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Abstract This article presents a novel approach to marker-

less real-time pose recognition in a multicamera setup. Body

pose is retrieved using example-based classification based

on Haar wavelet-like features to allow for real-time pose

recognition. Average Neighborhood Margin Maximization

(ANMM) is introduced as a powerful new technique to train

Haar-like features. The rotation invariant approach is imple-

mented for both 2D classification based on silhouettes, and

3D classification based on visual hulls.

Keywords Pose estimation · Pose recognition ·

Silhouettes · 3D hulls · LDA · ANMM · Haarlets

1 Introduction

Posture recognition has received a significant amount of

attention given its importance for human-computer inter-

faces, teleconferencing, surveillance, safety control, anima-

tion, and several other applications. The context of this work

M. Van den Bergh (�) · L. Van Gool

Computer Vision Laboratory, ETH Zurich, Zurich, Switzerland

e-mail: vamichae@vision.ee.ethz.ch

L. Van Gool

e-mail: vangool@vision.ee.ethz.ch

E. Koller-Meier · L. Van Gool

ESAT-PSI/VISICS, Katholieke Universiteit Leuven, Leuven,

Belgium

E. Koller-Meier

e-mail: ebmeier@vision.ee.ethz.ch

L. Van Gool

e-mail: Luc.VanGool@esat.kuleuven.be

is a virtual reality system where the user walks on an omni-

directional treadmill, and can interact with the virtual world

using body pose commands. For this application a marker-

less pose detection subsystem has to be fast and robust for

detecting a predefined selection of poses.

We present an example-based technique for real-time

markerless rotation-invariant pose recognition using Aver-

age Neighborhood Margin Maximization (ANMM) (Wang

and Zhang 2007) and Haar wavelet-like features (Viola and

Jones 2001). The latter will be called Haarlets from now on

for brevity.

The setup consists of a 4 m × 4 m working space on

which the user can walk, and several cameras placed around

this working space. We propose both a 2D system based on

silhouettes of the user, which can work with 1 or more cam-

eras, and a 3D system based on visual hulls, which works

with multiple cameras. Silhouettes are extracted based on

color (Griesser et al. 2005). The visual hulls are extracted

based on these silhouettes and using voxel carving and a

fixed lookup table (Kehl et al. 2005).

In example-based approaches, observations are com-

pared and matched against stored examples of human body

poses. This is done here in real-time using Haarlets. ANMM

is introduced as a powerful approach to train these Haarlets.

We will show that using ANMM yields higher performance

than Linear Discriminant Analysis (LDA) (Van den Bergh

et al. 2008), and better performance than AdaBoost (Viola

and Jones 2001), which can only train 2D Haarlets. Where

classic AdaBoost runs into memory issues when training

3D rather than 2D Haarlets (Ke et al. 2005), the weakened

memory requirements of ANMM allow for a straightfor-

ward implementation of a 3D pose detector based on 3D

Haarlets. The benefit of classifying 3D hulls rather than sil-

houettes, is that the orientation of the hulls can be normal-

ized in a straightforward manner. We evaluate the 2D and
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3D based systems for performance and complexity of the

system setup.

2 Background

Example-based The introduction above contains a number

of choices that have been made. The first is one in favour of

example-based rather than model-based techniques. Model-

based approaches typically rely on articulated 3D body

models (Bregler and Malik 1998; Delamarre and Faugeras

1999; Gavrila and Davis 1996; Kakadiaris and Metaxas

2000; Papageorgiou et al. 1998; Sminchisescu and Triggs

2003; Yamamoto et al. 1998). In order to be effective they

need to have a high number of degrees of freedom, in

combination with non-linear, anatomical constraints. Con-

sequently, they require time-consuming per-frame optimiza-

tion and the resulting trackers are too slow for real-time

approaches. They are also very sensitive to fast motions

and segmentation errors. To relieve the speed problem 2D

model-based approaches have been proposed. Baumberg

and Hogg (1994) use active shape models to track pedestri-

ans, however pose is not recovered. Ioffe and Forsyth (2001)

infer likely body configurations using a tree model based on

candidate body parts and feature points to perform coarse

2D tracking in a single camera. Still, these systems remain

only near real-time.

In the example-based approaches, instead of tracking

articulated body models, observations are compared and

matched against stored examples of human body poses.

Mori and Malik (2002) propose a technique where exam-

ple 2D views of human body poses are stored together

with manually marked and labeled positions of body joints.

Poses can then be recovered using shape context match-

ing. Rosales and Sclaroff (2000) train a neural network to

map example 2D silhouettes to 2D positions of body joints.

Shakhnarovich et al. (2003) outline a framework for fast

pose recognition using parameter sensitive hashing. In their

framework image features such as edge maps, vector re-

sponses of filters and edge direction histograms can be used

to match silhouettes against examples in a database.

These example-based methods benefit from the fact that

the set of typical or interesting poses is far smaller than the

set of anatomically possible ones, which is good for robust-

ness. Also, not needing an explicit parametric body model

makes them more amenable to real-time implementation and

application to the pose analysis of other structures than hu-

man bodies, e.g. animals.

Silhouettes and Visual Hulls Silhouettes and their derived

visual hulls seem to capture the essence of human body

poses well. The model-based approach proposed by Dela-

marre and Faugeras (1999), as well as the example-based

method proposed by Rosales and Sclaroff (2000), are other

examples of silhouette-based approaches, however they are

not real-time. There are also some examples of methods

based on 3D hulls of the human body. Mikíc et al. (2001)

and Cheung et al. (2003) propose model-based tracking ap-

proaches using 3D voxel reconstructions, but they are not

real-time either. Cohen and Li (2003) propose a near-real-

time example-based approach where 3D hulls are matched

by a support vector machine (SVM).

LDA and Haarlets As the survey by Yang et al. (2002)

points out, LDA provides superior performance to SVMs

in many vision tasks. Belhumeur et al. (1997) have proven

LDA to be superior to principal component analysis (PCA)

for a similar task of face recognition, as can be expected

given that LDA is a kind of refined PCA. LDA is fre-

quently used in face recognition (Belhumeur et al. 1997;

Yang et al. 2002; Zhao et al. 1998), but to the best of our

knowledge it has not yet been applied to pose recognition.

Wang and Zhang (2007) present ANMM as a variation of

LDA which has higher performance and has fewer limita-

tions.

Moreover, ANMM, which is rather slow, lends itself

well to combine its strength with the speed of Haarlets.

Indeed, fast integral image based Haarlets can be used to

approximate the ANMM components. Haarlets were intro-

duced by Papageorgiou et al. (1998), and Ren et al. (2005)

trained Haarlets for pose recognition using AdaBoost. Our

approach, which approximates ANMM features with Haar-

lets, provides a multi-class alternative to AdaBoost. As it

can deal with a much larger number of candidate Haarlets in

the training set, our method can also be extended to 3D, vol-

umetric Haarlets for the classification of 3D voxel hulls. Of

those there are many more than of the 2D Haarlet type. The

main advantages of switching to 3D are rotation invariance

and increased robustness. In 3D, the speed advantage of the

Haarlet approximation becomes even more apparent and is

crucial to keep the system real-time.

3 Classification

In example-based approaches, observations are compared

and matched against stored examples of human body poses.

In the 2D approach we explain in this article, these obser-

vations consist of silhouettes of the user. These silhouettes

are extracted from videos of several fixed cameras around

the person. To extract the silhouettes from the camera views,

we use the background subtraction algorithm by Griesser et

al. (2005). Some examples of such silhouettes are shown in

Fig. 1. The extracted silhouettes are normalized to a fixed

resolution and position, by cutting a square bounding box

around the top and bottom pixels of the silhouette, and cen-

tered horizontally to the center of gravity of the silhouette.
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Therefore, it is possible for the user to change position in the

scene, without significantly affecting the resulting silhou-

ettes. The images containing the silhouettes from the dif-

ferent camera views are concatenated to one single image,

which the classifier can process, as illustrated in Fig. 2.

The 3D approach aims to classify poses based on 3D

hulls of the user, rather than silhouettes. Several cameras are

placed around the person. Any number of cameras can be

chosen, but it is best to deploy sufficient cameras to make

a good 3D voxel reconstruction. Using background subtrac-

tion (Griesser et al. 2005) the silhouettes are extracted from

each camera view. These silhouettes are then used for the

3D voxel reconstruction based on the method proposed by

Kehl et al. (2005). A lookup table (LUT) is created to map

each pixel in each camera view to a projection into the voxel

space. A voxel carving technique then generates the recon-

structed hull. These resulting hulls are normalized to a fixed

resolution, rotation and position, which allows for the sub-

ject to not only change the position, but also the orientation.

An example of such a 3D hull is shown in Fig. 3.

In Fig. 4 the basic classifier structure is shown, where

T denotes a transformation which is found using Average

Neighborhood Margin Maximization (ANMM) (Wang and

Zhang 2007). This transformation projects the input samples

(silhouettes or hulls) onto a lower dimensional space where

the different pose classes are maximally separated and easier

to classify. Using a nearest neighbors (NN) approach these

projected samples are matched to stored poses in a database

and the closest match is the output of the system. In order to

improve the speed of the system, the transformation T can

be approximated using Haarlets, which will be explained in

Sect. 4.

In this classifier, each sample is classified independently

from the previous ones. The training samples are divided

into different pose classes. Depending on the 2D or 3D case,

Fig. 1 Examples of silhouettes which are used for classification. Note

the holes in the segmentation and the artifacts due to reflections on the

floor

the training examples consist of silhouettes or hulls. The

pixel, respectively voxel values of these silhouettes or hulls

are stored in an n-dimensional vector, where n is the total

number of pixels, respectively voxels in the input sample.

The goal of the training step is to find a linear transforma-

tion T which will project the input samples onto a lower

dimensional space where they are maximally separated.

3.1 Linear Discriminant Analysis (LDA)

The idea is to find a linear transformation such that the

classes are maximally separable after the transformation

(Fukunaga 1990). The class separability can be measured

by the ratio of the determinant of the between-class scatter

matrix SB and the within-class scatter matrix SW . The op-

timal projection Wopt is chosen as the transformation that

maximizes the ratio,

Wopt = arg max
W

|WSBW T |

|WSWW T |
, (1)

and is determined by calculating the generalized eigenvec-

tors of SB and SW . Therefore,

W T
opt = [w1w2 . . .wm], (2)

where wi are the generalized eigenvectors of SB and SW cor-

responding to the m largest generalized eigenvalues λi . The

eigenvalues represent the weights of the different eigenvec-

tors, and are stored in a diagonal matrix D, while the eigen-

vectors wi represent characteristic features of the different

pose classes.

A solution for the optimization problem in (1) is to com-

pute the inverse of SW and solve an eigenproblem for the

matrix S−1
W SB (Fukunaga 1990). Unfortunately SW will be

singular in most cases, because the number of training exam-

ples is smaller than the number of dimensions in the sample

vector, and thus inverting SW will be problematic. There are

several solutions proposed to circumvent this small sample

size problem, such as direct LDA (Yang et al. 2000), but they

don’t yield a significant performance increase over LDA.

3.2 Average Neighborhood Margin Maximization

(ANMM)

LDA aims to pull apart the class means while compacting

the classes themselves. This introduces the small sample

Fig. 2 Example of 3 camera views, foreground-background segmentation, and their concatenation to a single normalized sample
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Fig. 3 Example of a reconstructed 3D hull of the user

Fig. 4 Basic classifier structure. The input samples (concatenated sil-

houettes or 3D hulls) are projected with transformation T onto a lower

dimensional space, and the resulting coefficients are matched to poses

in the database using nearest neighbors (NN)

Fig. 5 An illustration of how ANMM works. For each sample, within

a neighborhood (marked in gray), samples of the same class are pulled

towards it, while samples of a different class are pushed away, as shown

in the left. The figure on the right shows the data distribution in the

projected space

size problem which renders the within-class scatter matrix

singular. Furthermore LDA can only extract c − 1 features

(where c is the number of classes), which is suboptimal for

many applications.

ANMM, as proposed by Wang and Zhang (2007), is a

similar approach which avoids these limitations. For each

data point, ANMM aims to pull the neighboring points with

the same class label towards it as near as possible, while si-

multaneously pushing the neighboring points with different

labels away from it as far as possible. This principle is illus-

trated in Fig. 5.

Instead of using the between-class scatter matrix SB and

the within-class scatter matrix SW , ANMM defines a scat-

terness matrix as,

S =
∑

i,k:xk∈N e
i

(xi − xk)(xi − xj )
T

|N e
i |

, (3)

and a compactness matrix as,

C =
∑

j :xj ∈No
i

(xi − xk)(xi − xj )
T

|N o
i |

, (4)

where N o
i is the set of the n most similar data which are in

the same class as xi (n nearest homogeneous neighborhood)

and where N e
i is the set of the n most similar data which are

in a different class than xi (n nearest heterogeneous neigh-

borhood). The ANMM eigenvectors Wopt can then be found

by the eigenvalue decomposition of S − C.

ANMM introduces 3 main benefits compared to tradi-

tional LDA: it avoids the small sample size problem since it

does not need to compute any matrix inverse; it can find the

discriminant directions without assuming a particular form

of class densities (LDA assumes a Gaussian form); and fi-

nally much more than c − 1 feature dimensions are avail-

able. Some examples of resulting ANMM eigenvectors are

shown in Fig. 6.

4 Haarlet Approximation

In order to improve the speed of the system, the ANMM

transformation can be approximated using Haarlets, as

shown in Fig. 7. In this case the transformation T is ap-

proximated by a linear combination C of Haarlets. An op-

timal set of Haarlets is selected during the training stage

and stored. Computing this stored set of features on the in-

put image results in a number of coefficients. Transforming

these coefficients with C results in new coefficients, which

approximate the coefficients which would result from the

transformation T on the same input data, and subsequently

can be used for classification in the same manner as in the

pure ANMM case.

Haarlets are very popular for real-time object detection

and real-time classification. The ANMM approximation ap-

proach provides a new and powerful method for selecting or

training Haarlets. Especially in the 3D case, where existing

methods fail because of the large amount of candidate Haar-

lets (Ke et al. 2005), our approach makes it possible to train

3D Haarlets selecting from the full set of candidates.

4.1 2D Haarlets

Papageorgiou et al. (1998) proposed a framework for ob-

ject detection based on Haarlets, which can be computed
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Fig. 6 The first 4 eigenvectors

for the frontal view only, after

training for a 12 pose set, using

the ANMM algorithm

Fig. 7 Classifier structure

illustrating the Haarlet

approximation. The pre-trained

set of Haarlets are computed on

the input sample (silhouette or

hull). The approximated

coefficients are computed as a

linear combination C of the

Haarlet coefficients. The

contents of the dotted line box

constitute an approximation of

T in Fig. 4

Fig. 8 The set of possible Haar-like feature types

with a minimum of memory accesses and CPU operations

using the integral image. Viola and Jones (2001) used Ad-

aBoost to select suitable Haarlets for object detection. The

same approach was used for pose recognition by Ren et al.

(2005). In our approach similar Haarlets are used, however

we introduce a new selection process based on ANMM. The

Haarlets are selected to approximate Wopt as a linear com-

bination thereof. The particular set of Haarlets used here,

was carefully selected by Lienhart and Maydt (2002) and is

shown in Fig. 8.

Besides the feature type, the other parameters are width,

height and position in the image. All combinations are con-

sidered. At a resolution of 24 × 24 pixels and using 3 cam-

eras views, there are over a million candidate Haarlets. The

best Haarlets are obtained from this set by convolving all

candidate Haarlets with the vectors in Wopt and select-

ing those with the highest coefficients, i.e. the highest re-

sponse magnitudes. This score is found for each candidate

Haarlet by calculating the dot product of that Haarlet with

each ANMM vector (each row in Wopt ), and calculating the

weighted sum using the weights of those ANMM vectors, as

stored in the diagonal matrix D (i.e. the eigenvalues serve

as weights). Thus, the entire ANMM eigenspace is approx-

imated as a whole, giving dimensions with a higher weight

higher priority when selecting Haarlets. This dot product can

be computed very efficiently using the integral image.

However, most selected Haarlets will be redundant un-

less Wopt is adapted after each new Haarlet is selected be-

fore choosing the next. Let F be a matrix containing the

already selected Haarlets in vector form, where each row of

F is a Haarlet. F can be regarded as a basis that spans the

feature space that can be represented by the Haarlet vectors

selected so far. Basically, in our iterative solution toward the

final Wopt , we don’t want the next W ′
opt to span space that is

already represented by F . Let N be a basis of the null space

of F ,

N = null(F ). (5)

N forms a basis that spans everything that is not yet de-

scribed by F . To obtain the new optimal transformation we

project D · Wopt onto N , where D is the diagonal matrix

containing the weights of the eigenvectors wi in Wopt .

D′ · W ′
opt = D · Wopt · N · NT , (6)

or,

W ′
opt = D · D′−1 · Wopt · N · NT , (7)

where D′ is a diagonal matrix containing the new weights

λ′
i of the new eigenvectors wi in W ′

opt ,

λ′
i =

∥

∥

∥
λi · wi · N · NT

∥

∥

∥
. (8)

Every time a new Haarlet is selected based on W ′
opt ,F is up-

dated accordingly and the whole process is iterated until the

desired number of Haarlets is selected. Examples of selected

Haarlets are shown in Fig. 9.
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Fig. 9 The top figure shows one ANMM vector, featuring the over-

head, profile and frontal views side by side. The bottom figure shows

the Haarlet approximation of this ANMM vector, using the 10 best

Haarlets selected to approximate Wopt . It can be seen how the Haarlets

look for arms and legs in certain areas of the image

After the ANMM vectors have been computed and the

Haarlets have been selected to approximate them, the next

step is to actually classify new silhouettes. This process uses

the Haarlets to extract coefficients from the normalized sil-

houette image, and then computes a linear combination of

these coefficients to approximate the coefficients that would

result from the ANMM transformation. An example of such

an approximated ANMM feature vector is shown in Fig. 9.

The resulting coefficients can be used to classify the pose

of the silhouette. Given the coefficients h extracted with

the Haarlets, the approximated ANMM coefficients l can be

computed as

l = C · h, (9)

where C is an m × l matrix where m is the number of

ANMM eigenvectors and l is the number of Haarlets used

for the approximation. C can be obtained as the least squares

solution to the system

Wopt = C · F T . (10)

The least squares solution to this problem yields

C = Wopt ·

(

(

F T F
)−1

F T

)T

. (11)

C provides a linear transformation of the feature coefficients

h to a typically smaller number of ANMM coefficients l.

This allows for the samples to be classified directly based

on these ANMM coefficients, whereas an AdaBoost-based

method needs to be complemented with a detector cascade

(Viola and Jones 2001), or with a hashing function (Ren et

al. 2005). Finally, using nearest neighbors search, the new

silhouettes can be matched to the stored examples, i.e., the

mean coefficients of each class.

4.2 Introduction of 3D Haarlets

The concepts of an integral image and Haarlets can be ex-

tended to three dimensions. The 3D integral image, or inte-

gral volume, is defined as,

ii(x, y, z) =
∑

x′≤x,y′≤y,z′≤z

i(x′, y′, z′). (12)

Using the integral volume, any rectangular box sum can be

computed in 8 array references as shown in Fig. 10. Ac-

cordingly, the integral volume makes it possible to construct

Fig. 10 The sum of the voxels within the gray cuboid can be computed

with 8 array references. If A, B, C, D, E, F, G and H are the integral

volumes at shown locations, the sum can be computed as (B + C + E

+ H) − (A + D + F + G)

Fig. 11 The proposed 3D Haarlets. The first 15 features are extruded

versions of the original 2D Haarlets in all 3 directions, and the other 2

are true 3D center-surround features
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Table 1 Outline of the training algorithm for the 3D approach

Input: training set of 3D hulls separated into pose classes.

Output: set of n3D Haarlets, C.

1. Read and normalize the hulls.

2. Apply ANMM on training data to obtain Wopt and D. Set

initial W ′
opt and D′ to Wopt and D respectively.

3. Repeat until n Haarlets are selected:

• Calculate all candidate features on the vectors in W ′
opt ,

weighted with D′.

• Select the Haarlet with the highest response

magnitude, add it to F .

• Calculate N , null space of F.

• Update W ′
opt and D′,

D′ · W ′
opt = D · Wopt · N · NT .

4. Compute approximation C using

C = Wopt · ((F T F)−1F T )T .

Table 2 Outline of the classification algorithm

Input: 3D hull.

Output: pose.

1. Calculate n feature coefficients and put them in vector h.

2. Calculate approximated ANMM feature coefficients

l = C · h

3. Find nearest neighbor match between l and stored examples.

volumetric box features similar to the Haarlets in Viola and

Jones (2001). We introduce the 3D Haarlet set as illustrated

in Fig. 11. Besides in feature type, the Haarlets can vary in

width, height, depth and position inside the voxel space. At

24 × 24 × 24 resolution, this results in hundreds of millions

of candidate features. The Haarlet selection process and ap-

proximation are similar to what is explained in the 2D case

in Sect. 4.1. For clarity, the process is summarized in Ta-

ble 1.

The 3D Haarlets require twice as much memory accesses

and computations as their 2D counterparts. However, they

often contain more information and are more efficient in rep-

resenting body parts. Whereas the 2D approach would need

a Haarlet in each camera view, one 3D Haarlet might be suf-

ficient. Some examples of the approximated ANMM feature

vectors using the selected 3D Haarlets are shown in Fig. 12.

After the ANMM transformation is computed and 3D

Haarlets are selected to approximate that transformation, the

next step is to classify new hull samples. The classification

is analogous to the 2D approach. Coefficients are extracted

for each 3D feature, and then a linear combination of those

coefficients is made to approximate the original ANMM

transformation. The outline of the classification algorithm

is shown in Table 2.

5 Rotation Invariance

The pose classification problem becomes quite a bit more

difficult when the subject can not only change position

freely, but also orientation. While a change of position can

be normalized easily, in the 2D case it is impossible to nor-

malize the rotation of the subject. In the 3D approach how-

ever, it is possible to normalize the rotation of the 3D hulls

before classifying them.

The orientation of the user is estimated using a simple

overhead tracker. Our visual tracker is based on a color-

based particle filter (Nummiaro et al. 2003). The tracker

uses a set of particles to model the posterior distribution

of the likely state of the subject. During each iteration of

the tracker, a set of new hypotheses is generated for the

state by propagating the particles using a dynamic model.

This generates a prior distribution of the state, which is then

tested using the observation of the image. A person is mod-

eled by a circle and an ellipse, representing the head and

shoulders respectively. The head is modeled separately to

deal with changes in perspective. As the head is closer to

the overhead camera than the shoulders, its relative position

will change depending on the position of the person, and

thus change the appearance of the shoulder/head region in

the overhead camera. The color distributions of these two

regions are compared to a stored model histogram to yield

the likelihood for the state of each particle. An example of

the overhead tracker tracking the orientation of a person is

shown in Fig. 13.

The tracker is initialized automatically by fitting an el-

lipse to a silhouette of the user at the beginning of the al-

gorithm. The estimation of the orientation of the person is

defined as the angle of the minor axis of this ellipse. Dur-

ing the initialization, the user is assumed to be in the middle

of the working volume and facing a certain direction, so that

the polarity of the orientation can be determined. The tracker

runs at real-time and continuously provides the orientation

of the person.

5.1 3D Approach

Normalizing the rotation of the hull consists of measuring

the angle of its orientation, and then rotating it to a standard

orientation. The goal is that regardless of the orientation of

the subject, the resulting normalized hull will look the same,

as shown in Fig. 14.

5.2 2D Approach

As the 2D classifier cannot classify the pose of a person with

changing orientation as is, it is impossible to compare the

3D directly to the 2D approach. It is however possible to re-

design the 2D system to classify different orientations. The
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Fig. 12 The first row shows 3

example vectors from an

ANMM eigenspace. The second

row shows the approximation

using not more than 10 Haarlets.

The first example shows how a

feature is selected to inspect the

legs, while the last example

shows a feature that

distinguishes between left and

right arm stretched out forward

Fig. 13 Example of the tracker tracking the orientation of a person

angle of orientation of the subject can be measured from the

top view camera as in Sect. 5.1. Then, the training samples

are divided into 36 individual bins, depending on the an-

gle of orientation. For each bin a separate 2D classifier is

trained. In the classification stage, depending on the mea-

sured angle of orientation, the appropriate 2D classifier is

used. This results in a pseudo-rotation invariant implemen-

tation.

6 Experiments

Our test setup consists of 6 cameras connected to 6 stan-

dard 3 GHz PCs which are placed in a network. One cam-

era is placed overhead, while the other cameras are placed

sideways around the working volume. The working area

has a cluttered background, and the floor has some reflec-

tions, so the resulting hulls contain some noise and holes.

Using this setup 6000 samples were recorded of a user in

50 unique poses and in varying orientations. We defined 50

pose classes as shown in Fig. 15. The silhouettes are ex-

tracted from the camera views and then the position and size

are normalized resulting in silhouettes of 24×24 pixels. The

hulls are reconstructed and then the position, size and orien-

tation are normalized resulting in 24 × 24 × 24 voxel hulls.

Of these 6000 samples, one third are used for training, and

the remaining two thirds are used for validation. Classifica-

tion is run on a single 3 GHz PC.

In the first experiment we show that ANMM is indeed

better than LDA at classifying 3D hulls over a large number

of poses. Using up to 50 pose classes, the test hulls are clas-

sified using both the LDA and the ANMM approach. When

using less than 50 pose classes, a random selection of pose

classes is made, and the results are averaged over 5 random

samplings of pose classes. The results are shown in Fig. 16.

ANMM is more consistent and maintains high correct clas-

sification rates of around 97% even when all 50 pose classes

are used. The LDA-based approach drops down to 80% cor-

rect classification.

In a second experiment we compare classifying 3D hulls

to classifying 2D silhouettes, as shown in Fig. 17. The 3D

classification is based on 3D hulls which are reconstructed

from 6 cameras and results in around 97% correct classifica-

tion over 50 pose classes. The 2D classification is based on

2D silhouettes which are taken from 6 camera views, and

using 36 orientational bins results in around 95% correct

classification. Using only 3 camera views, the 2D system

achieves around 91% correct classification. The 3D hull-

based system indeed has better classification rates than the
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Fig. 14 (Top) Examples of

different orientations of the user,

resulting in (bottom) similar

rotation-normalized voxel hulls

2D silhouette-based system. However, using less hardware

(3 cameras and 1 PC) it is still possible to get high correct

classification rates using the 2D silhouette-based approach.

In a third experiment we evaluate how many Haarlets are

needed to approximate the ANMM transformation. The re-

sults of this experiment are shown in Fig. 18. It shows that

the 3D case converges faster than the 2D case, which makes

sense as 3D Haarlets contain more information than their 2D

counterparts. Both the 2D and 3D cases converge to their op-

timum with about 100 Haarlets. The 3D approach is able to

produce reasonable results with only 15 Haarlets.

In this experiment we also attempted to train a 2D clas-

sifier using AdaBoost, using the same training and test data

as in the previous experiment. As AdaBoost is a 2-class ap-

proach and we are using 50 classes, a trick is applied similar

to Ren et al. (2005) to turn the problem into a 2-class prob-

lem. The data is rearranged in two classes as pairs of nor-

malized silhouette images: matching pose (positive training

examples) and non-matching pose (negative training exam-

ples). This results in hundreds of thousands of training ex-

amples, so a resampling step is made as in Ren et al. (2005)

to reduce the number of training samples in order for all the

data for the AdaBoost algorithm to be able to fit in the mem-

ory of the computer.

The classification results using the features trained with

AdaBoost are not as good as the ANMM-based approach.

There are several reasons for this. Firstly, the reductions in

the resampling step which are needed to fit the data in mem-

ory are rather drastic, discarding a lot of training informa-

tion. Another issue is that there seems to be overfitting as

we increase the number of Haarlets, as the nearest neighbor

search becomes too high in dimensionality. In the ANMM

case this problem is solved by reducing the number of di-

mensions by approximating the original ANMM transfor-

mation. In Ren et al. (2005) this problem is solved by in-

troducting a hashing function to reduce the number of di-

mensions in the search space. An alternative might be to use

an algorithm that extends the boosting approach to a multi-

class setting, which to our knowledge have not been applied

to pose classification.

As pointed out by Ke et al. (2005), the above mentioned

memory constraint problems render it out of the question to

train 3D Haarlets using a method based on AdaBoost.

In the last experiment we demonstrate the speed im-

provement in using 3D Haarlets to approximate the ANMM

transformation. The results of this experiment are shown in

Fig. 19. We show how the computation time increases al-

most linearly for the ANMM transformation as the num-

ber of pose classes are increased. This is because increasing

the number of pose classes increases the number of ANMM

feature vectors almost linearly. Using the ANMM approxi-

mation, the integral volume of the hull has to be computed

once, after which computing additional Haarlets coefficients

requires virtually no computation time (relative to the time

of computing the integral volume).

As the classifier is part of a bigger online system, we have

to add computation time for segmentation, reconstruction

and sending the data over the network. in this case 50 ms

for classification in the pure ANMM case is too slow, while

the 3 ms Haarlet approximation allows for a real-time im-

plementation of the pipeline.

7 Summary and Conclusion

This work introduced ANMM as a new and powerful ap-

proach to training Haarlets for human pose classification.

This approach was implemented and tested for pose recog-

nition on 2D silhouettes, and compared to classic AdaBoost.

The approach was extended to classifying 3D voxel hulls,

and consequently 3D Haarlets were introduced.

First, this article provides a proof-of-concept that Haar-

lets can be trained using ANMM, introducing interesting ad-

vantages as it is a true multi-class approach, and it has vir-

tually no memory restrictions on the resolution or number

of candidate Haarlets to train from. It also offers a complete
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Fig. 15 The 50 pose classes

used in this article, differing by

arm directions
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Fig. 16 Correct classification

rates comparing LDA and

ANMM for the classification of

3D hulls

Fig. 17 Correct classification

rates comparing classification

based on 2D silhouettes and 3D

hulls using ANMM

solution: after the Haarlets are selected they are used to ap-

proximate the ANMM transformation, which allows for the

samples to be classified directly, whereas AdaBoost needs to

be complemented with a detector cascade (Viola and Jones

2001), or with a hashing function (Ren et al. 2005). The

second contribution of this article is the extension of the

ANMM-based algorithm to three dimensions and the in-

troduction of 3D Haarlets for pose recognition. Unlike Ad-

aBoost, training can be based on the full set of candidate 3D

Haarlets. The 3D approach has new, interesting properties

such as rotation invariance and increased performance. The

result is pose classification with at least comparable perfor-
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Fig. 18 Correct classification rates using up to 100 Haarlets for clas-

sification. Solid line: shows correct classification rates using ANMM

approximation with 3D Haarlets. Dashed line: correct classification

rates using ANMM approximation with 2D Haarlets. Dashed-dotted

line: correct classification rates using 2D Haarlets trained with Ad-

aBoost

Fig. 19 (Color online)

Classification times in

milliseconds for the pure

ANMM classifier (blue) and the

classifier using 100 3D Haarlets

to approximate the ANMM

transformation (red)
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mance when compared to the state-of-the-art, but at interac-

tive speeds.

The methods described in this article can be ported to

other classification problems as well, such as hand gesture

recognition, object detection and recognition, face detection

and recognition, and even event detection where the 3rd di-

mension of the 3D Haarlets is a time dimension.
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