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Real-Time Charging Strategies for an Electric

Vehicle Aggregator to Provide Ancillary Services
George Wenzel, Matias Negrete-Pincetic, Daniel Olivares, Jason MacDonald, and Duncan S. Callaway

Abstract—Real-time charging strategies, in the context of
vehicle to grid (V2G) technology, are needed to enable the use of
electric vehicle (EV) fleets batteries to provide ancillary services
(AS). In this paper we develop tools to manage charging and
discharging in a fleet to track an Automatic Generation Control
(AGC) signal when aggregated. We propose a real-time controller
that considers bidirectional charging efficiency and extend it to
study the effect of looking ahead when implementing Model
Predictive Control (MPC). Simulations show that the controller
improves tracking error as compared with benchmark scheduling
algorithms, as well as regulation capacity and battery cycling.

Index Terms—Electric Vehicles, Resource Scheduling, Ancil-
lary Services, Vehicle to Grid

I. INTRODUCTION

NEW generation, demand, transmission and storage sys-

tems are presenting opportunities to increase power

system flexibility. To capitalize on these opportunities, algo-

rithms that coordinate distributed resources need to manage

charging cost, efficiency and energy and power constraints.

This paper focuses on the potential of a subset of flexible

storage technologies, specifically electric vehicles.

Increased variability in power generation due to renewable

energy integration makes storage capacity particularly valuable

[1]. However stationary batteries are currently too expensive

for most grid-tied applications despite their decreasing cost

[2], [3]. Electric vehicle (EV) batteries can be used during

their idle time when parked to extract/inject power from/to

the grid in the same way that stationary batteries might. By

creating revenue for EV owners – and lowering the total cost

of EV ownership – this vehicle to grid (V2G) framework could

provide a cost-effective means to add storage capacity to the

grid.

Large shares of renewable generation are being integrated

into the power grid mainly due to environmental concerns

and energy supply issues. However, the key characteristics

of renewable resources in terms of volatility, intermittency

and uncertainty present great operational challenges for power

systems. In particular, power system flexibility, defined as

the capacity to respond to changes in load and generation,

becomes critical for systems with large penetration of volatile

resources [4]. Some authors show that the value of resources
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with volatility above a certain threshold can be diminished

without proper flexibility capabilities [5], [6].

New ways to obtain the required flexibility are under

development. According to [7], flexibility is present in gen-

eration (ramping capability), transmission (bottlenecks and

access), demand (demand response, storage and load control)

and system operation (institutional factors, information and

real-time decisions). The idea of exploiting the flexibility

associated with the demand side has been widely investigated,

and markets aiming for flexible loads to be serviced by zero-

marginal cost renewable generation have been designed [8],

[9].

One possible way of adding flexibility to power systems

is through the V2G concept, for which several implemen-

tation projects and impact studies have been reported such

as [10], [11]. In the literature, the concept [12], [13] and

impacts [14], [15] of using EVs for grid stabilization have

been extensively investigated. Numerous charging strategies

to coordinate the response of EV fleets to provide frequency

regulation services have been developed in the recent years

[16]–[27]. These strategies can be separated into two main

groups: centralized strategies, which use an EV aggregator as

a middleman between the ISO and the EVs (e.g.: [23]–[27])

and decentralized strategies, which do not use an aggregator

to coordinate individual EV charging commands (e.g.: [16]–

[22]). While decentralized strategies preserve individual au-

thority over charging schedules, centralized strategies allow to

reduce the uncertainty over total available power and energy,

which simplifies the interaction between the electricity market

and each individual EV as shown in [28]. Furthermore, ag-

gregation is still necessary to fulfill minimum power capacity

requirements imposed by the ISO to participate in the ancillary

services (AS) market.

In general, centralized strategies provide frequency regula-

tion services by tracking regulation signals sent by the ISO;

however, it is also possible to follow other objectives, such as

reducing the Area Control Error (ACE) [24]. These regulation

signals may require both extracting and providing power

from/to the EV fleets, but only some papers [23], [26] consider

bidirectional charging in their models. From these works, only

[26] considers charging and discharging efficiencies, applied

to a discrete set of possible charging rates (charging, idle,

discharging). On the other hand, most of the works dealing

with decentralized charging strategies, (e.g., [17], [19], [21],

[22]) take into account bidirectional charging; however, only a

few consider bidirectional efficiencies [17], [19]. Nevertheless,

the latter references do not optimize their charging commands

in response to market signals.
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Due to the short period of regulation signals (4 seconds

in CAISO) EV aggregators require fast strategies that enable

them to distribute charging/discharging commands among EVs

in real-time, while achieving the best possible performance

[29]. This has led to the consideration of heuristic algorithms

such as Earliest Deadline First (EDF) or Least Laxity First

(LLF) for this purpose. However, these heuristics can neg-

atively impact the performance of the batteries, especially

when compared to alternative algorithms based on convex

optimization formulations, as discussed in [30].

Model Predictive Control (MPC) is an optimization-based

control method that can be used to track signals for which

forecasts are available in real-time [31]. In particular, it can

be used by an EV aggregator to track regulation signals,

as shown in [26], where the authors propose to schedule

charging/discharging commands based on a Linear Quadratic

Regulator (LQR) that tracks the regulation signal, with only

three possible charging rates.

A practical implementation of the V2G concept is being

demonstrated on an operational fleet at the LAAFB. This

project uses a hierarchical control framework, in which day-

ahead and hour-ahead electricity market participation and

charging schedule are handled by an optimization platform:

DER-CAM (Distributed Energy Resources Customer Adop-

tion Model) developed at Lawrence Berkeley National Lab-

oratory (LBNL). DER-CAM optimizes distributed energy re-

sources operation over economic and environmental objectives

[32], [33]. DER-CAM performs a constrained economic opti-

mization to generate bids for bulk energy and AS markets

based on the forecasts of vehicle usage by calculating the

vehicles’ state of charge (SoC). However, the time resolution

of DER-CAM’s optimization is not suitable for responding to

uncertain Automatic Generation Control (AGC) signals within

a few seconds, which is key for achieving an accurate response

to such signals. Scheduling methods must be designed to

allow real-time operation of the fleet, and these methods

must distribute power among the vehicles while following an

uncertain AGC signal. Figure 1 depicts a schematic diagram

of the control hierarchy for the LAAFB V2G project, showing

the interaction of the real-time distribution developed for

that project with the rest of the project. In previous work

[30], a real-time controller based on convex optimization was

described, and it was shown that better results can be achieved

with that controller as compared to some benchmarks. This

control algorithm is currently integrated into the EV fleet

management platform developed by Kisensum, Inc. [34] for

the project.

This paper develops a framework for designing real-time

charging controllers to operate an EVs fleet participating in the

AS market. We extend and refine an earlier conference paper

[30] to improve regulation capacity and accuracy in following

AGC signals1 as compared with simpler approaches. A set

of different controllers is designed and tested, from which

the more complex approaches achieve better performance

(accuracy) and less cycling. In specific, the contributions

include:

1Accuracy is particularly relevant because of performance payments.

TABLE I
PARAMETER DESCRIPTION FOR TASK i

Parameter Description

rik Nominal trajectory for time step k

Eik State of Charge for time step k

βi ,βi State of Charge physical limits

Ei , Ei State of Charge goal at departure
ai, di Arrival/departure time
pik Charging/discharging rate for time step k

mi ,mi Charging/discharging rate limits

ηi , ηi Charging/discharging efficiency
φik Laxity for time step k

The development of a modelling framework capable of

handling bidirectional charging resources with efficiency

considerations.

The design and assessment of several real-time controllers

with different levels of complexity (myopic, heuristic

based and predictive) and features (e.g., reduction of

cycling behaviour).

The thorough performance assessment of the proposed

models in comparison with non-predictive benchmarks,

via extensive simulations under a range of scenarios,

for both the regulation signal and the efficiency of the

batteries.

This paper is organized as follows. Section II describes the

models used for the batteries, the task concept and market

participation. Section III presents the proposed controller and

the benchmarks. Section IV describes an MPC version of

the controller. Simulation results are presented and discussed

in Section V, and Section VI explains this work’s main

conclusions.

II. PROBLEM SETUP

In the proposed framework, the functional unit is the battery,

and it must be characterized in terms of a set of parameters.

The task concept is used to describe the characteristics of

a battery when it is active, and thus can be used within its

physical limits by the EV aggregator to provide frequency

regulation services, as opposed to an inactive task. The laxity

concept is used as well to describe each task’s flexibility [35].

A. Tasks and Batteries

An aggregator coordinating a fleet of EVs in real time faces,

at each time step k 1, . . . , T , the challenge of fulfilling the

energy requirements associated with each EV i 1, . . . , V ,

together with the power requirements associated with the AGC

signal. While the nominal trajectory, calculated by DER-CAM,

is a parameter for vehicle i at time k, a feasible trajectory

is defined as any path for the SoC of a particular EV such

that both physical and scheduling requirements are fulfilled.

This means that for any vehicle i at time k, its SoC must

lie within the interval βi ,βi to respect the limits of the

battery. Likewise, each vehicle arrives at time ai with a known

SoC and is scheduled to leave at time di with a minimum

level of energy for the EV to be able to operate normally, so
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Fig. 1. Overview of the hierarchical control framework in the LAAFB project.

Eidi
Ei , Ei . For simplicity, βi Ei is assumed. There

are power limits for the operation of each battery as well,

so the charging/discharging (positive/negative) rate is pik
mi ,mi . This is illustrated in Figure 2.

Boundaries
Nominal Trajectory 
Real Trajectory 

Time

En
er

gy

m

Fig. 2. Battery model for EV i and feasible trajectories.

Definition 1: The laxity, φik, is defined as the amount of

time left until vehicle i must charge at its maximum charge

rate to reach its minimum scheduled State of Charge (SoC)

Ei , at departure time di.

φik di k
Ei Eik

mi

(1)

It is common for battery models to consider an efficiency

scalar 0 η 1 to account for the difference between the

power they received and the power they were able to transform

into energy for storage. In the context of bidirectional charg-

ing, this effect must be considered both ways, as it is shown in

Figure 3. When the power variable is positive, the batteries are

EVs Batteries Grid
Discharge

Charge

pk = η
+
xk

xk
xk = η

−

pk

pk

Fig. 3. Efficiency of the batteries when charging and discharging.

being charged and when it is negative, the batteries are being

discharged. Let xik be the power necessary from a source to

charge the battery of vehicle i with pik, and pik be the power

necessary from a battery to provide the grid with xik. This

can be written in a compact way:

pik
ηi
2

1

2ηi
xik

ηi
2

1

2ηi
xik (2)

The inverse relationship is defined F pik xik and can

be easily derived from Equation 2.

Definition 2: A task Ti, can be represented by its parameters

(mi , mi , ηi , ηi , ai, di, β , β , Ei , Ei ), with states Eik

and φik, as described in Table I. The index set of all active

tasks in time step k is defined as Tk i : k ai, di .

Each active task models an EV that is available to provide

regulation.

For notation simplicity, vectors are defined in bold symbols

when referring to their components associated with active

tasks: xk xik, i Tk , pk pik, i Tk , Ek Eik, i

Tk , rk rik, i Tk , and Γ
,

k Γ
,

ik , i Tk .

B. Limits

If a task is close to its boundaries, depending on the energy

state, it is possible that the charging rate may need to be

reduced. The limits that guarantee that no upper or lower

boundaries are violated for task i at time step k are denoted Γik

and Γik, respectively. These limits include all the information

needed to ensure that the SoC stays within physical limits and

is able to fulfill the task’s minimum energy requirements [30].

Γik min mi ,
Ei Eik

∆t
(3)

Γik min max max mi ,
βi Eik

∆t
, 1 φik mi ,Γik

(4)

The additional terms of Γik, relative to Γik, are only relevant

when φik 2. When laxity is in that range, the lower bound

of pik will be pushed in order to fulfill the minimum energy

requirement at the time the task ceases to be active, and

saturated by physical limits. Additionally, when aggregating

these expressions for the fleet, the regulation capacity of the

system can be calculated.

Rk

i Tk

F Γik , Rk

i Tk

F Γik (5)
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Therefore, the feasible regulation region for time step k will

be defined as the interval Rk , Rk .

C. Market Participation

LAAFB project is being developed using CAISO’s rules

for AS, which take into account both energy and AS when

optimizing the system as a whole. Therefore, the EV fleet

participates, in aggregate, in two markets: the energy market

and the frequency regulation market2. From these, the ag-

gregate resource receives a frequency regulation signal every

four seconds, which must be distributed among the individual

vehicles. This AGC signal gk for each time step k has two

components: a fixed level of generation from the energy

market award (gEM
k ), and a variable regulation quantity from

the hourly AS market award (gFR
k ). The generation signal

gk gEM
k gFR

k must be followed as accurately as possible

for different magnitudes of the variable component.

The error is defined as the difference between the loads

associated with the vehicles and the generation signal:

ek
i Tk

xik gk (6)

Thus, to maximize the performance, ek must be mini-

mized. The relevant metric is the Accuracy, defined next.

Accuracy : 1

T

k 1

ek

T

k 1

gFR
k (7)

This metric is tied to payments for AS providers, which

according to FERC’s order 755 [36], are proportional to

capacity and performance, which was already adopted by

CAISO’s AS market [37].

III. MYOPIC CONTROL

A myopic or short-sighted controller is presented, along

with benchmarks that use simpler approaches. The ease of

implementation is a relevant subject, so it will be useful to

compare simulation results.

A. Trajectory Following (TF)

The proposed TF controller relies on previously calculated

reference trajectories rk for the SoC of each EV in a fleet,

considering their departures and arrivals, made by an external

optimizer (DER-CAM [32]). It takes as an input the reference

SoC trajectories, and reschedules at each operational time

the actual charging trajectory for each vehicle in order to

achieve the frequency regulation requirements, given by the

realization of an AGC signal that tells the fleet which instan-

taneous aggregated power input/output it should have. These

prespecified trajectories are calculated based on optimizing the

participation of the fleet in the frequency regulation market and

the charging of each EV under a retail electricity tariff. The

2While the resource settles its electricity costs at the retail price, in order
to effectively participate in frequency regulation, the EV fleet must create a
baseline electricity consumption on which it will regulate around, which is
done in the wholesale energy market.

trajectories can be understood as a nominal path for the SoC

of each vehicle, which enables the TF controller to incorporate

information about future arrivals and departures.

For each time step k, the following convex optimization

problem returns the optimal power vector, given the SoC of the

previous time step Ek 1. The proposed controller is defined

as TF k :

min
p
c
k
,pd

k

α1 rk Ek 2 α2 ek α3 p
c
k 1 α3 p

d
k 1

s.t. Ek Ek 1 p
c
k p

d
k ∆t (8)

ek
i Tk

p
c
ik ηi p

d
ikηi gk (9)

Γk 1
p
c
k p

d
k Γk 1

(10)

p
c
k 0, p

d
k 0 (11)

Where stands for element-wise vector multiplication, also

known as the Hadamard product. In the formulation of TF

controller, due to the non-convex relationship between pk and

xk (Equation 2), we split the power variable in the EVs’ side

into charging (pc) and discharging (pd) power, given that one

of them is 0. We relaxed the non-convex constraint pc
k pd

k

0, and added a penalty for the variables so that the solution

fulfills that requirement. This penalization also achieves non-

aggressive control moves, thus reducing the cycling of the

batteries compared to other benchmarks.

The real-time Trajectory Following (TF) controller consists

of an objective function that sums three terms with different

purposes: (1) tracking the SoC trajectories, (2) following

the AGC signal and (3) penalizing the power variables for

feasibility, with strictly positive penalties α1,α2,α3. As for

the constraints, Eq. 8 represents the dynamics of the batteries,

Eq. 9 represents the error in following the AGC signal and

Eqs. 10 and 11 bound the decision variables.

If efficiencies η , η are 100%, the optimal solution always

requires that pc
k pd

k 0 k. When they are lower, it can be

shown that the constraint also holds when a sufficient condition

is fulfilled. Then, a convex relaxation based on tuning the

penalties in the objective function is described in Theorem 1.

Proof of this is presented in Appendix A.

Theorem 1. If the penalties α2,α3i are such that:

α3i α2

1 ηi ηi
2ηi

i,

the optimal solution to TF k will satisfy pcik pdik 0 i Tk.

The rationale behind Theorem 1 is intuitive: there should

be a threshold for the penalties of the control moves above

which it is not optimal to charge and discharge simultaneously,

because it would imply a higher cost for the objective function

while not making the fleet response more accurate. If there

was no penalty for pc and pd, the controller could do double-

charging (pc
k pd

k 0) if it implied better accuracy.

It should be noted that TF controller will provide a fast

and feasible solution due to its convexity. Evidence suggests

that if pc
k pd

k 0 k constraint is included by using

binary variables instead of tuning the α3 penalty according
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to Theorem 1, the results of the non-convex problem are the

same as in the convex problem, but computation time grows

significantly.

A relevant subject for the implementation of the algorithm

is how to tune the penalties. Due to the direct impact of ek
on the Accuracy results, α2 should be tuned as a large penalty

relative to α1 (given that Ei is always achieved).

B. Benchmarks

To benchmark the performance of the TF controller we con-

sider two methods from the Processor Time Allocation (PTA)

literature that have been applied to electric load scheduling

[35], as well as version of the TF controller that assumes

100% round trip battery efficiency, all of which are applied

in a sequential optimization simulation. In addition, a time-

invariant benchmark was used.

1) Earliest Deadline First (EDF): EDF creates a priority

list based on the departure time of the tasks, and therefore

will allow vehicles with the latest deadlines to remain at a low

SoC until sufficient resources are available to charge them. We

adapt this algorithm for discharging by coordinating vehicles

such that those with the latest departure times are discharged

first.

2) Least Laxity First (LLF): LLF creates a merit order list

sorted by laxity (see Eq. 1), and therefore will allow vehicles

with larger laxity to remain at a low SoC until sufficient

resources are available to charge them. Similarly to EDF, we

adapt the algorithm for discharging such that the vehicles with

the highest laxity are discharged first.

3) Trajectory Following with approximate battery state

(TFAPPROX): We remove the nonconvexity that results from

bidirectional charging by making the approximation pik xik

in the battery dynamics equation. However, the quality of the

approximation degrades with declining efficiency.

4) Time-invariant Trajectory Following (Oracle): We de-

veloped an Oracle benchmark that solves the complete run

time at once. This additional benchmark provides a best-

possible-performance case.

IV. MODEL PREDICTIVE CONTROL

This section will explain how to extend the TF myopic

controller by implementing a predictive controller. We employ

model predictive control, which takes into account not only

the present current state of a system, but also its forecasted

states over a finite time horizon (of length N ), when making

a decision. The underlying motivation is that MPC should

allow the algorithm to achieve better Accuracy, because it will

consider the EV arrivals and departures as well as a forecast

of the AGC signal when deciding how to update the SoC of

the vehicles.

A. Trajectory Following with Model Predictive Control

(TFMPC)

A first approach to use MPC with TF would be to sum up

the objective function values, while interpreting the bounds

Γ
,

ik as functions of the SoC. Including the upper bound

constraint with the future Eik as a variable is not a problem,

due to its concavity, but including the lower bound constraint

would imply using a nonconvex expression as a lower bound:

pik min max max mi ,
βi Eik

∆t
, 1 φik mi

convex

, Γik

concave

(12)

In the myopic problem, this constraint’s objective was to

fulfill the task’s minimum energy requirements at departure,

which can also be achieved by transforming the laxity part

of the lower bound for power into an energy constraint, so

that the MPC problem is convex. For energy constraints to

work, efficiency effects must be fully considered by the MPC

controller in the time steps along the forecast horizon, so that

the SoC can be properly estimated. Before formulating the

MPC problem, some additional definitions are necessary:

Fk k, . . . , k N .

ĝj k is the forecast for the AGC signal in period j, made

in time step k.

g̃j
gk, if j k

ĝj k, if j k

Bold symbols must now include all tasks that may be

active in the forecast horizon: i j Fk
Tj .

For simulation purposes, the SoC of inactive tasks has to

be updated using a previously calculated vector for the power

variable. This represents the energy used by the EVs when

they are not grid connected, and the values for Ei must be

consistent with that vector. Thus, the MPC problem solved

for each time step k, with feasible region Zk, is defined as

TFMPC k :

min
p
c
j
,pd

j j Fk

α1 rj Ej 2 α2 ej α3 p
c
j 1 α3 p

d
j 1

s.t. Ej Ej 1 p
c
j p

d
j ∆t j Fk (13)

ej
i Tj

p
c
ij ηi p

d
ijηi g̃j j Fk (14)

Zk mi p
c
ij p

d
ij mi , (15)

p
c
ij 0, p

d
ij 0, (16)

βi Eij βi , (17)

Eij Ei di j mi ∆t i Tj , j Fk (18)

The terms in objective function of the real-time MPC

controller have the same meaning as in TF. As shown in

Theorem 1, properly tuning the penalties α2,α3 is critical

for satisfying the pc
k pd

k 0 constraint.

The constraints consider (1) the dynamics of the batteries

(Eq. 13), (2) the present and future error in following the AGC

signal (Eq. 14) and (3) the feasible set for both the power

variables and the energy state (Eqs. 15 to 18). The purpose

of Eq. 18 is twofold. First, it is needed to ensure that the

task’s minimum energy requirements are fulfilled. Second, it

acts as a terminal constraint to ensure the feasibility of the

MPC controller, regardless of the length of Fk.
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B. AGC signal forecast

As mentioned earlier, the generation signal gk has a random

component gFR
k . As this paper handles uncertainty with the

MPC approach, sequential forecasts are considered for gFR
k by

using an ARIMA approach with the information available up

to each time step. This assumes that gFR is a zero-mean signal,

which may not be true in real applications (when defining drive

cycles, non-zero means can be compensated [38]). To compare

results, a comparison was made between simulations with an

(1) an ARIMA forecast and a (2) a perfect forecast.

C. Operational capacity limits

There are some cases in which the input/output capacity

of the fleet may be limited by exogenous system conditions.

Let
¯
Ck, C̄k 0, 1 denote the lower and upper operational

capacity limit at time step k, respectively, as a fraction of the

original regulation capacity of the fleet. In order to account for

this limitation in the MPC problem, the following constraint

is included for each time step k:

¯
Ck

i 1,...,V

mi

i Tk

pcik pdik C̄k

i 1,...,V

mi (19)

V. NUMERICAL RESULTS

The data set used in our numerical simulations is the

same as in [30], with a fleet of 18 EVs, with a maximum

regulation capacity of 15 kilowatts [kW] per vehicle, and a

run time of two days with time steps every five minutes, during

which the number of available vehicles changes according

to a fixed task schedule. TFMPC used a forecast horizon of

N 10. Simulations were run using the MATLAB toolbox

YALMIP [39] along with the solver Gurobi [40]. The variable

component of the generation signal, gFR
k , was simulated as

an ARIMA time series for simulation purposes, based on

historical data for PJM’s regd test signal, meant to be used for

fast regulation resources such as EV batteries [41]. For each

time step, a forecast was made with the information of past

realizations of the AGC signal. Input data were obtained from

PJM’s AS website [42], where normalized dynamic (regd) and

traditional (rega) regulation signals are provided from seven

days in May 2014. The dynamic regulation signal was used for

this experiment. In terms of computation time, the simulations

were run in on a 2.5 GHz Intel Core i5-3210M processor, and

the TFMPC algorithm with N 10 (the most computationally

expensive) took always less than 0.1 seconds to be solved.

A. Accuracy results

All of the proposed versions of the algorithms were tested

with six different test AGC signals and the Accuracy results

were averaged. These represent the performance of each

algorithm. Figure 4 shows the results for different magni-

tudes of the AGC signal and different battery efficiencies

(η η η). Note that the AGC Magnitude value is a

higher bound for the signal’s absolute value. Table II shows a

comparison of the accuracy performance of each controller,

relative to the Oracle case. The results must be discussed

separately depending on the efficiency of the batteries. When
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Fig. 4. Accuracy for different algorithms, AGC signal magnitudes and battery
efficiencies η 0.92, 0.85, 0.8 . Mean for all seeds.

TABLE II
AVERAGE ACCURACY FOR EACH ALGORITHM, RELATIVE TO ORACLE

Oracle TFMPC Perfect TFMPC ARIMA TF TFAPPROX LLF EDF

100% 99.38% 99.31% 99.03% 98.43% 95.87% 94.61%

η 0.92, the effective plugged in power capacity of each EV

is 13.8 [kW], and sorting the performance of the algorithm

and its benchmarks gives the following list: (1) Oracle, (2)

TFMPC Perfect Forecast, (3) TFMPC ARIMA Forecast, (4)

TF, (5) TFAPPROX, (6) LLF, and (7) EDF. The Accuracy

results for LLF and EDF, the only algorithms that do not track

predefined SoC trajectories, are noticeably worse than for the

other algorithms, for all the magnitudes of the AGC signal;

for the remainder of the algorithms the performance is similar.

When the efficiency of the batteries is decreased to η

0.85, the effective plugged in power capacity of each EV is

reduced to 12.75 [kW], and the performance of all the algo-

rithms degrades but keeps the same order. In percentage terms,

EDF and LLF are farther from the rest for low magnitudes of

the AGC signal, and closer for high magnitudes. This happens

because the benefits of trajectory following are greatest when

real SoC trajectories are close to the reference trajectories –

which happens to be when the AGC magnitude is smallest. On

the other hand, when the AGC signal is large, the difference

between real and reference trajectories is inevitably large –

therefore reference trajectory following provides little benefit

relative to EDF and LLF.

Finally, when η 0.8, the effective plugged in power

capacity of each EV is reduced to 12 [kW], and the

tendency described in the former paragraph is confirmed:

Earliest Deadline First (EDF) and Least Laxity First (LLF)

show bad performance for low Automatic Generation Control

(AGC) magnitudes, but their performance for high magnitudes

compared to the other algorithms is similar, due to the limited
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benefits to reference trajectory following when real trajecto-

ries are substantially different (as described in the previous

paragraph). Note that both TFMPC options achieve Accuracy

results that dominate over all the non-predictive algorithms.

These are close to the Oracle’s, but there is still some room to

improve, which could be done with longer forecast horizons

and more accurate forecasts.

1) Effect of exogenous system limitations: A case study

was performed for the TFMPC ARIMA controller with the

additional constraint (Eq. 19), where
¯
Ck C̄k 0.5 k

20, 80 , for η 0.92. The results in Figure 5 show how the

controller struggles to track the AGC signal during an episode

of system limitations which translates into a tracking error.

Mild congestion episodes for short periods of time could be
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Fig. 5. Effect of exogenous system limitations. Limiting the capacity of the
fleet to respond to the AGC signal reduces accuracy in the response.

an example of exogenous system limitations that the proposed

AGC controllers can handle. However, in general, limitations

associated with distribution congestion should be addressed

by modifying the reference signal (gEM ), before the action

of the AGC controller. In the case of the LAAF project, this

task should be performed by the DER-CAM stage, as shown

in Figure 1.

2) Effect of delay: Figure 6a shows the accuracy of the

different control algorithms for the case with a delay of 1/10

of an AGC time-step. It can be observed that the accuracy

is reduced between 10-15% for all the algorithms, and for

different magnitudes of the AGC signal, when compared with

the case without delay (see Figure 4). Nevertheless, the results

still show a superior performance of MPC-based controllers

over non-predictive algorithms for the case of delayed fleet

response. An improved performance can be obtained using

the predictive feature of MPC controllers to anticipate the

AGC signal for a known, constant delay. In particular, Figure

6b shows the case in which the TFMPC ARIMA controller

anticipates the delay of the response to the AGC signal by

implementing its predicted response, achieving approximately

a 3% increase in accuracy with respect to the non-anticipative

case.
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(a) Accuracy of different algorithms
with delay

AGC Magnitude (kW)
0 50 100 150 200 250

Ac
cu

ra
cy

0.7

0.75

0.8

0.85

0.9

0.95

1

Without delay
With delay (improved)
With delay

(b) Accuracy of anticipative TFMPC
ARIMA with delay

Fig. 6. Delay effect on the response of the fleet. (a) Results for different
algorithms, AGC signal magnitudes and fixed battery efficiency η 0.92.
Mean for all seeds. (b) Accuracy achieved by MPC fcast ARIMA algorithm,
for different AGC signal magnitudes and fixed battery efficiency η 0.92.
Mean for all seeds.

B. Regulation capacity results

We define the feasible regulation region Rk , Rk as the

range of power in which a generation signal gk should lie so

that the fleet can provide regulation with no error, while being

able to fulfill the minimum energy requirements.

Outside the feasible region, the algorithms with a myopic

approach behave differently than TFMPC. For myopic algo-

rithms, their behavior is easy to understand: in that situation,

all the difference between gk and the fleet’s capacity to

provide regulation results in error. In contrast, the look-ahead

characteristic of the latter provides other possibility. TFMPC

algorithms may choose to save battery energy in a given

time step, resulting in avoidable error in the short run in

favor of reducing long-run error to minimize total error. This

emphasizes the relevance of properly tuning the parameters

α1,α2,α3 in a way that the system makes desirable decisions

in the face of these trade-offs. The results for R and R are

shown in Figure 7.

When sorting the algorithms by the width of the mean

feasible regulation region they achieved, in general the order is

the same as in the ranking shown for Accuracy (not including

Oracle).

As for R results (charging capacity), TF approaches

achieve better levels than EDF and LLF in all cases, which is

another benefit of tracking SoC trajectories. As the system

receives AGC signals with higher magnitude or uses less-

efficient batteries, batteries get drained, and therefore R

increases because there is more room for the batteries to get

charged.

On the other hand, R (discharging capacity) is the real

bottleneck of the system for large AGC signals, because the

battery SoC is typically well below what is required to follow

the AGC signals. Furthermore, minimum energy requirements

at a task’s departure also constrain the discharging capacity of

each EV. Results for R are similar to the Accuracy results

when sorting the performance of the algorithms, except for

TFAPPROX when η 0.8; the bad quality of the pik xik

approximation directly impacts the discharging capacity of the

batteries. It is clear that implementing MPC improves the

capacity of the EV fleet to discharge its batteries, and this

effect is magnified and therefore can be seen more clearly
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Fig. 7. Mean R and R for different algorithms, AGC signal magnitudes and battery efficiencies η 0.92, 0.85, 0.8 .

when the efficiency of the batteries decreases. Thus, the

importance of using MPC as opposed to myopic strategies

is greater when the system works closer to its limits.

C. Cycling results

Here we examine the impact of the control approaches on

cycling – which is believed to degrade battery state of health

– by using the arc length of the SoC curves as a proxy.

Table III shows the average value of this metric over all the

experiments, relative to the results of EDF. TF approaches

TABLE III
AVERAGE ARC LENGTH FOR EACH ALGORITHM, RELATIVE TO EDF

TFMPC Perfect TFMPC ARIMA TF TFAPPROX LLF EDF

90.63% 91.04% 92.24% 96.07% 99.78% 100%

lead to less cycling, and we attribute this result to one key

factor: by penalizing deviations from an SoC trajectory, each

of the TF approaches tend to cycle all batteries in roughly the

same way. This results in roughly equal distribution of ramping

across all the EVs, rather than distributing power changes to

EVs in the most extreme states (as with EDF and LLF). We

also see that, as one might expect, appropriately penalizing the

control variables (as with TF vs TFAPPROX) results in better

performance.

D. Individual AGC signal and EV results

Lastly, we show some results for seed 5, when η η

0.85 and the AGC signal magnitude is of 100 kW. Figure 8

shows the varying EV availability, the AGC signal gk with its

two components, and the error in the EV fleet response ek.

Noteworthy, the error’s magnitude is higher when fewer EVs

are available due to a reduced regulation capacity. However,

this error is reduced when more complex algorithms based

on convex optimization and MPC are used to track the AGC

signal. Figure 9 shows how the SoC of a particular EV changes
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Fig. 8. EV availability, AGC Signal and response error for different strategies.

during the simulation with each of the strategies. In this

particular case, the arc length of the SoC curves is noticeably

longer for EDF and LLF than for the rest of the strategies. It

can also be noted that the SoC trajectories were not followed

perfectly, given that the higher weight was assigned to α2

in order to prioritize following the complete AGC signal (and

therefore achieve better accuracy). Nevertheless, the minimum
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energy requirements are hard constraints in the trajectory-

following controllers; thus, they are always achieved.
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VI. CONCLUSIONS

In this paper, we focus on the design of charging schedules

of EVs for the provision of frequency regulation services. In

particular, we propose several real-time scheduling schemes

differentiated by the way of handling future information

(myopic/non-myopic), the level of accuracy on following

regulation signals and the resulting cycling on the batteries. A

method for considering bidirectional efficiency while enabling

the estimation of the future state of charge of the EVs in the

fleet is provided, which allows the use of model predictive

control schemes.

Extensive simulation results show the trade-off between the

complexity of the controllers and their accuracy on following

regulation signals: for practical implementations, both the ease

of use and the performance are relevant. A key insight is that

higher accuracy in following regulation signals coincides with

less cycling of the batteries and, in most cases, with better

regulation capacity. This highlights the importance of keeping

the state of charge of the batteries away from their physical

boundaries when providing frequency regulation services.

The generality of the approach enables the use of the same

framework for any kind of energy battery, such as water reser-

voirs or HVAC loads. Other stochastic fast-response resources

suitable for demand response, such as buildings or industrial

processes, can be integrated into the proposed controller as

well. Future work should take into account uncertainty in

the EVs’ arrival and departure, in which MPC along with

advanced forecasting techniques can be specially valuable.

Moreover, a control formulation explicitly considering delays

in the EV fleet response should also be taken into account.
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APPENDIX

A. Proofs

Proof: Theorem 1. Assume that the optimal solution for
some i, k is given by pcik t1 t2, p

d
ik t2 such that

t1 0, t2 0 (so that t1 t2 t2 0). For simplicity,
also assume that ηi η , ηi η i, and let f denote
the objective function. Condition pcik pdik 0 would always
hold if a sufficient condition was found so that f t1, 0
f t1 t2, t2 . When comparing f t1 t2, t2 with f t1, 0 ,
the first term, α1 rk Ek 2, is the same in both cases. Thus,
the rest of f remains to be compared. When replacing, the
following expression is obtained:

f t1, 0 f t1 t2, t2

α2

t1

η
gk α3i t1 α2

t1 t2

η
t2η gk α3i t1 t2 t2

α2

t1

η
gk α2

t1

η
t2

1

η
η gk 2α3it2

(A.1)

Note that because of the assumption on t2 and 0 η 1,

t2
1

η
η is a strictly positive term. Some cases must be

analyzed:
1)

t1

η
gk 0:

α2

t1

η
gk α2

t1

η
t2

1

η
η gk 2α3it2

0 α2t2
1

η
η 2α3it2

(A.2)

Which holds because all the terms are positive.

2)
t1

η
gk 0:

This case must be split into three more cases:

a)
t1

η
t2

1

η
η gk 0

α2

t1

η
gk α2

t1

η
t2

1

η
η gk 2α3it2

0 2α2

t1

η
t2

1

η
η gk

2α3it2 α2t2
1

η
η

(A.3)

Because of the assumption,

2α2

t1

η
t2

1

η
η gk 0 (A.4)

So, a condition can be obtained if the rest is also

positive:

2α3it2 α2t2
1

η
η 0

α3i α2

1 η η

2η

(A.5)

b)
t1

η
t2

1

η
η gk 0

α2

t1

η
gk 2α3it2 (A.6)

Because of the assumption,

α2t2
1

η
η 2α3it2

α3i α2

1 η η

2η

(A.7)

c)
t1

η
t2

1

η
η gk 0

α2

t1

η
gk α2

t1

η
t2

1

η
η gk 2α3it2

0 α2t2
1

η
η 2α3it2

α3i α2

1 η η

2η

(A.8)
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Therefore, if the sufficient condition is respected for every

i, pcik pdik 0 will be satisfied for every i, k in the optimal

solution.
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