

4.5 Enhancement function 

The enhancement function, as described by the equations (2)-(5), comprises 

several divisions and multiplications, which are expensive in terms of 

resources. In order to bypass the use of dividers and multiplicators, the 

enhancement function is stored into a LUT. This FinalLUT module, shown in 

Figure 6, is a ROM which is addressed with the four parameters of the main 

enhancement function and outputs at every clock cycle the equations’ result. 

Figure 15 depicts the addressing of the FinalLUT module. 

 

 
Figure 15. Addressing of the FinalLUT. 
 



A reduction of the precision of the local parameters (7bits instead of 8bits) 

is introduced, in order to maintain the size of the FinalLUT within the ranges 

of current FPGA technology. The size of the ROM memory used is           

2
18

 4.6 Alternative implementation 

×8 bits = 256ΚΒ. As it will be shown later, this precision reduction does 

not affect the image quality of the final output of the system. Apart from 

resource efficiency, the use of the LUT allows rapid future improvements to 

the system. This can be done by simply changing the data of the LUT, instead 

of redesigning the whole system.  

As the frame sizes increase, the FPGA’s memory resources become 

inadequate, and the FIFO memory that was used to create the second scan 

must be relocated outside the FPGA, as an external memory. An external 

memory is a costly component to include in a hardware implementation. 

Furthermore, it increases considerably the complexity of the system. 

 

 
 
Figure 16. The pipelining procedure of the alternative implementation. 
 

The only reason for the existence of the FIFO memory is the requirement to 

find the minimum and maximum luminance values of every frame. In a video 



sequence however, adjacent frames usually present small differences, since 

not much can change in 1/25 of a second. In fact, the global statistics of the 

frames remain practically unchanged. Taking this into consideration, the first 

stage of the hardware implementation described in the previous sections can 

be omitted. This can be done by using the global parameters Mdark, Mbright

As it is shown in Figure 16 only one scan for every frame is needed. Frame 

k enters the FPGA and is enhanced using the StretchingLUT and the global 

parameters (M

 and 

Lobe and the StretchingLUTs of the previous frame. The pipelining structure 

of this alternative architecture is depicted in Figure 16. 

dark, Mbright and Lobe) of frame k-2. At the same time, its global 

statistics (histogram, Ymax and Ymin) and the parameters of frame k-1 

(StretchingLUT, Mdark, Mbright

5. HARDWARE AND SOFTWARE COMPARISON 

 and Lobe) are computed, in order to be used for 

the enhancement of the next frame. This implementation presents the highest 

performance in terms of execution time and frame size. 

The accuracy reduction of the local parameters inevitably induces errors, 

compared to the software implementation of the algorithm. Figure 17 depicts 

the results of an error analysis for the accuracy reduction of the local 

parameters. This analysis shows that the maximum induced error can only be 

of three gray levels. A human observer is not capable of discriminating such 

errors, especially in video sequences. This conclusion is also confirmed in 

Figure 18, which depicts a visual comparison between the two results, as well 

as the standard deviation of their absolute difference. 

 

 
 

Figure 17. Error analysis for the accuracy reduction in local parametrs. 
 



 
 

Figure 18. Comparison between hardware and software. 



6. DISCUSSION AND CONCLUSIONS 

The proposed hardware architectures were synthesized in Altera’s Stratix II 

GX: EP2SGX130GF1508C5 FPGA device. Table 1 depicts the simulation 

results from Altera Quartus II 5.1 CAD tool.  

 

Altera Stratix II Simulation Results 

 

Original 

Implementation 

Alternative 

Implementation 

Color (24bit) Grayscale (8bit) Color (24bit) 

Frame size 400×400 pixels 640×480 pixels 2.5 MPixels 

Frame rate 25 fps 25 fps 25 fps 

Total ALUTs 
50,037/106,032 

(47%) 

44,034/106,032 

(41%) 

49,763/106,032 

(47%) 

Total registers 43,873 43,873 43,793 

Total 

memory bits 

5,492,736/ 

6,747,840 

(81%) 

5,099,522/ 

6,747,840 

(75%) 

2,609,151/ 

6,747,840 

(39%) 

Total 

Combinational 

Functions 

19,405 18,476 18,841 

DSP Blocks 0 0 0 

Maximum 

Frequency 
66.66 MHz 

 

Table 1. Simulation results in Altera Quartus II 5.1 CAD tool. 
 

For both implementations, the maximum frequency of the system is 

66.66MHz. This frequency is determined by the slowest module of the 

system, which are the parallel adders in the surround calculation. The original 

implementation allows the real-time rendering of color frames with size 

400×400 pixels, or grayscale frames with size 640×480 pixels. The alternative 

implementation on the contrary, allows the real-time processing of color 

frames with sizes up to 2.5MPixels. Both implementations outperform all the 

similar existing systems.   

The above characteristics of the proposed implementations, allows the 

system to have many potential applications. Such applications are consumer 

electronics (e.g., digital cameras, mobile phones, video-call systems, and 

video surveillance systems), robotics (machine vision, assembly lines), 



driver’s assistance (automotive), aerial/satellite photography and medical 

imaging.  

REFERENCES 

1. S. Battiato, A. Castorina, M. Mancuso, High Dynamic Range Imaging for Digital Still 

Camera: an overview, Journal of Electronic Imaging. Volume 12, pp. 459–469 (2003). 

2. D. Jobson, Z. Rahman, G. Woodell, A Multi-scale Retinex for Bridging the Gap 

between Color Images and the Human Observation of Scenes, IEEE Transactions 

Image Processing. Volume 6, pp. 965–976 (1997). 

3. R. Kimmel, M. Elad, D. Shaked, R. Keshet, I. Sobel, A Variational Framework for 

Retinex, International Journal of Computer Vision. Volume 52, pp. 7–23 (2003). 

4. G. Hines, Z. Rahman, D. Jobson, G. Woodell, DSP Implementation of the Retinex 

Image Enhancement Algorithm, Proceedings of the SPIE 5438: Visual Information 

Processing XIII, pp. 13–24 (2004). 

5. G. Hines, Z. Rahman, D. Jobson, G. Woodell, S. Harrah, Real-time Enhanced Vision 

System, Proceedings of the SPIE 5802: Enhanced and Synthetic Vision, pp. 127–134 

(2005). 

6. S. Seponara, L. Fanucci, S. Marsi, G. Ramponi, Algorithmic and Architectural Design 

for Real-time and Power-efficient Retinex Image/Video Processing, Journal of Real-

Time Image Processing. Volume 1, pp. 267–283 (2007). 

7. V. Vonikakis, I. Andreadis, A. Gasteratos, Fast Centre-surround Contrast Modification, 

IET Image Processing. Volume 2, Number 1, pp. 19–34, (2008). 

8. A. Benedetti, Image Convolution on FPGAs: the Implementation of a Multi-FPGA 

FIFO structure, EUROMICRO. Volume 1,  pp. 123–130, (1998). 

 

 

 

 

 

 

 


