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Abstract

In this paper, we present a tracking framework for cap-

turing articulated human motions in real-time, without the

need for attaching markers onto the subject’s body. This

is achieved by first obtaining a low dimensional represen-

tation of the training motion data, using a nonlinear di-

mensionality reduction technique called back-constrained

GPLVM. A prior dynamics model is then learnt from this

low dimensional representation by partitioning the motion

sequences into elementary movements using an unsuper-

vised EM clustering algorithm. The temporal dependencies

between these elementary movements are efficiently cap-

tured by a Variable Length Markov Model. The learnt dy-

namics model is used to bias the propagation of candidate

pose feature vectors in the low dimensional space. By com-

bining this with an efficient volumetric reconstruction al-

gorithm, our framework can quickly evaluate each candi-

date pose against image evidence captured from multiple

views. We present results that show our system can ac-

curately track complex structured activities such as ballet

dancing in real-time.

1. Introduction

Tracking of articulated human motion from video se-

quences has many potential applications including human

computer interaction, gesture analysis and computer anima-

tion. Expensive, special-purpose motion capture systems

are usually required to recover human motion by tracking

optical markers attached to an actor’s body across multi-

ple views. Therefore, much recent research [3, 11, 1, 29]

has been focused on non-intrusive, markerless tracking of

articulated human motion. This is a non-trivial problem be-

cause human motion resides in high dimensional parameter

space and the mapping from the parameter space to the fea-

ture space (i.e. image evidence) is complex, nonlinear and

multi-modal. Human pose estimation can be poorly con-

strained by image evidence, which can suffer from self oc-

clusions, noisy signals and low resolution. We propose to

resolve such ambiguities by learning a prior model of hu-

man motion and using it to constrain pose estimation.

We present a novel markerless system for tracking artic-

ulated human motion with multiple calibrated cameras. We

exploit the observation that the space of human motions is

intrinsically a low dimensional nonlinear subspace embed-

ded in the high dimensional parameter space. In our work,

we propose the use of a Back Constrained Gaussian Pro-

cess Latent Variable Model (BC-GPLVM) [15] to learn a

low dimensional embedding of example motions. Tracking

is then formulated in a particle filter based framework where

each particle is parameterised and propagated in the nonlin-

ear subspace. This allows our framework to efficiently ex-

plore the space of human motions. We also learn a dynamic

model which captures the local and global dynamics of the

low dimensional embedding. The propagation of particles

is focused towards the next expected global optimum by us-

ing the dynamic model as the motion prior when predicting

future particle states. The propagation of global dynamics

enables the tracker to escape from any local minima that it

may be temporarily trapped in, and allows long and com-

plex motions such as ballet dancing to be tracked robustly.

2. Related Work

One approach to tracking articulated human motion is to

treat it as a nonlinear optimisation problem where given an

initial estimate, a better pose estimate can be found by us-

ing methods based on gradient descent [13]. These frame-

works have a number of advantages however, they can get

trapped in local optima thus giving poor tracking results.

Tracking using particle filtering [2] addresses this limita-

tion by maintaining multiple hypotheses about the current

pose. However, particle filtering does not scale well to high

dimensional parameter spaces, which can only be properly

represented by a very large number of particles [22].

Since the space of human motions is intrinsically low

dimensional, it is possible to remove the redundant di-

mensions and embed the example motions in lower num-

ber of dimensions. Principal Component Analysis (PCA)

has often been used to learn a subspace of human motions

[27, 23]. The main limitation of PCA is that it can only learn
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linear subspaces and the nonlinearity of human motions is

often not well modeled in a linear subspace. Consequently

PCA will not be able to effectively reduce the dimensional-

ity of complex and highly non-linear motion data.

Nonlinear dimensionality reduction algorithms such as

Isomap [21] and Local Linear Embedding (LLE) [25] can

be used to find more effective low dimensional embedding

of motion data [31, 16, 6, 19] than PCA. However they

lack easily computable mappings from the subspace to the

parameter space. Such a mapping is needed in a particle

filtering framework because appearance of features needed

to be generated from each particle in order to evaluate it

against the image evidence. Gaussian Process Latent Vari-

able Model (GPLVM) proposed by Lawrence [14] provides

such an efficient probabilistic mapping and also allows the

uncertainties of the low dimensional embedding to be esti-

mated. It has been previously applied to human body an-

imation [12] and more recently for tracking simple human

motions [29, 28] using deterministic optimisation and parti-

cle filtering [26]. In this paper, we use the BC-GPLVM [15]

that also guarantees that local distances in the data space are

preserved in the latent space, which in turn produces more

compact embedding and the mapping from data space to la-

tent space is smooth.

Particle filter based trackers can also be made more ac-

curate by employing a generalisation of the Monte Carlo

method such as Simulated Annealing [5] or by partition-

ing the distribution of human motions into a set of local

models [23, 24, 16]. Although our framework also uses a

mixture of local models, it has the advantage that the low

dimensional representation of human motions learnt by BC-

GPLVM is nonlinear and more compact than ones learnt by

PCA, allowing for more efficient propagation of particles.

Another novelty is that in the estimation of local models,

we also take into account the uncertainties associated with

the probabilistic mapping of the motion data into its low

dimensional representation.

Tracking of simple or cyclical motions can be improved

by incorporating local dynamics, however these models

have difficulties in handling complex, structured behaviours

that exhibit high-order temporal dependencies. A popu-

lar approach in human motion analysis is to represent high

level behaviours using a Hidden Markov Model (HMM)

[1, 11] trained on the distribution of transitions between lo-

cal motion models. Our framework has the advantage over

these works as it models global dynamics using a Variable

Length Markov Model [8] which optimises memory length

locally to capture temporal dependencies more accurately

than fixed order models such as the HMM.

3. Feature Space Representation

In our framework, the human body is represented us-

ing a hierarchical articulated model, similar to those used

in inverse kinematics systems. Each pose in the motion

data is parameterised as ci = [θi,qi,pi]
T where θi =

[θ0
i , ..., θ18

i ]T are the 19 Euler angles for the ith frame, each

representing a rotational joint with a single Degree of Free-

dom (DOF). Joints with more than one DOF are represented

by multiple one DOF joints with orthogonal axes and zero

distance between them. The root orientation qi is repre-

sented as a quaternion, and pi is the root position of the

articulated model.

The pose vectors as defined above are not always suitable

for learning motion models since the individual vectors do

not capture dynamics well. In particular, a motion model

learnt from these vectors will generalise poorly to similar

motions that have different root trajectories.

A more appropriate feature vector yi = [θi, θ̇i, exp(q̇)]Ti
is computed from the pose vectors ci and ci−1. θ̇i is the ve-

locity of the joint angles. The velocity of the root orienta-

tion is computed as the difference between the root orienta-

tion of the current and the previous frame, expressed in the

local coordinate system of the previous frame, q̇ = q−1
i−1qi.

The expression exp(q̇) computes the exponential mapping

[10] of the quaternion q̇. Note that we do not incorporate the

root positions in the feature vector representation, as in our

experience, including such information increases the learn-

ing complexity but does not improve the tracking results.

4. Nonlinear Dimensionality Reduction

A BC-GPLVM [15] is used to simultaneously learn a

compact low dimensional representation of the training mo-

tions and a smooth probabilistic mapping from the subspace

of plausible motions to the parameter space. We incorpo-

rated the uncertainties associated with the low dimensional

representation into a novel clustering algorithm to estimate

motion prototypes, as shown in section 5.1.

4.1. Back-constrained GPLVM

Gaussian Process (GP) modelling is a non-parametric

approach for solving regression problems which provides

an automatic tradeoff between model complexity and data

fitness by marginalising over the distribution of func-

tions. Given a training set of q dimensional input points

{xi}
N
i=1 and the corresponding D dimensional output

points {yi}
N
i=1, the prediction of the function value at an

unseen input position x∗ is a Gaussian distribution con-

ditioned on the training data, the variance/uncertainty of

which increases as x∗ moves away from the training data.

GPLVM [14] is a Gaussian Process based nonlinear di-

mensionality reduction method which represents {xi}
N
i=1

as latent variables and assumes their values are initially un-

known and should be learnt along with the kernel param-

eters, specifically by optimising the negative log likelihood

of the data modelled as the product of D Gaussian Processes



with a simple Gaussian prior placed on the latent space:

L =
D

2
ln |K| +

1

2
tr(K−1YYT ) +

1

2

N∑

i

||xi||
2 + const.

(1)

where K is the N × N kernel matrix computed from the

training data using a kernel function such that Ki,j =
k(xi,xj). The optimisation of equation 1 is dominated by

the repeated inversions of K, therefore in practice, K is

often computed from a much smaller representative set of

pseudo points in the latent space [18].

Dimensionality reduction is achieved if q < D. The

mapping from the latent space to the data space can be non-

linearised using an appropriate kernel function such as the

radial basis function (RBF):

k(xi,xj) = αrbfexp(−
γ

2
(xi−xj)

T (xi−xj))+αbias+β−1δi,j

(2)

where αrbf , γ, αbias and β are the kernel parameters and

δi,j is the Kronecker delta function.

In this work we use a BC-GPLVM [15] which con-

strains the latent points to be a smooth function g of the

data points and optimises the likelihood function 1 with

respect to the parameters of g instead of the latent points

X = [x1, . . . ,xN ]T . This allows local distances between

data points to be preserved in the latent space and primi-

tive units of motion to be discovered by clustering the con-

strained latent points.

4.2. Motivation for using BC-GPLVM

We chose to use BC-GPLVM because the basic formu-

lation of GPLVM is ill suited to modelling temporal se-

quences such as human motions as it is designed to preserve

dissimilarity in data space. Although nearby latent points

produce similar predictions in the data space, the reverse is

not necessarily true, which potentially can create undesir-

able jumps in the latent space embedding.

This problem can be mitigated by exploiting the inher-

ent temporal ordering in the input sequences and model lo-

cal dynamics explicitly in the latent space using additional

Gaussian Processes [30]. Urtasun et al. [28] proposed a

simple approach for balancing between the smoothness of

the dynamics mapping and the accuracy of pose reconstruc-

tions, and applied it to track walking sequences in monoc-

ular view. Moon and Pavlovic[17] showed how to incorpo-

rate other types of dynamics into GPLVM. However with

these approaches, spatially similar but temporally distant

data points can still be placed far apart from each other.

With BC-GPLVM, although temporal ordering is not ex-

plicitly modelled, the temporal sequences are still mapped

to smooth paths, because consecutive frames of motions

tend to be similar.

5. Predictive Dynamic Model

A predictive dynamic model is necessary for ensuring ef-

ficient propagation of particles and robust handling of am-

biguous image evidence. Such a model is learnt by first

clustering the training sequences in latent space into prim-

itive units of motion or motion prototypes. This allows the

sequences to be represented at a higher level of abstrac-

tion as sequences of motion prototypes. The high level be-

haviours in the training sequences can then be captured by

modelling the temporal dependencies between the motion

prototypes using the Variable Length Markov Model [20].

5.1. Clustering with Uncertainty

In order to capture high level behaviours, we estimate

motion prototypes from the latent space representation of

the training motions. We represent the set of motion pro-

totypes using a Mixture of M Gaussians (MOG). More

specifically, we perform clustering in the augmented latent

space, in which each latent point xi is also augmented by

its velocity ẋi. The two issues that need addressing here

is choosing automatically the appropriate number of mo-

tion prototypes; we solve this by using a similar method

to that proposed by Figueiredo and Jain [7]. Also, since

BC-GPLVM makes prediction from different latent points

with different levels of uncertainty, this suggests that they

should not be treated with equal importance in the cluster-

ing process, especially if we want to accurately capture the

distribution of training data in latent space.

The standard EM clustering algorithm assumes that all

data points are equally important and there are no uncer-

tainty associated with the data points. However this is not

always a valid assumption, as the measurement process and

any intermediate modelling process such as dimensionality

reduction (BC-GPLVM or otherwise) can introduce uncer-

tainty into the input data. If the level of uncertainty on each

data point can be quantified then they should be incorpo-

rated into the clustering process to produce more accurate

and representative clusters. The uncertainty about a latent

point’s position can be estimated by drawing a set of sam-

ples (e.g. 100) from its prediction, which are then mapped

back into the latent space using the backward mapping g.

The covariance matrix of the mapped back samples is then

taken to be the uncertainty of that latent point.

Intuitively, data points with lower uncertainties should

have greater importance in the clustering process. There-

fore we propose a novel clustering algorithm which takes

into account of the uncertainties on the data points. For

a Gaussian component N(µm,Σm) and a data point xn

with its uncertainty represented by a covariance matrix Cn,

the algorithm assumes that the data point is actually drawn

from the Gaussian distribution N(µm,Σm + Cn). For a

data point with large uncertainty, this spread its contribu-

tion more evenly to the nearby clusters and therefore have



less impact on any specific cluster. In practice, this often

means that clusters with very narrow covariance will not

find sufficient support from the data and is therefore elim-

inated during the clustering. If all uncertainties are zero,

then our algorithm simplifies to standard EM clustering.

Specifically, the contribution of a data point to a Gaus-

sian component is scaled by the inverse of Σm + Cn, thus

the mean of a Gaussian component is now updated as:

µm = (

N∑

n=1

Pn,mA−1
m,n)−1

N∑

n=1

Pn,mA−1
m,nxn (3)

where Pn,m is the expected assignment of the nth data point

to the mth Gaussian component and Am,n = Σm + Cn.

Updating the covariance of a Gaussian component is a lit-

tle more complicated, by setting the derivative of expected

complete log likelihood of the input data w.r.t the covari-

ance Σm to 0, leads to the following equation:

N∑

n=1

Pn,mA−1
m,nΣmA−1

m,n = (4)

N∑

n=1

Pn,mA−1
m,n((xn − µm)(xn − µm)T − Cn)A−1

m,n

Σm can then be found by solving a system of
(D+1)∗D

2 lin-

ear equations for the free variables of Σm. Since updating

µm and Σm depends on an existing estimate of Σm, the two

variables should be alternately updated for a few iterations.

5.2. Learning High Level Behaviour in the Latent
Space with VLMM

High level behaviours are captured by learning a Variable

Length Markov Model (VLMM) [20] from the abstraction

of the training data as sequences of discrete motion proto-

types. VLMM is a mathematical framework for modelling

complex temporal dependencies at variable temporal scale,

this is particular attractive in cases where we need to capture

higher order temporal dependencies in some parts of the be-

haviour and lower order dependencies elsewhere. Therefore

VLMM has the advantage over N th order Markov models

as the memory length used for prediction is not fixed but is

allowed to vary locally (up to a maximum memory of N ) to

produce a higher order predictive model. This allows it to

disambiguate between complex (or different) activities and

provide more accurate predictions by using longer memory

length when needed[8]. If there are no higher order tempo-

ral dependencies in the training data, the learnt VLMM will

simplify to a first order Markov Model. It is worth noting

that the size and complexity of a VLMM is automatically

learned from the training data.

Although the cost of learning VLMM increases with the

size of the training data, the computational cost of pre-

diction using a larger and more complex VLMM remains

largely unaffected since a VLMM is conveniently repre-

sented by a Probabilistic Finite State Automaton (PFSA).

The optimal amount of memory required for prediction at

each step is encoded into the states of the PFSA and predic-

tion simply involves traversing from state of the PFSA to the

other. A PFSA can be represented as M = (Q,K, τ, γ, s)
where K is the alphabet representing the components of the

mixture of Gaussians, Q is the set of VLMM states, τ :
Q × K → Q is the transition function, γ : Q × K → [0, 1]
is the output probability function and s : Q → [0, 1] is the

probability distribution over the initial states.

5.3. Propagating Global Dynamics

The probability of a latent feature vector x̂i given ob-

served image evidence zi is:

P (x̂t|Zt)
︸ ︷︷ ︸

Posterior

= κP (zt|x̂t)
︸ ︷︷ ︸

Likelihood

∫

P (x̂t|x̂t−1:L)
︸ ︷︷ ︸

MotionPrior

P (x̂t−1|Zt−1)
︸ ︷︷ ︸

PreviousPosterior

dx̂t−1

(5)

where κ is a normalising constant, Zt = [z1, ..., zt] is the

observation history, and x̂t−1:L are the particle states from

frame t − 1 to t − L where L is less than or equal to the

maximum memory of the VLMM. The posterior distribu-

tion is approximated with a set of particles. Each particle

consists of an augmented latent point, a root orientation, a

root position, its VLMM state qt and cluster label kt. The

likelihood of the image evidence, P (zt|x̂t) is evaluated us-

ing an efficient procedure described in section 6.

Since global dynamics are modelled as transitions be-

tween motion prototypes using a VLMM, the next motion

prototype that governs a particle’s dynamics is predicted by

sampling from the VLMM function γ(qt, kt+1). If a dif-

ferent Gaussian component is predicted for the next frame,

i.e. kt+1 6= kt, then a new particle state is sampled from

the new cluster. Otherwise the particle’s state is propagated

using local dynamics as described in the next section.

5.4. Propagating Local Dynamics

A model particle’s current state x̂t can be predicted from

its previous state x̂t−1 and its current Gaussian component

N(µkt
,Σkt

). Uncertainty in the propagation is modelled

by sampling additive noise from the Gaussian component,

[dxt, dẋt]
T ∼ N(0,Σkt

), with scaling factor λ. The new

particle state is x̂t = [xt, ẋt]
T , where:

ẋt = ẋt−1 + λ.dẋt

xt = xt−1 + ẋt + λ.dxt

In the general case, the current pose of the model particle

should be updated by sampling from the prediction distribu-

tion at xt. However, for efficiency reasons, we simply use

the mean feature vector yt = [θt, θ̇t, exp(q̇t)]
T predicted

by xt. θt are the new joint angles values. The new orien-

tation qt is computed by concatenating q̇t to the previous
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Figure 1. Overview of the runtime system. In the visualisation of the latent space, the red pluses are the pseudo latent points and the green

crosses represent the training data. The darker region represents areas with high uncertainty on its predictions.

rotation qt−1, i.e. qt = qt−1q̇t. Both the root orientation

and root position of the model particles are also propagated

with Gaussian noise.

6. Fast Likelihood Evaluation

At each new frame, particles are propagated using the

dynamic model described in the previous sections and the

new posterior likelihood is approximated by re-weighting

the particles against the new observed image evidence zt. zt

is computed using a hierarchical volumetric reconstruction

algorithm which merges information from multiple views to

resolve spatial ambiguities [4]. However, the large amount

of voxel data prevents the particles from being efficiently

evaluated, therefore we summarise the image evidence by

fitting a 3D appearance model to the reconstructed voxels

using an EM-like procedure [4]. A common appearance

model is adopted for both the candidate model configura-

tions and the current observation zt in order to make the

evaluation process more efficient. This approach is conse-

quently more efficient than evaluating the likelihoods from

2D projections in each camera view.

6.1. Generating Appearance Models

An appearance model is represented by a mixture of non-

overlapping Gaussian blobs attached to the bones of the ar-

ticulated model and can be easily generated from any set of

kinematics parameters, as illustrated by the top right image

in Figure 1. Each Gaussian blob defines a distribution over

3D position and colour and is defined in the local coordinate

system of the corresponding body part.

Initialising the blobs fitting from the last tracked pose

can be insufficient for fast movements, causing some blobs

to “snap” to incorrect body parts. Therefore we also ini-

tialise blobs fitting with appearance models predicted by the

VLMM and retain the best result as the “image evidence”.

An important advantage of this blob fitting procedure is that

it can also automatically recover from tracking failures. If

the best fitting mixture provides a poor fit then the tracker

is deemed lost and the particles are re-initialised according

to the distribution s over the initial VLMM states.

6.2. Particle Evaluation with Relative Entropy

A model configuration (particle) is evaluated by first

generating an appearance model from the particle state, and

then comparing it to the image evidence. Let us denote

F =
∑

i αifi as the mixture generated from the model

and G =
∑

i βigi as the one corresponding to image evi-

dence. The Kullback-Leibler (KL) divergence DKL(F‖G)
between the two mixtures can be used to measure their sim-

ilarity. Since there is no closed form solution for KL di-

vergence between two Mixtures of Gaussians, DKL(F‖G)
can be computed using the approximation proposed by [9]

for non-overlapping clusters:

DKL(F‖G) ≈
n∑

i=1

αi

(

DKL(fi‖gi) + ln
αi

βi

)

(6)

This approximation can be efficiently computed using the

closed form solution of the KL divergence between two

Gaussian blobs f ∼ N (µf ,Σf ) and g ∼ N (µg,Σg):

1

2

(

ln
|Σf |

|Σg|
− d + tr(Σ−1

f Σg) + (µg − µf )T Σ−1
f (µg − µf )

)

(7)

d is the dimensionality of the blobs f and g. The weight

of a particle is inversely proportional to DKL(F‖G). The

weights are normalised before resampling.

7. Results

In order to test the tracking framework, we use calibrated

cameras to capture video sequences from multiple views,

at 30fps with a resolution of 320 × 240. Learning the dy-

namic model takes 1 to 3 hours depending on the amount of

training data available. As a preprocessing stage, the train-

ing sequences used to learn a BC-GPLVM are sub-sampled

at 30fps to match their timing with the frame rate of the



Figure 2. Tracking results (front and side view) for the jumping jacks sequence using 500 particles. Every 5th frame is shown.

cameras. In order to obtain a sufficient number of latent

points for clustering, the sequences are also super-sampled

to 300fps and mapped into the latent space. The tracking

system runs at an average of 10 fps.

We first show our system tracking a jumping jack se-

quence. The training data was taken from the CMU mo-

cap database (mocap.cs.cmu.edu) of two subjects at 120fps.

From the training data, we learned a BC-GPLVM with a

3D latent space and 100 pseudo latent points. Clustering

discovered 15 motion prototypes and a VLMM with a max-

imum memory length of 5 was learned to model dynamics.

The test data was captured in a normal office environment

using 4 cameras. It can be seen that even though the subject

is wearing fairly ordinary clothes, the system tracks well.

Figure 2 shows the tracking results superimposed onto the

videos captured by 2 of the 4 cameras.

Ballet dancing is a good example of a complex structured

activity that can exhibit fast movements. It is difficult to

track such activities without a prior motion model, thus it is

a good test for our system. We used 5 cameras to capture

1200 frames of a dancer performing 3 repetitions of a ballet

sequence at 30fps for training. Additional sequences were

also captured and used for testing. We learnt a BC-GPLVM

with a 5D latent space and 200 pseudo latent points from the

training data and 71 motion prototypes were discovered. A

high level model of dance behaviour in the latent space was

learned using a VLMM with a maximum memory length of

10. In Figure 3 we compare our system to two particle filter

based trackers with annealing.

We also compare our system to two different trackers.

The first tracker uses VLMM to propagate particles in the

full pose space [3] and the second tracker propagate parti-

cles in the latent space of BC-GPLVM using just a First Or-

der Markov Model (FOMM). Each tracker was tested on the

ballet sequence 50 times using 200 particles and the result is

shown in figure 4. Our system achieves significantly lower

mean tracking errors than the other two trackers. The graph

also shows our tracker is more robust than the first tracker

because we constrain our tracker to only predict valid poses

from the low dimensional latent space. Our tracker is also

more robust than the second tracker because higher order

predictions provided by VLMM allows particles to be fo-

cused toward the next expected global optimum, which is

especially important for small number of particles.

In figure 5 and 6, we show that by using appropriate im-

age features, our tracking framework can also be modified

to track human motions from monocular view. In particular,

we compare our system to a gradient descent based tracker

using ’balanced GPDM’ similar to [28]. We annotated the

2D positions of a set of joints to simulate the results given

by a 2D appearance tracker, such as the WSL tracker used

in [28]. The likelihood of a particle is then computed as the

sum of squared distances between the annotated joint posi-

tions and the predicted joint positions projected into the im-

age space. Figure 5 shows a well known walking sequence

for which we annotated the positions of the head, the cen-

tre of the hip, the left hand and both feet. Both trackers

were able to track the sequence quite well. This is because

walking is a cyclic activity with relatively simple dynam-

ics which is easier to model (even with PCA) than danc-

ing. The labelled joint features are sufficiently informative

to constrain its tracking. Figure 6 shows the beginning of

the ballet sequence being tracked from one of the views,

the positions of the head, both hands and both feet are an-

notated. Because the sequence exhibits movements toward

and away from the image plane, this presents a good deal

of ambiguity in tracking which may not be sufficiently con-

strained the labelled joints, especially for estimating root

position. Therefore in order to obtain some sensible results,

we helped both trackers by giving them the ground truth

root positions. The screenshots show that our tracker was

able to estimate the correct poses despite the sparse image

evidence, while the gradient descent based tracker soon be-

came trapped in a local minima. It is also worth noting that

even when our tracker is not helped along with ground truth

root positions, it can still recover the correct pose, albeit at

an incorrect depth from the camera viewpoint.

8. Conclusion

We have presented a markerless tracking system for esti-

mating human poses from images captured by multiple cal-

ibrated cameras. We constrain pose estimation by learning



Figure 3. Tracking results for the ballet dance exercise. (top row) Our method with 500 particles. (middle row) Annealed particle propaga-

tion in latent space with 5 layers, each has 500 particles. (bottom row) Annealed particle propagation in full pose space with 5 layers, each

has 500 particles. Every 40th frame is shown.
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Figure 4. Comparison of our system on the first dance exercise against other systems with dynamics model. 200 particles used in all cases.

a compact low dimensional space of plausible motions us-

ing BC-GPLVM, which makes particle propagation more

efficient. Accurate tracking of complex structured activities

such as ballet dance is achieved by learning a prior motion

model by abstracting the training motions as sequences of

motion prototypes. The motion prototypes are estimated us-

ing a novel clustering algorithm which takes into account of

the uncertainties of the latent space embedding of the train-

ing motions. Results show that by capturing the temporal

dependencies between the motion prototypes in the latent

space using VLMM, our tracker is able to accurately pre-

dict the high level behaviours of activities and prevent the

particle filters from being trapped in poor local minima.
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