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Abstract

We describe a particle filtering method for vision based tracking of a hand
held calibrated camera in real-time. The ability of the particle filter to deal
with non-linearities and non-Gaussian statistics suggests the potential to pro-
vide improved robustness over existing approaches, such as those based on
the Kalman filter. In our approach, the particle filter provides recursive ap-
proximations to the posterior density for the 3-D motion parameters. The
measurements are inlier/outlier counts of likely correspondence matches for
a set of salient points in the scene. The algorithm is simple to implement and
we present results illustrating good tracking performance using a ‘live’ cam-
era. We also demonstrate the potential robustness of the method, including
the ability to recover from loss of track and to deal with severe occlusion.

1 Introduction

Recent years have seen the emergence of vision based algorithms aimed at tracking the lo-
cation and pose of a camera in real-time. This is a challenging task, requiring mechanisms
beyond that previously explored in traditional ‘structure from motion’ (SFM), particularly
if the camera is undergoing general motion such as that exhibited by a hand held or wear-
able camera. The majority of methods have therefore relied on off-line pre-calibration
of 3-D scene structure to stabilise tracking [11, 5, 7]. Recently, however, significant ad-
vances have been made in simultaneously estimating structure whilst tracking, opening
up the possibility of more flexible general purpose algorithms. The most notable is the
system developed by Davison [3], in which a Kalman filter is used for sequential estima-
tion of the motion parameters, based on a calibrated camera and judicious maintenance
of strongly salient features in the scene. This system has demonstrated impressive track-
ing performance, particularly when using a wide angled lens [4]. Other recent methods
include the real-time implementation of RANSAC based structure from motion described
by Nist́er [12] and the Kalman filter approach of Chiuso et al [2].

In this paper, we build on this work and describe a new approach to real-time camera
tracking which is similar in concept to that in [3], but based within a particle filtering
framework. The Kalman filter used in [3] works well if approximate linearity is main-
tained between time steps and if the estimates and measurements are consistently ‘good’
in a unimodal Gaussian sense. However, it is well known that deviation from this can



cause instability and ultimately tracking failure. Effects such as ambiguity in feature lo-
cation, occlusion of features and erratic motion jitter may cause problems, and recovery
from loss of track is likely to be difficult. This is addressed in [3] by ensuring that only
measurements from strongly salient features are used to update the filter. However, such
constraints may not always be possible or desirable, and in any case it does not necessar-
ily address the problem of recovery. This suggests that moving towards a more general
Bayesian sampling framework, such as that provided by the particle filter, would be ben-
eficial, particularly if the methods are to be extended to non-static scenes in which non-
linearities and multi-modality are likely to be more significant. Particle filters deal with
these in a natural way and as such could provide improved robustness over the Kalman
approach. They also tend to be more flexible, particularly with respect to the observation
model, and in general they are simpler to implement.

Bayesian sampling has been used previously for vision based SFM. Forsyth et al [6]
investigated the use of general Monte Carlo sampling for SFM, whilst Qian and Chellappa
describe a method based on sequential importance sampling (SIS) [13]. Their approach
uses partitioning to reduce the dimensions of the sampling space, separating the estima-
tion of motion from that of depth using the epipolar constraint. However, both this method
and that of [6] are presented in the context of traditional off-line SFM and real-time op-
eration is not discussed. The closest to a real-time method is that described by Chang
and Hebert [1], who use a particle filter for robot localisation based on an omnidirectional
camera. This is a bottom-up approach in which the filter is used for time integration of
two-frame SFM estimates, combined with sampling over feature correspondences. How-
ever, again no details of real-time operation are given.

We adopt a top-down state space approach, similar to that in [13], but sampling only
on the motion parameters. The measurements are based on inlier/outlier counts of corre-
spondence matches for a set of estimated 3-D scene points. These are obtained dynam-
ically during tracking using an auxiliary process, boot-strapped by a set of known 3-D
points at initialisation, in a similar manner to that used in [3]. This removal of depth es-
timation from the main particle filter is the key to real-time operation. We use SIS with
resampling, i.e. the Condensation algorithm [9], and use annealed sampling [10] at each
iteration to improve stability. The algorithm is simple to implement and computation
times are linear in the number of particles and scene points. An overview of the algo-
rithm is given in the next section. This is followed by details of the main components in
Sections 3-5 and results illustrating real-time tracking for several different scenarios are
presented in Section 6.

2 Algorithm Overview

The basis of the method is to use the particle filter to provide sequential approximations
to the posterior density for the 3-D motion parameters as the camera moves. The effective
number of state dimensions is therefore 6, representing the 3-D location and rotation of
the camera with respect to a world coordinate system. We use a calibrated camera, and
so the motion estimates are metric, and the coordinate system is aligned with the initial
camera coordinate frame. Each particle therefore corresponds to a potential 3-D location
and pose as illustrated in Fig. 1a, which shows ‘camera particles’ at timek, each defined
by a translationtn

k and rotationRn
k, where the circles represent the particle weights. These
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Figure 1: Camera tracking using a particle filter. Each weighted particle represents a
potential 3-D location and pose for the camera, and the weights (indicated by circles) give
successive approximations to the posterior density for the motion parameters.

give the approximation to the posterior density and are used to proportionally distribute
new particles in the next time frame using Condensation [9], with particles concentrated
around potential modes in the density as illustrated in Fig. 1b.

As with all particle filters, the key components are the state dynamics and the obser-
vations used. Without prior knowledge of camera movement, we use a simple random
walk for the change in location and pose, although alternatives such as a constant velocity
model could also be used within the same framework. More important is the way in which
we compute the particle weights at each time step, i.e. the likelihood of the observations
for a given state. This is best described by first assuming that we have a known set of 3-D
points in the scene, such as the points A-C in Fig. 1. The likelihood for given particle is
then based on projecting the 3-D points onto the associated ‘camera’ and comparing the
neighbourhoods in the current frame about the projected points with those in the refer-
ence frame. In other words, we match local templates according to the relative motion
(Rn

k, t
n
k) of the particle. In fact, we show later that we can base the likelihood on a simple

inlier/outlier count amongst the scene points.
We adopt a strategy similar to that in [3] for obtaining the 3-D scene points. The

system is boot-strapped by a set of known 3-D points which enables an initial particle
distribution to be built up. As tracking progresses, new 3-D points are introduced by
identifying salient points in the frames and estimating their depths by sequential repro-
jection and triangulation of the camera particles (in this respect it differs from the method
used in [3]). On convergence of a depth estimate, a new point is incorporated into the
scene map and then used in computing the likelihood. This enables tracking to continue
as the field of view moves away from the initialisation points. Details of this and the other
components of the algorithm are given in the following sections.

3 State and Observation Models

We denote the motion state at timek by the vectorxk, which defines the 3-D location
and pose in terms of the translation vectortk and rotation matrixRk, respectively. For
computational reasons we use a quarternion to represent the rotation, giving the state
vectorxk = (qk, tk), where the quarternion is normalised so that(q2

ks+q2
kx+q2

ky+q2
kz) = 1.



Given framek, we take measurements to give observationsyk and the set of observations
up to and including timek are denotedy1:k. We also assume that we have a set of 3-D
scene points,Z = {z1, . . . ,zM}, which are defined in the reference coordinate system. To
ease description, the number of points is assumed to be fixed; the removal of points or
dynamic introduction of new points is easily accommodated. For a pointzi , its projection
onto the image plane of a camera with motion statexk is then denotedu(zi ,xk) and this is
given by

u(zi ,xk) = Π(Rkzi + tk) (1)

whereΠ is the non-linear projection operator assuming an ideal pin-hole camera. We use
a calibrated camera and thus the parameters ofΠ are assumed to be known.

Tracking then amounts to obtaining successive approximations to the posterior den-
sity p(xk|y1:k,Z). Condensation provides this in the form of sets of weighted particles
{(x1

k,w
1
k), . . . ,(x

N
k ,wN

k )}, where the particlexn
k is a state space sample and the weights

are proportional top(yk|xn
k), such that∑N

n=1wn
k = 1. The algorithm requires a proba-

bilistic model for the state evolution between time steps, iep(xk|xk−1), and a likelihood
p(yk|xk,Z) for the observations given the state and the structure [9]. We adopt a random
walk for the former, based on a uniform density about the previous state

p(xk|xk−1) = U(xk−1−v,xk−1 +v) (2)

wherev represents our uncertainty about the incremental camera movement. We found
that this gave better performance than the normal density, particularly in terms of respon-
siveness to small rapid movements. The model could also include a deterministic element,
such as constant velocity, although we have not found this to be necessary.

We base the likelihoodp(yk|xk,Z) on the closeness of the projected pointsu(zi ,xk)
to neighbourhoods in framek which have a high correlation with the templates in the
reference frame. Denoting framek by Ik(u), we define a set of correlation fields, one for
each scene point, as follows

ρki(u) = Ti(u)∗ Ik(u) (3)

where∗ denotes normalised cross correlation andTi(u) is the template, a small neigh-
bourhood about the projection ofzi into the reference frame. The set of observations
are then those points for which the correlation values are above a threshold, i.e.yk =
{yk1, . . . ,ykM}, where the subsetyki relates tozi and its templateTi(u), and is given by

yki = {u : ρki(u) > ερ} (4)

whereερ is the correlation threshold. For the likelihood we then use a function related to
the number of scene points whose projections into the frame are within a given radius of
at least one relevant observation, i.e.

p(yk|xk,Z) ∝ exp(−
M

∑
i=1

∏
u∈yki

d(u,zi ,xk)) (5)

whered(u,zi ,xk) indicates whether the pointzi is an inlier or outlier with respect to the
observation atu and the statexk

d(u,zi ,xk) =
{

1 if ||u−u(zi ,xk)||> εd

0 otherwise
(6)



and the thresholdεd defines the ‘tolerance’ in the template matching. An example is illus-
trated in Fig. 2a, which shows thresholded correlation fields (shaded) for three templates
A-C and projections of scene points for two camera particles (crosses and squares). The
circles denote the thresholdεd. In this case, the particle represented by the crosses gains
support from all three points, whilst the other particle is only supported by point B. This
form of likelihood has similarities with that used in RANSAC [8] and we found that it
gave better performance than the alternative of using a continuous kernel.

Note also that the correlation values need not be computed over the whole frame -
projections of particles propagated from the previous frame can be used to identify areas
within which observations can contribute to particle weights. This enables the likelihoods
to be computed efficiently. It also has the advantage that matches for points which become
inactive, due to occlusion or feature mismatch, will continue to be sought along highly
probable trajectories, giving the potential for recovery.

4 Particle Annealing

The above likelihood function has the advantage of being quick to evaluate. This is impor-
tant for real-time operation since it needs to be computed for every particle at each time
step. However, its discrete form means that care must be taken in setting the threshold
εd. Setting it too high results in reduced discrimination which can cause drift. Reduc-
ing it increases discrimination, but requires greater coverage of the sampling space so
that enough samples are drawn around significant modes. Unfortunately, increasing the
number of samples to achieve this quickly becomes prohibitive. To address this, we use
particle annealing [10], in which samples are iteratively focused onto potential modes,
whilst gradually reducing the thresholdεd.

At each time step, we use a large value forεd to obtain an initial set of weighted par-
ticles. Annealing then proceeds by resampling from this set using a uniform distribution
with a smaller width than that used to propagate the samples from the previous time step
(v in (2)). An updated set of weighted particles is then obtained using a smaller value ofεd

in the likelihood and this initialises the next annealing step. The process continues using
smaller and smaller values ofv andεd, resulting in greater concentration of the samples
around modes in the state space. Further details on particle annealing are given in [10].

We also re-weight the correlation values used in the likelihood at each annealing step
according to the current estimate of the motion posterior density. This further increases
discrimination by penalising ambiguous matches. Re-weighting is similar to the calcula-
tion of the likelihood, but in reverse. Correlation values for scene pointi are re-weighted
so thatρki(u)→ αki(u)ρki(u), where

αki(u) =
N

∑
n=1

wn
k(1−d(u,zi ,xn

k)) (7)

andd(u,zi ,xn
k) indicates whetherzi is an inlier (d() = 0) or outlier (d() = 1) with respect

to the pointu and the particlexn
k as defined in (6). In effect, the particle weights are pro-

jected down into the correlation field and diffused locally, boosting values in the vicinity
of particle clusters with high probability. This increases support for significant modes
and hence accelerates the annealing process. Note also that since the particle weights are
derived from measurements based on all the known scene points, the re-weighting acts
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Figure 2: (a) Inlier/outlier support for camera particles (crosses and squares); (b) correla-
tion re-weighting; (c) depth estimation for new 3-D scene points.

as a ’pooling’ mechanism, which helps to sort out feature ambiguities or mismatches. In
practice, we base the re-weighting on a subset of particles, properly drawn from the cur-
rent distribution, to minimise computational effort. A simple example of re-weighting is
illustrated in Fig. 2b, which shows a 1-D correlation field before and after re-weighting
using the projected particle distributionw(u). In this case, re-weighting has the effect of
boosting the weaker left-hand mode in the original correlation field.

5 Initialisation of 3-D Scene Points

We now consider how we obtain the 3-D pointsZ. One option is to build depth estimation
into the particle filter as in [13]. However, this significantly increases the number of state
dimensions and although partitioning can be used [13], we found this to be unreliable
and also requiring a significant increase in the number particles, making it prohibitive for
real-time operation. Instead, we follow the strategy adopted in [3], and use an auxiliary
process to build points dynamically into a scene map, boot-strapped by a small number of
known 3-D points at initialisation.

Since we use a calibrated camera, initialisation is straightforward. The camera is held
parallel to a plane and points lying on the plane are selected by hand. This calibrates
the system and tracking can proceed based on the initialised 3-D points. New points are
introduced by detecting salient points in subsequent frames and then iteratively building
up depth estimates. The process works as follows. The region around a point forms a
new template and the point defines a 3-D ray with respect to the camera frame. Weights
associated with discrete depths along the ray are then updated by measurements from
subsequent frames to obtain a depth density. In [3], this is achieved by projecting each
depth onto each frame and seeking support based on feature matching. Here we adopt
the reverse process and, for a subset of properly sampled camera particles, triangulate
the ray with points having high correlation with the new template (using least squares)
and updating the depth weights in the vicinity of the triangulated point as illustrated in
Fig. 2c. This avoids updating every depth sample and allows large depth ranges to be
dealt with efficiently. The update is based on re-weighted correlation values, where the
re-weighting is similar to that used in the annealing, except that the inlier/outlier count
is based on a weighted distance measure from the epipolar line defined by the depth ray.
This is important since it pools the measurements from active points already in the scene
map. The process continues until either the weights converge on a given depth, in which
case the new point is incorporated into the scene map, or the estimation is abandoned.
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Figure 3: Camera tracking over a kitchen table with augmented graphics: (top-left) ex-
ample frames with projections of scene points; (top-right) mean camera trajectory and
particle weights; (bottom) projections of the posterior density for each motion parameter.

6 Results

Examples of real-time tracking are shown in Figures 3, 5 and 6. We used a hand held
camera and the frames were processed using a 3GHz workstation. Figure 3 shows 22
seconds of tracking as the camera moves smoothly over a kitchen table. Tracking was
initialised by 4 points on the table as shown in the top-left image. Note that tracking
was successful despite the feature ambiguities caused by the checked tablecloth. Six new
points were introduced and their projections are shown in the other images, along with
the depth weights for one of the points projected down onto the epipolar line prior to
convergence (top-right image; the projection of this new point is shown in the bottom-left
image). The cross in the bottom-right image indicates that a point has become inactive due
to low correlation values, here caused by occlusion. Tracking accuracy was assessed by
augmenting the scene with graphics placed on the 3-D initialisation plane. For simplicity,
the weighted mean of the particles was used for the camera motion. Although this is less
than ideal in the presence of multiple modes, resulting in a small amount of jitter, the
graphics are generally stable, indicating good tracking performance.

The 3-D plot in Fig. 3 shows the mean camera trajectory and the particle weights for
the location in the current frame, where black indicates high weight. Note the presence
of several modes in the distribution. The effects of annealing are illustrated in Fig. 4,
which shows the particle distribution prior to (left) and after several steps of annealing
(middle and right). Note how the particles are focused onto two separate modes. In
practice, we have found that 2 or 3 steps of annealing at each time step is required to give
stable tracking. The plots in Fig. 3 show the temporal evolution of the projected posterior



Figure 4: Particle annealing is used to focus samples around significant modes.
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Figure 5: Outdoor tracking illustrating recovery from severe occlusion.

density for each of the motion parameters. The filter was using 500 particles and the
processing rate was 40 fps whilst using 4 active points, dropping to 25 fps with 8 active
points. At present the introduction of new points is not optimised and so processing time
was reduced to 20 fps when introducing one point at a time. We anticipate that this can
be significantly increased. Similar processing speeds apply to the other examples.

Figure 5 demonstrates successful tracking outdoors and robustness to severe occlu-
sion. Five points on a planar sculpture were used for initialisation and the camera was
moved in an unstable manner to the right whilst rotating to keep the sculpture in view. The
images show the projections of the 3-D points for the set of camera particles, creating a
‘cloud’ around each salient feature. The bounding box for computing the correlation val-
ues is also shown. Part way through tracking, the sculpture is occluded by a tree, causing
temporary loss of track. Note the dispersion of the particle clouds in the top-right image
as occlusion begins and the wide spread of particles once occlusion has occurred in the
bottom-left image. At this point the filter has lost track but recovers in a controlled way
by wide distribution of motion particles across the state space. This can be clearly seen
in the projections of the posterior density shown on the right (occlusion begins around
frame 600). Note the sudden widening of the density as occlusion occurs and the narrow-
ing as the filter manages to lock onto the features once occlusion has passed and tracking
is successfully continued as shown in the bottom-right image.
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Figure 6: Tracking away from the initialised structure and recovery from camera shake.

The example in Fig. 6 illustrates how the introduction of new scene points allows
tracking to continue away from the initialisation points. Four points are initialised on a
desk using a calibration pattern. As the camera moves away, new points are incorporated
as shown in the top-left image and tracking continues as the initial points move out of the
field of view. Eventually tracking is based purely on newly incorporated points as shown
in the top-middle image. When the camera returns to its original position the augmented
graphics appear stable and in their correct position, indicating successful estimation of
the camera trajectory. The bottom-right figure shows the estimated 3-D points. This ex-
ample also illustrates recovery following severe camera shake. Part way through tracking
(around frame 400) the camera was shaken whilst moving. As tracking is lost, the camera
particles disperse as shown by the projected clouds in the bottom-left image and in the
projected posterior density. However, once shaking ceases, the filter quickly recovers,
locking on to the scene points and tracking continues successfully.

7 Conclusions

We have demonstrated that real-time camera tracking can be achieved using a particle
filter, with minimal pre-calibration of structure and the ability to incorporate new structure
during tracking. This gives the potential for general purpose camera tracking. It shares
many of its central concepts with the system described in [3], but we believe that the use of
the particle filtering framework opens up the possibility of greater robustness, particularly
in terms of recovery as illustrated in the results and the potential to deal with the increased
multi-modalities likely to be present when extending the idea to non-static scenes. The
simplicity of the particle filter and the flexibility in defining the observation model are also



key advantages. As well as extending the technique to non-static scenes, the mechanism
for introducing new points needs to be optimised; our current implementation is probably
not as robust as that developed in [3], primarily due to the fact that we are not currently
incorporating uncertainty about the camera position when initialising new points. Work
on this and extensions of the method to allow wide area tracking is in progress.
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