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Abstract

We demonstrate a real-time blood testing system that can provide remote diagnosis with minimal human intervention in
economically challenged areas. Our instrument combines novel advances in label-free optical imaging with parallel
computing. Specifically, we use quantitative phase imaging for extracting red blood cell morphology with nanoscale
sensitivity and NVIDIA’s CUDA programming language to perform real time cellular-level analysis. While the blood smear is
translated through focus, our system is able to segment and analyze all the cells in the one megapixel field of view, at a rate
of 40 frames/s. The variety of diagnostic parameters measured from each cell (e.g., surface area, sphericity, and minimum
cylindrical diameter) are currently not available with current state of the art clinical instruments. In addition, we show that
our instrument correctly recovers the red blood cell volume distribution, as evidenced by the excellent agreement with the
cell counter results obtained on normal patients and those with microcytic and macrocytic anemia. The final data outputted
by our instrument represent arrays of numbers associated with these morphological parameters and not images. Thus, the
memory necessary to store these data is of the order of kilobytes, which allows for their remote transmission via, for
example, the cellular network. We envision that such a system will dramatically increase access for blood testing and
furthermore, may pave the way to digital hematology.
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Introduction

Blood is a specialized fluid that circulates through the heart and

blood vessels, delivering necessary nutrients and oxygen to the cells

and carrying away metabolic waste products [1]. Hematologic

disorders and various diseases of other organs are reflected in

specific findings from blood tests. Existing clinical technologies used

to characterize blood samples such as impedance counters and

flow cytometers are often accurate and offer high throughput.

However, they are expensive and only provide limited information

about the red blood cells: typically the mean corpuscular volume

(MCV) and hemoglobin concentration (MCHC). Based on these

parameters, the instrument flags abnormalities which require

further investigation. Detailed morphological analysis is performed

manually by a trained physician who visually assesses the stained

blood smears through the light microscope. The process of staining

is time and labor intensive, and requires a dedicated infrastructure,

i.e., specialized instruments, dyes, as well as trained personnel [2].

It is precisely the absence of technology and clinical expertise that

prevents blood testing from becoming universally available.

Economically-challenged countries as well as rural areas in more

developed countries have limited access to blood testing. Testing

the blood from transfusions is a problem of global importance: 39

out of the 159 countries, which collect 92 million blood donations

every year, were not able to run blood screens [3].

To address this problem, researchers have made great progress

towards decreasing the cost of the imaging instruments by taking

advantage of commercial technology, such as cell phone cameras.

Thus, novel light microscopy designs have resulted in miniaturized

and inexpensive devices for cell imaging in low resource settings

[4,5,6,7,8,9]. In particular, the combination of microscopy and

microfluidics promises to commoditize imaging instruments and

even convert them into disposable accessories [10]. However, the

information provided by such instruments has been qualitative, i.e.,

the output data consist of images that require further analysis by

trained staff. While in principle these data can be transmitted for

remote diagnosis, a principle known as telepathology [11], the

transfer of large image files is prohibited in economically

challenged areas.

Here we propose a different technological approach for

providing blood testing at the global scale. Instead of focusing

primarily on lowering the cost of the instrument, we prioritized the

quality of the data collected to attain computer-controlled,

quantitative analysis. Thus, we developed a highly sensitive and

quantitative instrument that operates in real time without human

input. To our knowledge, this is the first real-time QPI system ever

reported. The image rendered is the result of optical interference

and provides nanometer scale information about the red blood cell

profile, which translates into highly sensitive measurement of the

volume and morphology. We used a highly parallelized image
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processing algorithm developed in house, which takes advantage of

the computing power of graphic processing units (GPU), often

employed in video games. This combination of novel optics and

computation allows us to extract morphological parameters at the

single cell level from the entire field of view (1 megapixel) in less

than 25 ms. Thus, a thousand cells can be analyzed in less than 5

minutes. Importantly, the data outputted by our instrument

represent arrays of numbers (text files), which are the result of

thousands of images. Unlike the images they are distilled from,

these data files require only kilobytes of memory per patient and

can easily be transmitted wirelessly over the cellular network. This

aspect, together with the fact that the blood necessary for this test

can be obtained via a simple finger prick (akin to that in a glucose

test), we envision that our instrument can operate in areas where

clinical expertise and infrastructure are absent.

The paper is structured as follows. First, we describe the

principle of our quantitative phase imaging (QPI) method, white

light diffraction phase microscopy (wDPM) and the real time

processing based on Compute Unified Device Architecture

(CUDA). We demonstrate the performance of the system on

blood testing patients suffering from macrocytic and microcytic anemia

and perform a quantitative comparison between the MCV values

provided by our method and the current clinical state of the art

instruments. We illustrate the clinical capability of our instrument

by presenting cell parameters that are currently not available from

cell counters: RBC surface area, thickness, sphericity, minimum

cylindrical diameter, equivalent diameter. Finally, we summarize

and discuss the relevance of our results for universal blood testing.

Materials and Methods

Ethics Statement
The studies have been performed in the United States in

accordance with the procedure approved by the Institutional

Review Board at University of Illinois at Urbana-Champaign (IRB

Protocol Number: 10571). All the blood samples used in our

experiments were discarded clinical specimens, i.e., they were

medical waste, as all the clinical studies needed for the patient care

were completed by the clinical laboratory. All the blood specimens

used in this research project were procured after securing a general

consent form that was signed by the patients. The general consent

form allows the discarded tissue to be used for educational and

research purposes.

Blood Sample Preparation
Blood sample from the hospital is first diluted in PBS solution

with 0.1% albumin to a concentration of 0.2% whole blood in

solution. A sample chamber is created by punching a hole in

double sided scotch tape and sticking one side of the tape onto

a cover slip. The sample is then pipetted into the chamber created

by the hole and it is sealed on the top using another cover slip. The

cells are allowed to settle for 5 minutes prior to measurement.

Since the index of refraction of hemoglobin may change from

patient to patient [12,13,14], we accounted for the refractive index

change according to the mean cell hemoglobin concentration that

was measured independently by lysing the cells for each patient.

Thus, the index of refractive depends linearly on the hemoglobin

concentration of red blood cells as nc~bCznw, where b is the

refractive increment, C the hemoglobin concentration of the cell,

and nw is the refractive index of water. For different patients, the

refractive indices of RBCs were corrected accordingly to their

Figure 1. The wDPM setup. A grating is placed at the image plane of a commercial microscope (the dashed box) to create different diffraction
orders. Filter masks are projected onto a spatial light modulator (SLM) placed at the back focal plane of a Fourier lens L1 to low pass filter the 0th
order beam (reference) and allow the entire 1st order beam (imaging field) to pass through. Another Fourier lens L2 recombines the two beams to
create an interferogram on a CCD. A Hilbert transform is then used to reconstruct the phase information from the interferogram.
doi:10.1371/journal.pone.0055676.g001
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mean cell hemoglobin concentration (MCHC). For this study, we

use the MCHC values provided by the impedance analyzer. This

hemoglobin concentration can be also measured by other methods

[15,16,17,18].

Quantitative Phase Imaging using White Light Diffraction
Phase Microscopy (wDPM)
We developed an integrated hardware-software system that can

measure in real-time detailed information from thousands of cells

in a blood film. The underlying principle of the microscope is

quantitative phase imaging [19], in which we retrieve the optical

pathlength map associated with the blood film. Because the optical

pathlength (or phase) contains information about both the sample

refractive index and thickness, QPI has been used to provide

measurements of red blood cell volumes [20], cell dry mass

[21,22,23,24,25], dynamics [26,27,28,29,30,31], cell tomography

[32,33,34,35], tissue scattering [36,37,38]. QPI has attracted

increasing scientific interest in the past decade especially because it

can study structure and dynamics quantitatively, with nanoscale

sensitivity, and without the need for labeling with contrast agents.

Various QPI methods have been proposed to satisfy particular

requirements in terms of acquisition rate, transverse resolution,

temporal and spatial pathlength sensitivity (for a review, see

Chapter 8 in Ref. [19]). We chose white light diffraction phase

microscopy (wDPM), which is a highly stable QPI method

developed in our laboratory, which can operate at high acquisition

rates [39].

Morphological Parameters of Single Red Blood Cell
The first parameter calculated is the projected area (PA), which

can be easily obtained by multiplying the number of pixels of each

cell with the pixel area. PA then can be used to calculate the

equivalent circular diameter with an assumption that the projected area

of a RBC is a circular disk. In order to obtain other 2D and 3D

morphological parameters, the phase map w(x,y) is converted to

a height map h(x,y) as h(x,y)~lw(x,y)=2pDn, where l is the

wavelength of the light source and Dn~nc{n0 is the refractive

index difference between RBCs and the surrounding medium.

Once the height information is retrieved, the volume of each cell is

calculated by integrating the height map over the projected area as

V~
ÐÐ
h(x,y)dxdy. The surface area of individual cells is determined

using Monge parameterization [40], where the contribution of

each pixel element dA can be calculated as

dA~dxdy(1zh2xzh2y)
1=2, where dx and dy are the width and

height of each pixel, and hx and hy are the gradients along the x

and y directions, respectively. The surface area of each cell is the

sum of all the area elements and the projected area, as the cell lays

flat on the coverslip. From the surface area and volume, we

calculate parameters such as sphericity (y) and minimum

cylindrical diameter (MCD). The sphericity y of RBCs was first

determined as an important parameter by Canham and Burton

[41]. It is defined as the ratio between the surface area (SA) of

a sphere with the same volume as the cell, to the actual surface

area of the cell. The sphericity index is calculated as

y~4:84V2=3=SA and has values ranging from 0 to 1. The

MCD, introduced by Canham and Burton, is a theoretical

parameter that predicts the smallest capillary diameter that a given

RBC can squeeze through and, thus, is clinically significant.

Furthermore, for each cell, we are able to calculate simultaneously

many other independent parameters [15], including: perimeter,

circular diameter, eccentricity, minimum, maximum, and mean

thickness, circularity, integrated density of the cell, and kurtosis,

skewness, and variance for cell height distribution. Given the vast

amount of information available about each cell, this may open up

opportunities to study and characterize abnormal cells and

Figure 2. Diagram of the system. The imaging system wDPM is communicated to the user through the camera interface. User can control several
parameters like exposure time, image size, etc. Several CUDA based modules are implemented to speed up the processing: The phase reconstruction
module recovers the phase information induced by the objects in the field of view; the segmentation module isolates and labels individual objects in
the field of view; and the blood analysis module was designed specifically for blood smear analysis application to calculate different morphological
parameters of red blood cells. All the results are computed and displayed in real time at the speed of up to 40 frames/s. The computed parameters
can be saved in a small file and sent anywhere for remote diagnosis.
doi:10.1371/journal.pone.0055676.g002
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diseases that would otherwise be difficult or impossible to detect in

an impedance counter or manually in a smear.

In our RBC measurements, we used a threshold on the

calculated volume to exclude non-RBC cells. We set the minimum

volume for RBC to 20 fL to exclude platelets from the analysis.

Reticulocytes account for about 1 percent of red blood cells,

contain ribosomal RNA, and are slightly larger than mature

RBCs. It has been shown that phase shift information discrimi-

nates immature red blood cells from mature [42]. It is possible to

add this feature to our system, but for the results presented in this

manuscript, we did not separate reticulocytes from mature RBCs.

Results

Light Microscopy System Performs Blood Tests with
Single Cell Parameters
The wDPM layout is shown in Fig. 1 and described in more

detail in Text S1. Briefly, the image field outputted by an existing

inverted microscope (inside the dash box in Fig. 1) is projected

onto a grating, which splits the beam into two components, the 0th

and 1st order (all other diffraction orders are filtered out). These

two light paths form a very compact interferometer that generates

fringes at the CCD plane. In order to transform the 0th order of

diffraction into the reference field of the interferometer, we

spatially filter it at the back focal plane of the Fourier lens L1. This

is achieved by using a liquid crystal spatial light modulator (SLM)

that has such a particular transmission function to low-pass filter

the 0th order and transmit the 1st order entirely (see inset in Fig. 1).

Lens L2 reconstructs the image at the CCD plane, which now

records interference fringes and, thus, optical pathlength in-

formation from the specimen.

Unlike off-axis digital holography methods, where there is

a compromise in space-bandwidth product, our system performs

the measurement at the image plane. Thus we can preserve optical

resolution without sacrificing a large number of pixels. In our case,

the minimum number of pixels required per fringe is 3. Thus, the

space-bandwidth sacrifice is not significant, especially today, when

10 megapixel CMOS sensors are easily available and inexpensive.

Real-time Analysis using CUDA
Typically, in order to obtain the pathlength map from an

acquired interferogram, QPI involves off-line post processing. Off-axis

methods, including wDPM (see Chapter 8 in Ref. [19] for

a classification of QPI techniques), require processing in two steps:

i) a spatial Hilbert transform to retrieve the phase from the

interferogram and ii) an unwrapping algorithm to reconstruct the

true phase information from the measured wrapped values, which

are between –p to +p. These are time-consuming operations. For

example, a serial C-code implementation of the whole process

requires approximately half a second to process for a one-

Figure 3. Phase image reconstruction and processing procedure. (A) An interferogram acquired from the wDPM system; (B) Reconstructed
phase map; (C) The output of the segmentation module; (D) A snapshot of the screen visualizing different parameters of each red blood cell
including volume (V), surface area (SA), projected area (PA), sphericity index (SI), minimum cylindrical diameter (MCD) and the mean height.
doi:10.1371/journal.pone.0055676.g003
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Figure 4. Morphological parameter distributions of red blood cells of different patients. (A). Red blood cell volume distribution of
a healthy patient (N = 6,181 cells) and patients with microcytic (N = 8,442 cells) and macrocytic (N= 4,535 cells) anemias. The inset compares the
measured results with the results obtained from a Beckman Coulter counter on the same samples with vertical and horizontal error bars are standard
deviations from the measurement data and the Beckman counter, respectively. The red line illustrates the line y = x, of perfect agreement; (B). Red
blood cell surface area distribution of the three patients. The inset elaborates the statistical information of the distributions with the range within one
standard deviation, the boxes indicating the interquartile range (IQR) and the square symbol showing the median.
doi:10.1371/journal.pone.0055676.g004
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megapixel image on a current personal computer. Such processing

times are unsuitable for the high-throughput required in blood

testing. However, Compute Unified Device Architecture (CUDA)

model based algorithms for phase unwrapping can improve on the

traditional, serial method by a factor of 50 or more [43].

In order to achieve real time performance, we developed our

parallel programming software based on NVIDIA’s CUDA

model. Figure 2 shows the overall structure of our imaging

instrument.

Figure 5. Examples of other morphological parameters of red blood cells. A. Sphericity index distribution; B. Minimum cylindrical diameter
distribution.
doi:10.1371/journal.pone.0055676.g005
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Recently, the computation power of GPU’s has increased

significantly. In the NVIDIA’s CUDA programming environment,

GPUs can be regarded as computation devices operating as

coprocessors to the central processing unit (CPU) [44]. The main

idea is to process computationally-intensive parts in parallel by

using multiple computation units. The CUDA architecture

consists of hundreds of processor cores that operate together to

process different segments of the data set in the application. A

CUDA program consists of both host code and device code. The

host code is straight ANSI C code, which is used when there is

little or no data parallelism, and the device code is used when there

is a rich amount of data parallelism. Based on single-instruction,

multiple-thread (SIMT) architecture [44], CUDA maps a single

kernel to a grid of threads to process different input data

simultaneously. Threads are organized into blocks of up to three

dimensions and the blocks are then organized into a one-

dimensional or two-dimensional grid of thread. All threads in

a block can synchronize their execution but two threads from

different blocks cannot cooperate. All threads will execute the

same instruction but on different input data identified by their

thread indices and block indices.

Figure 3 presents images illustrating different steps of our

software. We tested the program on a Windows machine with

IntelH CoreTM i5 CPU with clock rate of 3.2 GHz and 8 GB

RAM memory. We use NVIDIAH GeForceH GTX 570M GPU

which supports CUDA programming. First, interferograms

(Fig. 3A) from the wDPM imaging system are captured using

Hamamatsu Orca Flash camera. Our program controls the

camera (initialize, set parameters like image size, exposure time

etc.) and acquires the interferogram image using the camera

software development kit (SDK) provided by Hamamatsu

Photonics. The inset in Fig. 3A zooms in a portion of the

interferogram to show the high fringe contrast of our interfero-

gram and illustrate the bending of the fringes due to the presence

of a red blood cell. The interferogram is then transferred to the

phase reconstruction module (Fig. 2) to be processed to get the

phase image (Fig. 3B). More details on the algorithm and

implementation of this module can be found in [43]. The phase

image is then displayed on the screen using openCV library [45]

for visualization. At the beginning of each measurement, we

perform a background subtraction, which removes the effects of

inherent dust and aberrations along the optical path. The efficacy

of the phase background subtraction is evidenced by comparing

Fig. 3A, where many dirt particles are present, and Fig. 3B

obtained after this correction.

Next, the segmentation module first applies a simple global

threshold to the phase image to separate the objects from the

background. This will give a map where 09s pixels of value zero

are background pixels and other pixels are object pixels which are

labeled by numbers corresponding to the pixel indices in the pixel

array. In the next step, since there are several objects, e.g. red

blood cells, in the field of view, in order to have quantitative

information about each object, we need to segment and label each

object individually. This process is called connected component

labeling problem. It is an important problem appearing in many

fields of research like computer vision for segmentation; cellular

automata (CA) models used for different kinds of simulation in

physics; mathematics and biology. Since the early 1970s,

numerous approaches for connected component labeling have

been introduced [46,47,48]. Most of these approaches are suitable

for sequential processing. Recently, with the introduction of GPUs

with interfaces as CUDA [44] or OpenCL [49], some parallel

algorithms of graph component labeling with GPUs have been

developed [50,51]. In this paper, we adapted the ‘‘label

equivalent’’ algorithm in [51] to develop our image processing

tool. Fig. 3C shows the label map identifying different red blood

cells in the phase image. Finally, different parameters are

calculated for each cell and displayed as shown in Fig. 3D. Details

of our implementation on connected component labeling and

calculation of RBCs’ morphology parameters are discussed further

in the Text S1 and Figures S1 and S2.

With our current GPU graphic card (GTX570), we can acquire

images and perform all the processing of up to 40 frames/second,

with the images of size 102461024 pixels and this rate can be

increased when more powerful GPU cards are used. Movie S1

shows a video that illustrates the real time blood testing.

Clinical Studies of Macrocytic and Microcytic Anemia
Patients
We performed a clinical study on blood samples from patients

with normal blood, macrocytic, and microcytic anemia. The blood

samples were provided by Provena Covenant Medical Central

laboratory. All specimens were handled according to safety

regulations by the Institutional Review Board at the University

of Illinois and Provena Covenant Medical Center. We compared

our measurement results with those from the clinical Coulter

impedance counter. We measured 6,181 RBCs of the normal

patient, 8,442 RBCs of the patient with microcytosis anemia

disease, and 4,535 RBCs of the patient with macrocytosis disease.

Figure 4A shows the distributions of RBCs’ volumes for three

patients. The MCV values for normal, microcytic and macrocytic

patient are 92.5 fL, 67.4 fL and 125.6 fL, respectively. These

numbers agree very well with the data acquired by the clinical

impedance counter, which are 92.2 fL, 64.4 fL and 121.8 fL,

respectively. The inset in Fig. 4 illustrates the comparison between

our measured data and the data from the clinical impedance

counter. Another important RBC index is the red blood

distribution width (RDW), which is the width of the distribution

curve of RBCs’ volumes and equals the ratio between the standard

deviation and MCV of the blood sample. Higher RDW values

indicate greater variation in size. RDW can be useful in early

classification of anemias because it becomes abnormal earlier in

nutritional deficiency anemias than any of other red cell

parameters, especially in case of iron deficiency [52,53,54].

RDW is also useful in identifying red cell fragmentation,

agglutination, or dimorphic cell populations [54]. If anemia is

observed, RDW test results are often used together with MCV

results to determine the possible causes of the anemia. An elevated

RDW (red blood cells of unequal sizes) is known as anisocytosis. We

can see that the measured data matches very well with the mean

(three center points) and standard deviation (error bars in the

inset). Specifically, the red blood cell distribution width (RDW) for

normal, microcytic and macrocytic patients are 16.5%, 30.1% and

15.6%, respectively, which agree with the data from the clinical

analyzers (15%, 29.7% and 13.9%, respectively). In addition, the

anisocytosis 3+ disease (high RDW) of the microcytic patient was

confirmed with our measurement. Figure 4B shows, as expected,

that the cell surface area increases from microcytic, to normal, to

macrocytic cells.

The relationship between the surface area and volume

determines the morphology of the cells. Our system is able to

characterize this morphology in great detail. Figure 5 shows the

results in terms of the sphericity index and mean cylindrical

diameter. Interestingly, our measurements indicate that the

normal population is characterized by the highest average

sphericity. On the other hand, the MCD shows the expected

trend of monotonous increase from microcytic to macrocytic cells.

Current automated counters cannot provide these parameters.

Real-Time Blood Testing Using QPI
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Thus, a pathologist has to manually examine a smear to confirm

diagnosis of spherocytosis. Our system provides this diagnosis

quantitatively using the sphericity index for single cell level as

well as the population statistics. The insets in the two figures

illustrate statistical information of the distributions of correspond-

ing cell parameters of each patient with the range indicate

standard deviation, the boxes show interquartile range (IQR) with

the means at the middle lines and the square symbol indicate the

median of the corresponding parameters. Finally, we present the

distributions of red blood cell equivalent diameter and average cell

height for the three patients in Figs. S3 and S4, respectively.

Summary and Discussion

We demonstrate a quantitative phase imaging system dedicated

to blood screening, which reconstructs phase images, analyzes and

calculates a number of morphological parameters of red blood

cells at single cell level, all in real time. The system is capable of

very high throughput imaging and allows analyzing easily

thousands of cells per sample. In terms of anemia, our technique

can also count and compare cell numbers in a given volume of

sample if necessary We measured blood samples of a healthy

patient and patients with macrocytic and microcytic anemia. The

resulted MCV distributions show an excellent agreement with the

results from Beckman-Coulter counter. Furthermore, we show the

results of several other morphological parameters, which are

unavailable with the automatic analyzers used currently in clinical

settings.

Our system provides a powerful and robust blood screening

utility that can aid pathologists interested in performing remote

diagnosis or screening. The vast amount of information on the

different diagnostic parameters, as well as the high throughput and

real time imaging provide a viable solution for removing

economically-driven discrepancies in blood testing and screening.

Currently, our throughput is still below that of flow cytometers,

mainly due to manual control of microscopy stage movement.

However, this acquisition rate is sufficient to provide practical

clinical output in reasonable time, while providing much richer

information on the cell morphology, which in turn provides

additional diagnostic information about blood disorders. This can

potentially remove the laborious and time intensive manual

evaluation of blood smears under the microscope. The throughput

can be improved significantly by integrating automatic stage

control in the software. Furthermore, our method can be

combined with microfluidic channels to measure blood cells flow

through the channel and, with the current speed of 40 frames per

second, it is feasible to achieve comparable throughput with that of

flow cytometers in the near future.

The results presented here are the proof of principle of our

method, which combines quantitative phase imaging and real-time

processing. Investigating different diseases presenting altered red

blood cell number and morphology require clinical validation

through analysis of a large number of patients. This work of

characterizing red blood disorders is in progress in our laboratory.

Studies of different specific diseases deal with identifying the set of

parameters from our measurement that is best suited to maximize

the sensitivity and specificity of diagnosis. Our data can be easily

formatted according to standards such as FCS 3.1, and used with

automatic flow cytometry. This approach will take advantage of

the existing analysis software.

In terms of cost, the quantitative phase imaging module is

relatively inexpensive compared with the cost of the microscope

itself; thus upgrading existing microscopes will be the most cost-

effective approach. The cost per test is very low, due to the lack of

sample preparation which includes an inherent cost in staining

materials and trained laboratory personnel time.

Operating in remote and under-developed areas also involves

operation under tough conditions, such as temperature and

humidity variations. Of course, working under these circumstances

requires further testing. However, the intrinsic stability of our

common path system promises to fulfill these constraints.

Supporting Information

Figure S1 Flowchart of the segmentation module.

(TIF)

Figure S2 An example of label equivalence algorithm:

(A) Initial label; (B) Label map after the first Scanning

function call; (C) After the first Analysis function call;

(D) Final label map.

(TIF)

Figure S3 Red blood cell equivalent circular diameter

distribution.

(TIF)

Figure S4 Red blood cell average height distribution.

(TIF)

Text S1

(DOC)

Movie S1 Recording of real-time analysis of a blood

smear.

(WMV)
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