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Abstract—Current occupancy sensing technologies may limit the 
effectiveness of buildings controls, due to a number of issues 
ranging from unreliable data, sensor drift, privacy concerns, and 
insufficient commissioning.  More effective control of Heating, 
Ventilation and Air-conditioning (HVAC) systems may be 
possible using a smart and adaptive sensing network for 
occupancy detection, capable of turning off services out of hours, 
and not over-ventilating, thus enabling energy savings, and not 
under-ventilating during occupied periods, giving comfort and 
health benefits. A low-cost and non-intrusive sensor network was 
deployed in an open-plan office, combining information such as 
sound level, case temperature, carbon-dioxide (CO2) and motion, 
to estimate occupancy numbers, while an infrared camera was 
implemented to establish ground truth occupancy levels. 
Symmetrical uncertainty analysis was used for feature selection, 
and a genetic based search to evaluate an optimal sensor 
combination. Selected multi-sensory features were fused using a 
neural network. From initial results, estimation accuracy 
reaching up to 75% for occupied periods was achieved. The 
proposed system offers promising opportunities for improved 
comfort control and energy efficiency in buildings. 

Keywords- Occupancy, Features, Sensors, HVAC systems, 
Energy savings 

 

I. INTRODUCTION 

   Approximately about 40% of the world’s energy is 
consumed by buildings [1], of which roughly about half of this 
energy is consumed by heating, ventilation, and air 
conditioning (HVAC) systems [2]. Significant energy is often 
wasted servicing unoccupied buildings: for example, [3], 
found 39% of US domestic building energy wasted due to 
unoccupied heating and cooling. There is clearly, great 
potential for energy savings through improved HVAC 
operations. 

        Current HVAC systems in most office buildings are 
operated based on fixed schedules, assuming maximum 
occupancy during occupied hours (typically between 9.00am 
and 6pm), and zero occupancy during nights and weekends. 
Clearly, this policy will not maximise energy savings, and does 
not consider periods when buildings are partially occupied. For 
instance, during the day, individual offices may be in use 
regularly while other rooms such as conference rooms may be 

left empty or used semi-regularly [4]. Again, convectional 
HVAC operations just make use of temperature and humidity 
as sole inputs for system control, which often leads to energy 
waste [5]. One possible solution for achieving energy 
efficiency in buildings is to couple real-time occupancy 
information to building controls, such that services are 
provided only when needed (i.e during occupied instances), 
whilst maintaining satisfactory indoor comfort. Previous 
studies have proposed up to 56% HVAC related energy savings 
with the application of demand-driven HVAC operations [6, 7].  
A number of occupancy detection systems in the literature, 
have certain short-comings with respect to accuracy, cost, 
intrusiveness, and privacy. This paper attempts to address these 
limitations, by fusing information from a network of low-cost 
sensors for building occupancy detection. This study is 
distinguished from previous research in that it introduces the 
use of symmetrical uncertainty analysis for feature selection, 
and a genetic based search to evaluate an optimal sensor 
combination for occupancy estimation. It goes further to 
investigate new method of occupancy sensing: the use of case 
temperature, and sensing sound level as an event. To the best 
of the authors' knowledge, these tools have not been examined 
for occupancy detection.  

 

II. RELATED WORKS 
 

        Conventional occupancy detection systems have several 
short-comings; Passive infrared (PIR) sensor is the most 
commonly used technology for occupancy sensing in non-
domestic buildings especially for lighting control [8], however 
it fails to detect stationary occupants, thus switching off 
services falsely. [9] proposed a smart occupancy sensor that 
adapts to changing activity levels of occupants in a building 
zone. The authors demonstrated that by varying a PIR sensor 
time delay, with respect to a known activity pattern of an 
occupant, the number of false-off’s can be minimised. 
However, in cases where occupancy patterns are uncertain, 
variation in time delay alone may not completely eliminate the 
problem of false-offs. To address this problem, PIR sensors 
are coupled with other sensors. [10] proposed a Bayesian 
belief network, comprising of three PIR sensors and a 
telephone sensor to probabilistically infer occupancy. 
Occupied state of individual offices room was modelled with a 
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Markov chain. Their system had a detection accuracy of 76%, 
but was unable to count the number of occupants. In an 
attempt to improve the robustness of occupancy numbers 
detection, [11-13] proposed a system that used information 
from carbon-dioxide (CO2), acoustic and PIR sensors to 
estimate the number of occupants in an open-plan office 
space. Using information theory, the most relevant 
information for occupancy prediction was extracted from 
sensor data, and fused with three machine learning algorithms 
(support vector machine, artificial neural networks, and 
hidden Markov model). An average reported accuracy of 73% 
was achieved by the hidden Markov model.  

        A number of studies have highlighted the feasibility of 
occupancy detection in offices, by monitoring office 
equipment usage. For example, [14] developed a novel 
occupancy detection system running on an existing IT 
infrastructure.  The system monitored occupants’ MAC and IP 
addresses, keyboard and mouse activities as occupancy 
proxies. A detection accuracy of 80% at the building level, 
and 40% at the floor level was achieved. [15] proposed a 
useful method for establishing usage patterns of electrical 
appliances (such as desktop PCs), from which occupancy 
could also be inferred. Using portable temperature sensors 
attached to the case of PCs, and a pinging software routine 
that runs on the local network, appliance duty cycles were 
detected to a precision in excess of 97%. Both systems are 
unable to detect occupants not using a computer. Vision-based 
systems have also been used [16, 17], although occupants' 
privacy is a concern, besides their applicability is limited in 
heavily partitioned spaces.  The use of wearable sensors for 
monitoring occupants have also been reported [18], although 
occupants’ willingness to wear the devices may be a critical 
factor for its uptake, especially in office buildings. 

 

III. INSTRUMENTING THE SPACE 
 

        The test area chosen for data gathering and system 
development is an admissions office within the Queen's 
building - this is an advanced naturally ventilated building, 
which forms part of the De Montfort University campus in the 
English Midlands, and was constructed in the early 1990s. The 
test area is an open-plan office which accommodates 6 
members of staff, has a small kitchen capable of containing 
about two persons at a time. There are 6 desktop computers 
and a printer in the space. The room has one exit door, high 
ceiling and a large rear window that is usually kept locked, 
although there are smaller windows at the side which are often 
put to use by occupants. Being an admissions office, both staff 
and students frequently enter the space to make enquiries, 
indoor comfort conditions can quickly deteriorate as a result 
of indoor variables build-up. At best, the indoor climate can 
be considered as heavily dynamic. Fig. 1 gives an illustration 
of sensors deployed for indoor environmental monitoring.  

         Various technologies were used to gather data, HOBO 
temperature sensors were attached to the case of all six 
desktop computers to infer usage pattern, while self contained 
HOBO U series dataloggers were employed to monitor the 
indoor climate, including temperature, humidity, and 
illumination. Volatile Organic Compounds (VOC’s) and CO2 

levels were monitored using Aerasgard rlq-series air quality 
sensor, and four GE Sensing Telaire CO2 sensors respectively, 
results being logged using HOBO dataloggers. Ambient sound 
levels were monitored using custom designed circuitry, which 
would record as an event sound level over a preset threshold. 
Traditional PIR sensors (three in number), as used for lighting 
control, were installed to monitor motion. All events were 
recorded using HOBO event loggers. Though sensor 
measurements were acquired every one minute, a five minute 
average was used for analysis. Data were downloaded to a PC 
using a HOBO shuttle and uploaded to a MySQL database 
using MATLAB scripts. Occupancy estimates from the data 
were subsequently analysed in MATLAB, and Waikato 
Environment for Knowledge Analysis (WEKA) [19]. 

        An infrared camera was mounted in the test area to 
capture occupants’ traffic. Video capture and recording was 
done using an ordinary laptop, with images captured at a one-
minute interval. This was also found to be a more efficient 
approach than, capturing live streaming video, with no 
significant loss of resolution. Occupancy numbers validation 
was carried out by manually counting the number of 
occupants in each image. This information is referred to as the 
ground truth occupancy numbers in this work, and was used 
for model training and testing.  

        Sensor data were collected between 12/09/2012 
00:00:00am and 11/10/2012 23:55:00pm. All corrupted and 
missing data instances due to instrumentation limitations (e.g 
need to charge batteries used to power CO2 sensors, or laptop 
may need restarting after image feeds become static) were 
excluded. Overall, after the pre-processing stage, 10000 data 
instances were used for analysis, 8000 for model training, and 
2000 for testing.  

 

IV. METHODOLOGY 
 

        A central objective of this study is to arrive at the 
combination of environmental ambient sensors that provides 
the most relevant information for detection of occupancy 
numbers in an observed environment. This entails the use of 
feature selection algorithms, which can be broadly classified 
into two categories: The filter and wrapper model. The filter 
model relies on general characteristics of the training data to 
select features without involving any learning algorithm, they 
are computationally cheap, and do not inherit any bias of a 
learning algorithm [20]. On the other hand, the wrapper model 
uses the predictive accuracy of a predetermined learning 
algorithm to search the feature space, in order to determine 
features subsets with the highest quality. It tends to be more 
computationally expensive and time consuming than the filter 
model, and thus may not be practical to apply for feature 
selection when the data set is large containing numerous 
features and instances [21]. Information theory (IT) falls in to 
the filter model category, and it is a widely used non-linear 
correlation measure for feature relevance analysis [22], 
besides it has been used in the development of occupancy 
detection system [11]. Here, the features obtained from 
individual sensors in the sensing network are explored for 
occupancy detection, using information theory based analysis. 
A brief overview of the feature selection process is presented.  
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Figure 1. Test area instrumentation 

A. Information Theory 

        In information theory, Entropy is a measure of the amount 
of uncertainty of a random variable. The entropy of a variable Y 
is defined as in (1), and the entropy of Y before and after 
observing values of another variable X is given by (2). ܪሺܻሻ ൌ െ ∑ ௜ሻݕሺ݌ logଶ ௜ሻ                                        ሺ1ሻ௜ݕሺ݌       

ሺܻ|ܺሻܪ                        ൌ െ ∑ ௝൯ݔ൫݌ ∑ ௝൯௜ݔ௜หݕ൫݌ logଶ ௝൯        ሺ2ሻ௝ݔ௜หݕ൫݌  

Where ݌ሺݕ௜ሻ is the prior probability for all ith values of Y and ݌൫ݕ௜หݔ௝൯ is the conditional probability of ݕ௜  given ݔ௝. 

Suppose Y and X represents the set of classes and features 
respectively in a given data set. Entropy is 0 without any 
uncertainty if all subsets of a feature belong to the same class. 
On the other hand, subsets in a feature space are totally random 
to a class if entropy is 1. The maximum value of entropy is 1. 
The amount by which the entropy of Y decreases reflects 
additional information about Y provided by X, and is called 
information gain as shown in (3). 

Information gain measures the dependence between the 
feature and the class label, and it is defined as:     ܫሺܻ, ܺሻ ൌ ሺܻሻܪ െ  ሺܻ|ܺሻ                                        ሺ3ሻܪ

Information gain is symmetrical for two random variables 
X and Y; this property is desirable for measuring 
correlations between features. However, it is biased for 
features with more values. Therefore, in this work, 
symmetric uncertainty (SU) is employed to determine the 
predictive strength of features investigated for occupancy 
numbers estimation. SU compensates for information 
gain’s bias towards features with more values, and 
normalizes its values from 0 to 1 to ensure they are 
comparable. It treats pairs of features symmetrically, 
averages the values of two random variables, hence it has 
no bias problem. This methodology has been proven to be 
efficient in determining relevant features in many machine 
learning applications, capable of improving a classifier’s 
accuracy [20].    ܷܵሺܻ, ܺሻ ൌ 2 ቈ ,ሺܻܫ ܺሻܪሺܺሻ ൅  ሺܻሻ቉                                  ሺ4ሻܪ

If the symmetric uncertainty evaluation measure of a 
feature to the class label is low, it implies the feature has 
poor predictive ability to the class, and vice-versa. Features 
can be ranked in descending order according to their 
degrees of association to the class label Y such that SU(Y, 
Xi) ≥ SU(Y, Xj) where Xi and Xj are two features.  

B. Feature Selection 

       Raw sensor measurements were initially subjected to 
pre-processing, which included timestamp synchronization, 
removal of outliers, and missing values.  New sets of 
features were then created based on the pre-processed 
sensor data. These features are intended to capture temporal 
variations in indoor climatic measurements. Features 
analysed, alongside their description is given in Table I.  

 

TABLE  I.  FEATURES INVESTIGATED AND THEIR DESCRIPTIONS 

Air temperature, relative humidity, VOC and CO2 measurements
First order difference (FIR) raw (i) - raw (i) -1 
Second order difference(SEC_FIR) raw_FIR (i) - raw_FIR (i) -1 
5 minute moving average (AVR_5min)      (ሺ∑ ሺ݅ሻሻ/5ሻ௜௜ିସݓܽݎ  
Approximate area under the curve for between two data instances 
(AREA) න ሺ݅ሻܴܫܨ ൎ௧ሺ௜ሻ

௧ሺ௜ሻିଵ ሺ݅ሻܴܫܨ െ ሺܴ݅ܫܨ െ 1ሻሺ݂ሺܴܫܨሺ݅ሻሻ൅ ݂ሺܴܫܨሺ݅ െ 1ሻሻ/2 
Sound and PIR data 

Total number of times sound or motion is detected in a minute 
(PUL_1min) 

 

5 minute moving average of sound or motion detected (PUL_5min) (ሺ∑ 1݉݅݊ሺ݅ሻሻ/5ሻ௜௜ିସ_ܮܷܲ  
Occupied times : Duration of occupancy as detected by the sound or 
PIR sensor in a minute (OCC_1min) 

 

Occupied times : Duration of occupancy as detected by the sound or 
PIR sensor in a minute (OCC_5min) ሺ෍ 1݉݅݊ሺ݅ሻሻ/5ሻ௜_ܥܥܱ

௜ିସ  

Case temperature measurement 
Case temperature of desktop computer recorded after 1 minute 
(CAS_1min) 

 

5 minute moving average of CAS_1min (CAS_5min) ሺ෍ 1݉݅݊ሺ݅ሻሻ/5ሻ௜_ܵܣܥ
௜ିସ  
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TABLE  II.  SENSOR FEATURES RANKING 
ACCORDING TO SU MEASURE VALUES 

Features  Features 
description 

SU  
measure 

AVR_temp_5min Average ambient 
temperature 
measurement in 5 
minutes interval 

0.0643 

CAS_5min Average case 
temperature 
measurement in 5 
minutes interval 

0.2542 

PUL_SND_5min Number of times 
the sound sensor is 
activated in 5 
minutes interval 

0.1974 

AREA_RH_5min Area under the 
curve for  relative 
humidity levels in 
5 minutes interval 

0.0829 

AREA_VOC_5min Area under the 
curve for VOC 
levels  in 5 
minutes interval 

0.0985 

PUL_PIR_5min Number of times 
the PIR sensor is 
activated in 5 
minutes interval 

0.1687 

AREA_CO2_5min Area under the 
curve for CO2  

levels in 5 minutes 
interval 

0.2940 

 

The predictive ability of features for each individual sensing 
domain was determined using SU.  Features with the highest 
predictive value in each were passed on to a genetic based 
Correlation Feature Selection (CFS) filter, to determine an 
optimal combination of features for occupancy detection, 
since SU and most feature weighting/ ranking algorithms are 
incapable of removing redundant features because redundant 
features are likely to have similar rankings or predictive 
power [22]. Table (II) gives the features with the highest SU 
measure values for each sensing domain investigated. CFS 
uses a correlation based heuristics called “merit" to evaluate 
the worth of features.  ݐ݅ݎ݁ܯௌ ൌ      ௞௥೎೑ට௞ା௞ሺ௞ିଵሻ௥೑೑                                      (5)           

 ௌ is the heuristic "merit" of a feature subset Sݐ݅ݎ݁ܯ
containing k features, and ݎ௖௙  ൌ ∑ ߳ܵ ଵ௞௙೔ ∑ሺ ௜݂,  ሻ is the meanܥ
feature class correlation and ݎ௙௙ is the average feature inter-
correlation. CFS explores the feature space for an optimal 
combination of a feature subset with the highest ݐ݅ݎ݁ܯௌ value 
using a genetic algorithm based search, with a stopping 
criterion set at when this value does not increase. The feature 
selection process is carried out in WEKA [19]. Results 
indicated that CO2, PIR, sound and case temperature sensors 
provided the best combination of features for the prediction 
task.  A detailed description of CFS algorithm can be seen in 
[23]. 

 

C. Neural Network Based Fusion for 
Occupancy Detection 

 

        A Feed-Forward Neural Network was applied in this 
study, for model training, testing and validation. Artificial 
Neural Networks (ANN’s) are biologically inspired systems 
used for model estimation in which a set of variables are 
estimated through training from available data. The neural net 
system comprises of a set of input and output variables used for 
learning the model responsible for this data. These networks 
consist of a number of individual units called neurons. 
Connections between neurons have certain weights that are 
usually obtained using some learning rules. A neural net of two 
hidden layers with same combination of neuron numbers in 
each hidden layer was tested on indoor climatic data from the 
test area. The learning algorithm employed is the back-
propagation algorithm, where the network error is back 
propagated from the output to input layer. Within the network, 
data are subjected to simple processing within its layers, and 
the weights of each neuron are adjusted in order to minimize 
the mean-squared error between the input and the target data, 
according to a specified accuracy index, or after the completion 
of a specified number of iterative learning processes. Once the 
ANN model has been satisfactorily trained, and tested, it is 
used to predict output data from previously unseen input data. 
In this work, ANN was implemented using the MATLAB 
Neural Network toolbox. An optimal combination of features 
resulting from the feature selection process described in section 
B (AREA_CO2_5min, PUL_SND_5min, CAS_5min, 
PUL_PIR_5min) were used as inputs for the ANN. The Log 
Sigmoid transfer function was used in both hidden layers, 
while a linear function was used in the output layer.  15 
neurons were used in each of the connecting layers, with other 
parameters such as a learning rate of 0.05, number of epochs of 
500 and momentum of 0.9. The training phase is repeated for 
10 times to increase the probability of reaching a global 
solution. The resulting average from the outputs of the training 
phases is used for analysis in next stages. 

 

V. RESULTS AND DISCUSSION 

 

        The test results were evaluated to provide occupancy 
information, such that HVAC systems can be proactively 
adjusted based on it. In this work, occupancy detection does 
not indicate the rate of sensing occupancy presence (e.g 
occupied and unoccupied), instead it refers to the rate of 
sensing occupancy numbers in the test area. 

       Two standard statistical performance evaluation measures, 
i.e Root Mean Square Error (RMSE), and the Mean Absolute 
Percentage Error (MAPE) are employed to validate the model 
performance. RMSE measures the difference between 
predicted occupancy and actual occupancy, while MAPE 
which gives the model accuracy, is used to make a term-by-
term comparison of the relative error in the model predictions 
with respect to ground truth occupancy. It makes more sense to 
apply MAPE only to measurements during the occupied 
periods than otherwise. 
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Figure 2. Occupancy estimation for 08/10/2012 

 

                          Figure 3. Occupancy estimation for 11/10/2012 

Fig. 2 and 3 show model predictions and actual occupancy data 
for two typical days. It is clear from these plots that model 
predictions are in good sync with actual occupancy numbers, 
with an accuracy of 67% and RMSE of 1.01 on the 08/10/2012, 
and 69% and RMSE 0.91 on the 11/10/2012, during occupied 
periods. The model particularly performs well, during 
unoccupied period; this is not surprising as measured indoor 
climatic variables do not show any significant temporal 
variation. Although, for 11/10/2012 during unoccupied period, 
model predictions indicated there were occupants in the space. 
This may be due to the slow CO2 decay rates in the test area, 
which can sometimes take till about 8:00am the next morning 
for CO2 levels to completely decay.  

        During occupied periods, model predictions show close 
tracking with ground truth data. Although, model outputs are in 
decimal formats, and may not represent practical observations 
i.e, number of occupants cannot be 4.12, hence model outputs 
may require quantisation. However, the outputs are still useful 
for occupancy driven HVAC systems, since certain level of 
error is acceptable. Besides, HVAC systems do not need to be 
very sensitive, such that it responds to slight changes in 
occupancy numbers. For instance, a change in the number of 
occupants by one, normally should not cause any significant 
HVAC operation, unless the space switches from occupied to 
unoccupied, and vice versa.  

       Overall, the model sometimes struggles when there are 
abrupt changes in occupancy levels, which again may be linked 
to the slow CO2 decay rates. In addition, CO2 sensors are slow 
to detect incoming occupants. For occupancy driven HVAC 
control operations, this may not have any significant 
ramification, as the system is not expected to produce a control 
action for abrupt occupancy changes, or short occupancy 
durations. From the results as shown in Fig. 4, the model 
achieves an average daily testing RMSE of around 1.08 for 
occupied periods. This is considered good, since the number of 
occupants varies between 0 and 6. This suggests that the model 
predictions are usually within 1 of the actual occupancy 
number. Average daily testing RMSE for unoccupied periods is 
around 0.13 suggesting that the model is effective for detecting 
unoccupied periods. Fig. 5 shows the testing results accuracy 
for different days in a typical week, between 02/10/2012 and 
11/10/2012. Different accuracies for days of the week were 

 

 
              Figure 4. Model estimation RMSE from 02/10-11/10 

 
                       Figure 5. Model accuracy for occupied periods 

from 02/10-11/10 
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recorded, with variation reaching up to 25%. Test accuracy 
slightly improves to 75%, although, there are certain days 
where accuracy was relatively low (e.g 60% on the 
02/10/2012). In summary, the model shows reasonable tracking 
with ground truth data during occupied and unoccupied 
periods.  

VI. CONCLUSION 

       In this study, a novel methodology for estimation of 
occupancy numbers using symmetrical uncertainty analysis for 
feature selection, and a genetic based search for optimal sensor 
combination have been presented. New method of occupancy 
sensing such as the use of appliance case temperature has been 
introduced. Results indicate that features from CO2, sound, 
case temperature, and PIR sensors have the largest correlation 
with the number of occupants in the test area. The prediction 
model employs a neural network to fuse selected sensor 
features for occupancy estimation. Predicted occupancy show 
reasonable tracking with actual occupancy during occupied 
period, although results are more impressive during unoccupied 
periods. Results may be limited to the specific environment 
used in the study. However, the proposed methodology has the 
potential for wider applicability in other building 
environments, subject to further testing. Future work could 
include further analysis to improve system accuracy for 
occupied periods, generalization of learned models for various 
environments (i.e. different rooms in a building, or entirely 
different buildings), testing this methodology with other 
standard machine learning approaches and exploring the use of 
occupancy estimates from the model for HVAC control 
applications.  
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