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Abstract

As a variety of video surveillance devices such as CCTV, drones, and car dashboard cameras have become popular,

numerous studies have been conducted regarding the effective enforcement of security and surveillance based on

video analysis. In particular, in car-related surveillance, car tracking is the most challenging task. One early approach

to accomplish such a task was to analyze frames from different video sources separately. Considering the shooting

range of the bulk of video devices, the outcome from the analysis of single video source is highly limited. To obtain

more comprehensive information for car tacking, a set of video sources should be considered together and the relevant

information should be integrated according to spatial and temporal constraints. Therefore, in this study, we propose a

real-time car tracking system based on surveillance videos from diverse devices including CCTV, dashboard cameras, and

drones. For scalability and fault tolerance, our system is built on a distributed processing framework and comprises a

Frame Distributor, a Feature Extractor, and an Information Manager. The Frame Distributor is responsible for distributing

the video frames from various devices to the processing nodes. The Feature Extractor extracts principal vehicle features

such as plate number, location, and time from each frame. The Information Manager stores all the features into

a database and handles user requests by collecting relevant information from the feature database. To illustrate

the effectiveness of our proposed system, we implemented a prototype system and performed a number of

experiments. We report some of the results.
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1 Introduction

With the rapid advancement of IT technology, a number

of video surveillance devices have entered a wide use for

surveillance and security purposes in daily life. As a typ-

ical example, closed-circuit television (CCTV), also

known as video surveillance, uses video cameras to

transmit video signals to a limited set of monitors. When

CCTV was first introduced, its poor quality and signifi-

cant installation costs limited its applicability. Recently,

because of improved definition, better distribution rates,

and various basic functions of CCTV, more diverse

applications have become easily implemented [1, 2].

Another popular example is the dashboard camera, car

DVR or car black box, that is one or a pair of onboard

cameras that continuously record (loop recording) the

view through the windscreen. Dashboard cameras can

provide video evidence in the event of a road accident or

vandalism. For this reason, numerous cars are now

equipped with dashboard cameras and, in a number of

countries, dashboard cameras are mandatory on public

transportation, such as buses and taxis.

While CCTV and dashboard cameras play similar

roles, there is a significant difference between them,

namely mobility. A CCTV is typically installed for sur-

veillance in areas that require monitoring, such as banks

and hospitals or areas where security is required. There-

fore, its coverage is limited. On the other hand, as a car

dashboard camera is installed inside a car, it can record

while the car is moving. To perform car tracking effi-

ciently, these two types of devices should be considered

together. In the case of CCTV, as its location is fixed

and its hardware performance is superb, it is highly ef-

fective for the monitoring of car movements in a

predefined area. On the other hand, car dashboard

cameras can cover a broad area including areas where

CCTV is not appropriate. There could be areas not

covered by both car dashboard cameras and CCTV.
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Drone-mounted cameras, which have been attracting

much attention recently, can be used effectively to cover

such areas.

Numerous studies have been conducted to date using

a number of video surveillance devices for, amongst

others, traffic condition analysis [3], people identification

[4], and event detection [5]. As they are dealing with a

single video source, the analysis results were limited, and

combining the results from separate video sources would

be both time-consuming and labor-intensive. Car track-

ing based on surveillance videos suffers from the same

problem. To solve this, in this study, we propose a

Kafka-based real-time car tracking system that can col-

lect data from different video sources, extract relevant

features from cars for monitoring, and integrate them in

a consistent manner. Our system is designed to utilize

various widespread devices, including CCTV and dash-

board cameras, as the effectiveness of car tracking relies

on diverse information, such as plate number, time,

place, and direction, collected from numerous different

places. Fortunately, modern CCTV, drones, and dash-

board cameras provide diverse metadata including global

positioning system (GPS) and timestamping. In addition,

plate number and moving direction can be easily de-

tected from the captured images using popular image

processing or machine learning techniques.

Our system can be used effectively to handle traditional

surveillance tasks that are typically both time-consuming

and labor-intensive. For instance, one of the typical steps

for the police to determine the movement of a stolen ve-

hicle is to start with the CCTV and dashboard cameras in

the vicinity and gradually expand to a greater area. Investi-

gating all the CCTV records and dashboard cameras

involved would require significant amounts of human

labor and time. In the case of our system, based on the car

plate number, time of the crime, and place, we can easily

formulate a query to determine the detailed track of the

stolen car. In addition, our system can be highly effective

for other popular applications such as traffic congestion

analysis by region, searching for optimal driving routes,

and planning new road construction.

However, in spite of the outstanding properties of our

proposed system, it is not easy to implement for a num-

ber of reasons. Firstly, the system should have sufficient

storage and processing capacity to handle the big data

involved. The volume of data generated from the video

devices in real time is significant. Therefore, the system

should be sufficiently fast to avoid any data accumula-

tion inside the node, otherwise, all the nodes in the sys-

tem could experience a memory shortage and, in the

worst case, the entire system might stop. To overcome

this problem, a distributed processing platform can be

used. Secondly, the system should have a fault tolerance

ability that is essential for the system to provide accurate

and complete car tracking information. This means that

when a node fault or transmission fault occurs, the

system should be able to recover from the fault. Thirdly,

precise and fast image processing methods should be

supported to efficiently extract all the critical informa-

tion about the cars in the frames. Finally, to answer user

queries promptly, the system should have methods for

managing a significant amount of data efficiently, includ-

ing an index structure for query processing.

In this study, based on these investigations, we

propose a real-time car tracking system IVATS (inte-

grated video-based automobile tracking system) that can

collect video big data, extract and store principal vehicle

features, and process user queries in a real-time environ-

ment. Our proposed system comprises three compo-

nents: Frame Distributor (FD), Feature Extractor (FE),

and Information Manager (IM). The role of the FD is to

assign a significant amount of frames from numerous

video sources to processing nodes using Apache Kafka

[6]. Each node in the FE extracts principal vehicle fea-

tures such as plate number, time, and location from the

frame and transfers them to the IM. The IM that is built

on HBase [7] clusters is responsible for storing all the

extracted features, constructing index structures for

them, and retrieving all the relevant data to answer user

queries.

The structure of this study is as follows. Section 2 de-

scribes a number of related studies and background infor-

mation. Section 3 presents the overall structure of our

proposed system. Section 4 describes the experiments that

were performed, and Section 5 concludes this study.

2 Related works and background

Before we describe our system in detail, we introduce

a number of related studies. We first investigate

methods for recognizing or tracking automobiles from

video frames, and then, we investigate frameworks for

real-time distributed processing, distributed databases,

and index structures for HBase.

2.1 Automobile recognizing and tracking

For automobile tracking based on surveillance video, it

is essential to extract the primary vehicle features such

as plate number, color, and size from a video frame.

Nam et al. [8] classified the types of vehicles as, amongst

others, SUVs, sedans, and RVs using images from visible

light and thermal cameras. Suryatali et al. [9] reported a

scheme for determining the direction and size of auto-

mobiles using Kalman filters. Solanki et al. [10] proposed

a scheme for recognizing plate numbers by locating the

plate number, segmenting character areas, and utilizing

optical character recognition (OCR). Tarigan et al. [11]

proposed a similar scheme using neural networks and

genetic algorithms.
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As numerous diverse vehicle feature extraction

methods have been developed, complete systems for ve-

hicle tracking have also been proposed. In [12], Rao pro-

posed a system that collected the frames from

surveillance videos, recognized the license plate, and

provided the results to the user that consequently en-

abled remote monitoring. Chen et al. [13] proposed a

video surveillance system in a cloud environment. Be-

cause of the automatic license plate recognition engine

and the cloud environment, their system was able to

cover wide areas and visualized the detection results

using Google Maps [14].

2.2 Frameworks for real-time distributed processing

Numerous recent approaches for real-time distributed

processing are based on Hadoop [15] and Spark [16].

Hadoop [15] is a popular framework that makes it

possible to process large data sets in a distributed envir-

onment and a number of studies, such as [17–19], used

Hadoop for distributed image processing. In particular,

in [18], a Hadoop image processing interface (HIPI) [19]

was implemented based on MapReduce to handle large

image sets. As Hadoop processes data in batches, HIPI

is not appropriate for real-time processing. In addition,

the Hadoop distributed file system uses a random-access

approach to disks, which induces an amount of delay in

accessing the data in a file system.

Spark [16] is another well-known framework suitable

for distributed processing. The data structure, known as

a resilient distributed dataset and memory-based pro-

cessing, makes Spark one of the fastest frameworks.

However, it has a critical weakness with insufficient

memory. When it encounters insufficient memory, the

processing speed of the system decreases rapidly and

could even result in the data in the memory being lost.

The abovementioned disadvantages of the two popular

frameworks could be significant stumbling blocks for

real-time vehicle tracking. Therefore, we focus on Kafka

[6], which is a platform developed for real-time message

transmission. Kafka comprises three parts: Producer,

Consumer, and Broker. Producer generates data and

sends them to the Broker. In Broker, the data are classi-

fied according to their topics and replicated for in-

creased reliability. Consumer, a processing part, obtains

the data from Broker each time it finishes tasks.

Kafka has the following properties: it stores tempor-

ary data in its own file system, and each Consumer

schedules its own task. Saving data in the storage

nodes enables Kafka to recover the data without data

loss when an error occurs. Although memory-based

structures are typically faster than disk-based struc-

tures, the speed of data access in Kafka is comparable

to that of memory-based structures because of effi-

cient disk usage [20]. The second property indicates

that a Kafka node need not wait for a job schedule

from the cluster master. Therefore, bottleneck prob-

lems caused by scheduling can be avoided and the

communication between nodes can be decreased, re-

ducing the network load. Because of these properties,

Kafka can be a suitable framework in a real-time

environment, and it was validated in [21].

2.3 Distributed databases and index structures

Because of the popularity of distributed processing

frameworks, distributed databases like Cassandra [22],

MongoDB [23], and HBase [7] are attracting increasing

attention for managing large volumes of data. Apache

Cassandra [22] is an open-source distributed NoSQL

database management system. Because of its decentra-

lized structure, it can avoid bottlenecks caused by a

master node. In addition, its performance increases pro-

portionally with the number of nodes.

MongoDB [23] is another open-source cross-platform

NoSQL database program. It is a categorized document-

based database, while Cassandra and HBase are

column-based databases. Compared to other database

management systems, it is easy to use and can process a

number of query conditions.

HBase [7] is an open-source, non-relational database

based on Hadoop and Google Bigtable [24]. It ensures

data consistency and provides fault tolerance. In

addition, as HBase is based on Hadoop, it is easy to use

MapReduce when implementing the various query pro-

cessing methods. For this reason, we use HBase for data

management. In HBase, a data tuple is called a row and

data are managed in tables that are divided into small

row sets known as region. Therefore, MapReduce per-

forms data processing in the unit of region. Except for

Rowkey, which is an identifier of a row, the attributes of

a table are not indexed. This means that HBase must

access all stored data to answer user queries. Therefore,

data retrieval takes significantly longer than data inser-

tion and the query processing time increases rapidly as

the volume of stored data increases. To overcome this

problem, a number of studies have proposed the index

structure, specifically for geometric information.

A popular index structure for geometric information

is R-tree [25]. Wang et al. [26] proposed an

R-tree-based indexing scheme for trajectory data of

cars in a distributed environment, and Du et al. [27]

proposed an index structure with a number of R-trees

and Hilbert space-filling curves [28]. Another index

structure for geometric information is Quad-tree [29].

Chen et al. [30] indexed GPS data using Quad-tree

and Hilbert space-filling curves, and Xie et al. [31] uti-

lized HBase tables as an index based on Quad-tree. In

this study, we optimized the index structure in [30] to

obtain improved performance.
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3 Methods

In this chapter, we describe the overall structure of our

IVATS for real-time car tracking in detail. The system

comprises three parts: FD, FE, and IM. The FD is re-

sponsible for reliable distribution of the video frames

from a number of devices to the processing nodes, FE

extracts diverse vehicle features such as plate number,

time, and location from each frame, and IM stores all

the extracted feature data, processes user queries by col-

lecting relevant information from the feature database,

and presents the query results to the user. Figure 1

shows the structure of our system.

3.1 Frame distributor

For effective car tracking, we utilize multiple video

sources including CCTV, drone-mounted cameras, and

car dashboard cameras. The role of FD is transferring

frames from diverse video sources to FE for feature

extraction. One critical task of this module for accurate

car tracking is reliable data transfer. As frames are gen-

erated from diverse video devices in real time, the data

volume is significant and reliable data transfer is not

trivial [32]. In addition, the frames must be processed

rapidly, or the entire system could stop because of buffer

overflow. To prevent this, we use a Kafka cluster for

frame distribution and storage.

Stream Manager (SM) in FD divides the data from

the stream channels into frames and transmits them

to the Kafka cluster. The stream channels can be

directly connected to a video device or receive data

from a remote video device using a real-time protocol,

such as the real-time streaming protocol. SM is re-

sponsible for either one stream channel or multiple

stream channels, depending on its capacity. Each

frame has three RGB (red, green, and blue) color

channels, and SM transforms the frame into a byte

array by serialization. The serialized byte array will be

restored to its original form in FE for image process-

ing. Therefore, SM must provide the metadata, includ-

ing the width, height, and the number of color

channels, to the FE node through the Kafka cluster.

However, sending this information each time can

result in a significant overhead. To reduce this over-

head, the frame metadata for reconstructing frames is

only sent once when the connection between SM and

the Kafka cluster is created, and the Kafka cluster

records this information for the FE. Frame-related

metadata such as GPS data and time are sent in a byte

array. As we are unable to get the exact data of the

captured automobile, the GPS data and time refer to

the location and time of capture of the video devices,

and not the automobile. For instance, the GPS data in

Fig. 1 Overall structure of IVATS
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the CCTV video is not identical to the vehicle data in

the video. However, this difference is not a significant

problem for car tracking in an actual environment.

Figure 2 shows the transmission steps between SM

and a node in a Kafka cluster. As soon as a connection

is made between SM and a node, SM sends the metadata

needed for image reconstruction and starts to send

frames by converting each frame into a serialized byte

array, bytearrayt in the figure, at time t. bytearrayt con-

sists of RGB and I, which are the byte arrays of three

color channels and the metadata respectively. bytearrayt
at a Kafka node will be sent to a node in the next step

when the node requires the data.

While the FD is responsible for preparing frames to

send and distributing them, the Kafka cluster actually

connects the stream channels to the FE. The Kafka clus-

ter receives a byte array from SM and forwards it to the

FE. The frame then becomes located in a Kafka topic,

which is a message queue in Kafka. The FE nodes take a

frame from Kafka topics each time they finish a task.

As discussed above, Kafka is superior to other frame-

works such as Hadoop and Spark in a number of

aspects. Firstly, the nodes in a Kafka cluster store the

data in their local file system. Therefore, the data being

transmitted in the Kafka cluster are always protected

from data loss, even when a fault occurs. In addition, be-

cause of this property, Kafka can play a role as a data

buffer and restore the original data without any loss

when a node is at a standstill. The data can be deleted

only when the data duration exceeds some predefined

threshold. Secondly, similar to other frameworks, the

Kafka Cluster also adopts replication for the situation

when a number of nodes stop abruptly. These two prop-

erties give Kafka high availability. Thirdly, Kafka nodes

can schedule their own tasks. Because of this, Kafka does

not experience the overhead problems that occur when

the master node must schedule all the slave nodes.

Fourthly, Kafka nodes can be operated asynchronously.

Synchronous operations are typically safe from errors

caused by an incorrect processing order, although they

Fig. 2 Transmission steps between Stream Manager and a node in a Kafka cluster
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are slower than asynchronous operations. However,

Kafka supports asynchronous operations without errors

and can accommodate data rapidly. Finally, an FE node

takes the frames to process as soon as it finishes its

current task. This policy frees Kafka from having to

monitor the task of nodes for job scheduling.

3.2 Frame extractor

Frame Extractor extracts diverse features for car tracking

from the frames in the Kafka cluster nodes through

image and metadata processing. FE nodes obtain a frame

from the FD whenever they complete their current task.

When an FE node is finished with a frame, the extracted

features are stored in IM together with the GPS data

and timestamp that were sent with the frame. Although

for simplicity, the plate number is used as the only fea-

ture of the vehicle in this study; additional features such

as color, vehicle type, and moving direction can be used

for more versatile car tracking.

The FE node receives frames in the form of both byte

arrays and their metadata for restoration such as width,

height, and the number of color channels. Based on this

metadata, the node transforms the byte arrays into im-

ages and then performs feature extraction. Figure 3

shows the approximate steps for extracting car features.

The first step in feature extraction is the removal of

noise in the frame by transforming the image from RGB

scale to grayscale, followed by Gaussian blurring. We

then choose the region of interest (ROI) that contains

the plate number of a vehicle. To do that, the grayscale

image is converted into a binary image using Otsu’s

method [33] that reduces a grayscale image into a binary

image, considering that the intra-class variance of two

classes, white and black, should be minimal. When an

optimal threshold is found, the frame is converted into a

binary image using this threshold. For the binary image,

we apply the top-hat filter that is one of the morphology

operations. After that, we calculate candidate ROI re-

gions by using templates. Based on various license plate

templates, we search which region in the image contains

a license plate. The selected regions become ROI. Now,

we are ready to identify characters in the license plate

region. Based on the identification, we can confirm that

the region is a license plate.

To identify characters, pixels in the region of a license

plate should be split into a number of areas that could

possibly indicate single characters. However, the size of

the ROI could be different depending on the distance

and angle between the video device and the license plate.

We use the affine transformation to solve this problem.

This is a mapping function between two affine spaces

with points, straight lines, and planes retained. Because

of its property that maintains ratios of distances between

points lying on a straight line, it can make ROIs have

similar sizes and reduce the distortion introduced during

the transformation of an image.

The next step for the plate number identification is to

divide ROIs into character regions by projecting the

pixels in each ROI onto a horizontal axis and counting

the foreground pixels in the axis. Based on this, we can

Fig. 3 Steps for identifying license plate
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construct a pixel histogram and use it to find character

regions. If an interval has any pixels, this interval is con-

sidered as a character region; otherwise, the interval is

deemed as a space between two adjacent characters.

After all, if a ROI has the required number of character

regions, it really corresponds to a license plate. The

character in each character region can be read using

Tesseract-OCR [34], an open-source OCR library.

3.3 Information manager

All the vehicle information including the license plate

number, GPS data, and timestamp should be stored and

processed efficiently to support diverse applications and

user requests. For this, we use HBase, an open-source,

non-relational database based on Hadoop and Google

Bigtable. An index structure is required for the spatial

data as spatial data should be continually retrieved for

car tracking.

Table 1 presents a sample table schema for storing li-

cense plate number, time, and GPS data. We make the

Rowkey of the table by combining the plate number and

the time when the frame was captured and the other at-

tributes are tied to one ColumnFamily that is a set of

attributes in HBase. If additional attributes need to be

stored, they will be contained in ColumnFamily in the

current table, resulting in ColumnFamily extension. This

enables HBase to simply append new rows instead of up-

dating the previous row. The advantage of this is that

there is no update overhead that is typically introduced

in version management. In addition, searching for a spe-

cific vehicle data becomes considerably quicker as the

data of an identical vehicle converges. In addition, con-

sidering that Rowkey is saved in each attribute, there is

no requirement to create attribute columns for plate

number and time and storage space could be decreased.

However, HBase cannot process queries with attributes

other than Rowkey. Fortunately, this restriction can be

overcome by using an index structure. Specifically, as

latitude and longitude are two primary attributes in our

system for representing geographical information, we

can construct an index structure for the two attributes.

We revised the method in [30] to meet our require-

ments. The index structure comprises two parts: R-tree

[25] and Hilbert space-filling curve [28].

R-tree is one of the most popular data structures for

spatial data indexing and has a number of versions

[26, 27, 35–37]. The basis of R-tree is a rectangle

binding a number of data points and minimizing its

Table 1 Sample HBase table schema

ColumnFamily

Rowkey Latitude Longitude

11 1111_1488960532177 37.58268 127.02621

11 1111_1488960532183 37.58274 127.02672

11 1111_1488960532199 37.58307 127.02813

Fig. 4 The second order Hilbert space-filling curve
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boundaries that is known as the minimum bounding

rectangle. The significant attribute of R-tree is that it

is a height-balanced structure and provides stable per-

formance regardless of data location. The greater the

volume of data stored, the greater the height of the

R-tree, and the longer the query response time

becomes. To solve this problem, we spread R-tree

using a space-filling curve.

A space-filling curve is a curve whose range contains

the entire two-dimensional (2D) square. It is used to

convert 2D data into one-dimensional (1D) data. The

Hilbert space-filling curve, which is a fractal space-fill-

ing curve, exhibits the best performance in preserving

locality [38, 39]. Because of this property, we use Hil-

bert space-filling curves in this study to map the

spatial data (X, Y) to a 1D point. The total length of

the Hilbert space-filling curve varies according to its

order. As an example, Fig. 4 shows a second order

Hilbert space-filling curve. The range of X and Y is

from 0 to 3, respectively, in this case. The value in

each rectangle is the value of the Hilbert curve corre-

sponding to X and Y and the red line indicates the

Hilbert curve line. In this curve, (3, 2) is converted to

(1011) and other points, (0, 0), (3, 3), and (3, 1) are

converted to (0000), (1010), and (1100), respectively.

Figure 5 shows the overall index structure for GPS

data. Each node in HBase has an IndexManager that

manages the index of all regions in the node. The

IndexManager uses the two methods; Hilbert space-fill-

ing curve and R-tree. A Hilbert space-filling curve

divides all possible spaces. Figure 5 shows a Hilbert

space-filling curve of order 2. However, in the real appli-

cation, Hilbert space-filling curve of order 7 is used to

map actual GPS data. As the Hilbert space-filling curve

does not use floating-point values, GPS data (latitude,

longitude) should be converted into integer values. We

divide all possible regions expressed by (latitude, longi-

tude) to fit the Hilbert space-filling curve and map the

regions into the areas in the curve. Thus, GPS data are

allocated to some integer values of the curve and we use

these values. Each independent area then has one R-tree

whose nodes have latitude, longitude, and the name of

the address where the data are stored.

In order to decrease the overhead of index updates be-

cause of the data insertion, we perform index updates

only when HBase flushes all the data in the memory to

the disk. Such flushing occurs just before the amount of

data exceeds the memory capacity. This lazy update does

not affect the performance significantly as the inserted

data exists in the memory and data searching remains

rapid, even if they are not indexed.

We now describe the detailed steps for processing

spatial queries using a simple example. When a

spatial query covering from (2, 2) to (3, 3) is given,

its spatial condition is transformed into the range of

a Hilbert space-filling curve from (1000) to (1011).

Fig. 5 Index structure
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This range is indicated as a green rectangle in Fig. 5.

Then, we investigate each region whether an R-tree

exists in the area contained in the range. For in-

stance, in Fig. 5, the IndexManager in the figure has

the index of two regions. Region 1 has R-trees in

areas (1010) and (1100), and region 2 has R-trees in

areas (0001) and (1001). Considering the query range,

we can find that region 1 has an R-tree in (1010) and

region 2 has an R-tree in (1001). If the area has an

R-tree, the index structure retrieves the data address

that is appropriate for the spatial condition. Accord-

ingly, region 1 starts to search the R-tree in (1010)

and collects the data addresses, and region 2 does the

same for (1001). After all data addresses are collected

through the R-tree searches, HBase records them as a

result for users. For the complete query result, the

Fig. 6 Examples of feature extraction

Fig. 7 An example of vehicle tracking result
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data in the memory should be checked because of the

lazy update policy of our index structure. Therefore,

spatial query results comprise data addresses from

both the index and memory searches. For effective

browsing of query results, they can be connected by

means of a number of visualization tools.

4 Results and discussion

To demonstrate the performance of our proposed system,

we performed a number of experiments. We also show

how a number of typical car tracking queries are

performed together with the query results. In the experi-

ment, the FD was not considered as it was already

reported in [40] that Kafka can be used as a satisfactory

distributed-processing framework.

We consider the following three experiments: (1)

extracting vehicle features, (2) visualizing query results,

and (3) indexing spatial data. The experiments were per-

formed on an Intel® Core™ i7-7700 with a 3.6 GHz proces-

sor and 32 GB RAM, using virtual machines running

Ubuntu 16.04. In addition, we used Hadoop version 2.7.3

and HBase version 1.2.4. The number of nodes in the

HBase cluster was five, of which one was the master and

four were slave nodes. The data used in the experiments

were virtually generated except for the data for the first

experiment. Virtual data was used instead of actual data

because the actual data available was insufficient for the

needs of the tests. The virtual data generated for the ex-

periments were 16 million tuples in the HBase table.

4.1 Vehicle feature extraction

Vehicle features of interest are extracted from frames by

the FE node. Figure 6 shows two video frames from a

car dashboard camera and their extracted features. In

the features, the plate number is the outcome of the FE

node and time, latitude, and longitude are transferred

from the FD node with the frame. Even though we use

the license plate number as a visual feature of a vehicle

for simplicity in this work, it is easily extended to cover

other visual features such as color, type of car, and direc-

tion. The plate number in Fig. 6 is the candidate that

has the greatest confidence among the extracted plate

numbers. In a typical situation, the plate number of the

vehicle immediately in front of the camera has the high-

est confidence. When the plate numbers of other vehi-

cles in the same frame are detected depending on the

angle and distance, they can also be used for more com-

prehensive car tracking. Lastly, all the collected features

Fig. 8 An example of traffic evaluation in a specific region
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through FD and FE nodes are sent to IM for storing into

the database.

4.2 Visualization

In the car tracking application, visualization could be an

effective way for users to easily understand the query

results. For this reason, we incorporated simple

visualization functions in our system. Using these func-

tions, the trajectory of a specific vehicle can be seen by

using the data in IVATS, and the other vehicles can be

seen sequentially. The trajectory of a vehicle is displayed

on the map using Google Maps API [14].

For example, given a plate number and possibly tem-

poral or spatial condition, the system visualizes all the

records that satisfy the query condition in both the

spatial and temporal order. Figure 7 shows the result of

tracking a particular vehicle. The result consists of two

parts. The top part of the result shows the summary of

the requested query and the query result including the

first and last locations of the vehicle captured by IVATS

and the number of times the vehicle was seen. The

bottom part shows the trajectory of the vehicle on the

map. Black markers on the map indicate the locations

where the vehicle was captured. In particular, the first

and last locations of the tracking are marked in blue and

red, respectively. The red line connects all the locations

where the vehicle moved along. In fact, the line repre-

sents the trajectory of the vehicle. The pop-up window

shows the location and time information of the selected

marker so that users can browse the trace of the vehicle.

Our proposed system can handle his kind of user query

easily considering our policy for constructing and stor-

ing Rowkey for table tuples.

Even when the user query has a particular time

range or a specific area of a rectangle expressed by

two points, our system can easily give an answer to

the query. This type of query is highly effective for

measuring the traffic congestion in a specific area.

Figure 8 shows an example. In the figure, the top part

shows the user query, which contains the time range,

area of interest, and the number of vehicles detected.

The bottom part shows a map where the given query

range is represented by a red box and the query re-

sult is shown on the pop-up window. To process

such queries accurately, matched tuples should be

sorted by the plate numbers as a vehicle could appear

in numerous frames from different video sources. For

instance, if a vehicle A was captured by vehicles B

and C in rapid succession, there would be duplicate

data in the query result.

Fig. 9 An example of congestion checking in a spacious region
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This type of query can be used to calculate the traffic

congestion in a more spacious region at a specific time.

Figure 9 shows such an example. Our system divides the

given query area into grids and calculates the traffic con-

gestion for each grid. The top part of the figure shows

the query condition. In addition, the bottom part indi-

cates how much the region in the grid is congested at

the given time by using different colors. The green grid

means that the number of the captured records in this

region is under the average of the number of those in

the query range, while the red grid means the opposite.

This function can be used to find out a faster way to a

destination or plan the construction of a new road.

4.3 Index efficiency

In the experiment, we evaluate the effect of our index

structure by comparing the query response time when

indexing is both used and not used for a user query

whose range contains a portion of the entire data. We

repeated this ten times. Figure 10 shows the query re-

sponse times according to the query selectivity. The

response times in the figure are the average of all re-

sponse times for the queries. The query selectivity in-

dicates the ratio of the query result to the total data.

In the experiment, the query selectivity was set to 1%,

0.1%, 0.01%, and 0% (no relevant data). It can be seen

in the figure that the response time when using an

index structure differs depending on the query select-

ivity. On the contrary, the response times when not

using an index structure are approximately identical

regardless of the query selectivity. Overall, query pro-

cessing can be achieved faster when using indexing.

The difference in the response time between the two

systems was the greatest when no data were in the

query range, at which point the response time was ap-

proximately 300 times faster.

5 Conclusions

In this study, we proposed an integrated vehicle tracking

system, IVATS, based on Kafka and HBase. Our system

could assign a significant number of frames from diverse

video sources, such as CCTV and car dashboard cam-

eras, to processing nodes using Apache Kafka. Primary

vehicle features such as plate number, time, and location

data were extracted accurately from the frames using

image and metadata processing. The feature data were

stored in HBase clusters and retrieved for query process-

ing. For effective query processing, we proposed an

indexing structure based on R-Tree.

In the experiments, we demonstrated that our system

can handle diverse user queries, including car tracking

and traffic congestion, efficiently. Based on the data dis-

tribution, storage structure, Rowkey design, and indexing

structure, our system can effectively handle real-time

requirements of car tracking applications.
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