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Deep Belief Networks (DBNs) have recently shown impressive performance on a broad

range of classification problems. Their generative properties allow better understanding of

the performance, and provide a simpler solution for sensor fusion tasks. However, because
of their inherent need for feedback and parallel update of large numbers of units, DBNs are

expensive to implement on serial computers. This paper proposes a method based on the
Siegert approximation for Integrate-and-Fire neurons to map an offline-trained DBN onto

an efficient event-driven spiking neural network suitable for hardware implementation.

The method is demonstrated in simulation and by a real-time implementation of a 3-layer
network with 2694 neurons used for visual classification of MNIST handwritten digits

with input from a 128 × 128 Dynamic Vision Sensor (DVS) silicon retina, and sensory-

fusion using additional input from a 64-channel AER-EAR silicon cochlea. The system
is implemented through the open-source software in the jAER project and runs in real-

time on a laptop computer. It is demonstrated that the system can recognize digits in the
presence of distractions, noise, scaling, translation and rotation, and that the degradation

of recognition performance by using an event-based approach is less than 1%. Recognition

is achieved in an average of 5.8 ms after the onset of the presentation of a digit. By cue
integration from both silicon retina and cochlea outputs we show that the system can be

biased to select the correct digit from otherwise ambiguous input.

Keywords: deep belief networks, spiking neural network, silicon retina, sensory fusion, silicon cochlea, deep

learning, generative model

1. INTRODUCTION

Deep Learning architectures, which subsume convolutional net-

works (LeCun et al., 1998), deep autoencoders (Hinton and

Salakhutdinov, 2006), and in particular DBNs (Bengio et al.,

2006; Hinton et al., 2006; Hinton and Salakhutdinov, 2006) have

excelled among machine learning approaches in pushing the

state-of-the-art in virtually all relevant benchmark tasks to new

levels. In this article we focus on DBNs, which are constructed as

hierarchies of recurrently connected simpler probabilistic graph-

ical models, so called Restricted Boltzmann Machines (RBMs).

Every RBM consists of two layers of neurons, a hidden and a vis-

ible layer, which are fully and symmetrically connected between

layers, but not connected within layers (see Figure 1). Using

unsupervised learning, each RBM is trained to encode in its

weight matrix a probability distribution that predicts the activ-

ity of the visible layer from the activity of the hidden layer. By

stacking such models, and letting each layer predict the activ-

ity of the layer below, higher RBMs learn increasingly abstract

representations of sensory inputs, which matches well with rep-

resentations learned by neurons in higher brain regions e.g., of

the visual cortical hierarchy (Gross et al., 1972; Desimone et al.,

1984). The success of Deep Learning rests on the unsupervised

layer-by-layer pre-training with the Contrastive Divergence (CD)

algorithm (Hinton et al., 2006; Hinton and Salakhutdinov, 2006),

on which supervised learning and inference can be efficiently

performed (Bengio et al., 2006; Erhan et al., 2010). This avoids

typical problems of training large neural networks with error

backpropagation, where overfitting and premature convergence

pose problems (Hochreiter et al., 2001; Bengio et al., 2006). The

data required for pre-training does not have to be labeled, and can

thus make use of giant databases of images, text, sounds, videos,

etc. that are now available as collections from the Internet. An

additional attractive feature is that the performance of deep net-

works typically improves with network size, and there is new hope

of achieving brain-like artificial intelligence simply by scaling up

the computational resources.

With the steady increase in computing power, DBNs are

becoming increasingly important for an increasing number of

commercial big data applications. Using gigantic computational

resources industry leaders like Google or Microsoft have started

to invest heavily in this technology, which has thus been recently

named one of the Breakthrough Technologies of 2013 (MIT

Technology Review, 2013), and has led to what has been called

the “second reNNaissance of neural networks” (Ciresan et al.,

2010). This is the result of the success stories of Deep Learning

approaches for computer vision (Larochelle et al., 2007; Lee et al.,

2009; Ciresan et al., 2010; Le et al., 2012), voice recognition

(Dahl et al., 2012; Hinton et al., 2012; Mohamed et al., 2012),

or machine transcription and translation (Seide et al., 2011; MIT

Technology Review, 2013). Despite this potential, the sheer num-

ber of neurons and connections in deep neural networks requires

massive computing power, time, and energy, and thus makes

their use in real-time applications e.g., on mobile devices or

autonomous robots infeasible. Instead of speculating on Moore’s
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FIGURE 1 | Boltzmann and Restricted Boltzmann Machines. A

Boltzmann machine is fully connected within and between layers, whereas

in a RBM, the lateral connections in the visible and hidden layers are

removed. As a result, the random variables encoded by hidden units are

conditionally independent given the states of the visible units, and vice

versa.

law to achieve progress through faster and cheaper computing

resources in the future, we argue that fast and energy efficient

inference in DBNs is already possible now, and is an ideal use case

for neuromorphic circuits (Indiveri et al., 2011), which emulate

neural circuits and event-based, asynchronous communication

architectures in silicon. This is motivated by the fact that in the

brain, having many neurons and connections is not a factor that

constrains the processing time, since all units operate in paral-

lel, and only the arrival of spike events triggers processing, so

the neural circuits can adapt the processing speed to the rate at

which input spikes occur. This scheme would allow the system

to remain silent, consuming little power, in potentially long silent

periods, and still allow fast recognition when bursts of input activ-

ity arrive, a scenario that is realistic for natural organisms. These

advantages have been recently realized for event-based convolu-

tional networks using convolution chips (Camuñas Mesa et al.,

2010; Farabet et al., 2012), but a principled way of building DBNs

models out of spiking neurons, in which both feed-forward and

feed-back processing are implemented has been lacking.

This paper presents the first proof-of-concept of how to trans-

form a DBN model trained offline into the event-based domain.

This allows exploiting the aforementioned advantages in terms

of processing efficiency, and provides a novel and computation-

ally powerful model for performing recognition, sampling from

the model distribution, and fusion of different sensory modali-

ties. Although our current implementation is in software, and not

on neuromorphic VLSI, inference with small DBNs runs in real

time on a standard laptop, and thus provides the first necessary

step toward the goal of building neuromorphic hardware systems

that efficiently implement deep, self-configuring architectures. In

particular, the novel framework allows us to apply state-of-the-art

computer vision and machine learning techniques directly to data

coming from neuromorphic sensors that naturally produce event

outputs, like silicon retinas (Lichtsteiner et al., 2008) and cochleas

(Liu et al., 2010).

Our main contribution is a novel method for adapting conven-

tional CD training algorithms for DBNs with spiking neurons,

using an approximation of the firing rate of a Leaky Integrate-

and-Fire (LIF) spiking neuron (Siegert, 1951; Jug et al., 2012).

After training with a time-stepped model, the learned parameters

are transferred to a functionally equivalent spiking neural net-

work, in which event-driven real-time inference is performed. In

this article we explicitly perform learning of the network offline,

rather than with spike-based learning rules, but note that there is

a high potential for future event-driven DBNs that could exploit

spike-timing based learning for recognizing dynamical inputs.

We evaluate the spiking DBNs by demonstrating that networks

constructed in this way are able to robustly and efficiently clas-

sify handwritten digits from the MNIST benchmark task (LeCun

et al., 1998), given either simulated spike-train inputs encoding

static images of digits, or live inputs from neuromorphic vision

sensors. In addition we present an event-based DBN architec-

ture that can associate visual and auditory inputs, and combine

multiple uncertain cues from different sensory modalities in a

near-optimal way. The same architecture that is used for inference

of classes can also be used in a generative mode, in which samples

from the learned probability distribution are generated through

feed-back connections.

The aspect of combining feed-back and feed-forward streams

of information is an important deviation from traditional purely

feed-forward hierarchical models of information processing in

the brain (Van Essen and Maunsell, 1983; Riesenhuber and

Poggio, 1999), and DBNs provide a first step toward linking

state-of-the-art machine learning techniques and modern mod-

els of Bayesian inference and predictive coding in the brain (Rao

and Ballard, 1999; Hochstein and Ahissar, 2002; Friston, 2010;

Markov and Kennedy, 2013). The importance of recurrent local

and feed-back connections in the cortex seems obvious from the

anatomy (da Costa and Martin, 2009; Douglas and Martin, 2011;

Markov et al., 2012), and in vivo experiments (Lamme et al., 1998;

Kosslyn et al., 1999; Bullier, 2001; Murray et al., 2002), but the

precise role of feed-back processing is still debated (Lamme et al.,

1998; Bullier, 2001; Kersten and Yuille, 2003). One hypothesized

role is in multisensory integration, and as generative Bayesian

models, DBNs are very well suited to perform such tasks, e.g.,

by combining visual and auditory cues for improved recognition

(Hinton et al., 2006). We will thus discuss the potential impact of

DBNs as abstract functional models for cortical computation and

learning.

The structure of this article is as follows: The mathematical

framework and the algorithms used for training and converting

conventional DBNs into spiking neural networks are presented in

Section 2. Section 3 shows the application of the framework to

simulated spike train inputs and real visual and auditory inputs

from neuromorphic sensors. Implications of this new framework

are discussed in Section 4.

2. MATERIALS AND METHODS

2.1. DEEP BELIEF NETWORKS

A DBN (Bengio et al., 2006; Hinton et al., 2006) is a multi-

layered probabilistic generative model. The individual layers con-

sist of simpler undirected graphical models, so called Restricted

Boltzmann Machines (RBMs), typically with stochastic binary

units. A RBM has a bottom layer of “visible” units, and a top

layer of “hidden” units, which are fully and bidirectionally con-

nected with symmetric weights. The difference between standard

Boltzmann machines and RBMs is that in the restricted model
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units within the same layer are not connected (see Figure 1),

which makes inference and learning within this graphical model

tractable. The visible layers of RBMs at the bottom of a DBN are

clamped to the actual inputs when data is presented. When RBMs

are stacked to form a DBN, the hidden layer of the lower RBM

becomes the visible layer of the next higher RBM. Through this

process, higher level RBMs can be trained to encode more and

more abstract features of the input distribution.

In a binary RBM the units stochastically take on states 0 or

1, depending on their inputs from the other layer. Denoting the

states of visible units with vi, the states of hidden units with hj, the

weights connecting these units with wij, and the biases of visible

and hidden units with b
(v)
i and b

(h)

j respectively, a RBM encodes

a joint probability distribution p(v, h|θ), defined via the energy

function

E(v, h; θ) = −
∑

i

∑

j

wijvihj −
∑

i

b
(v)
i vi −

∑

j

b
(h)

j hj, (1)

where θ = (w, b(v), b(h)). The encoded joint probability can then

be written as

p(v, h|θ) = exp(−E(v, h; θ))
∑

v′
∑

h′ exp(−E(v′, h′; θ))
. (2)

From equations (1) and (2) the following stochastic update rules

for the states of units were derived (Hinton and Sejnowski, 1986),

such that on average every update results in a lower energy state,

and ultimately settles into an equilibrium:

p(vi = 1|h, θ) = σ

⎛

⎝

∑

j

wijhj + b
(v)
i

⎞

⎠ (3)

p(hj = 1|v, θ) = σ

(

∑

i

wijvi + b
(h)

j

)

, (4)

where σ(x) = 1/
(

1 + exp(−x)
)

is the sigmoid function, and the

units will switch to state 0 otherwise. When left to run freely,

the network will generate samples over all possible states (v, h)

according to the joint probability distribution in (2). This holds

for any arbitrary initial state of the network, given that the net-

work has enough time to become approximately independent of

the initial conditions.

2.1.1. Training a RBM

During learning, the visible units are clamped to the actual inputs,

which are seen as samples from the “data distribution.” The task

for learning is to adapt the parameters θ such that the marginal

distribution p(v|θ) = ∑

h p(v, h|θ) becomes maximally similar to

the true observed data distribution p∗(v), i.e., the log-likelihood

of generating the observed data needs to be maximized. Hinton

et al. (2006) have shown that this gradient ascent on the log-

likelihood w.r.t. the weights wij can be efficiently approximated by

a Gibbs-sampling procedure, which alternates between stochasti-

cally updating the hidden and visible units respectively. For the

RBM this leads to the learning rule

�wij = η
(〈

vihj

〉

data
−

〈

vihj

〉

model

)

, (5)

where 〈.〉data denotes an average over samples with visible units

clamped to actual inputs, 〈.〉model denotes an average over samples

when the network is allowed to sample all units freely, and η is the

learning rate.

Using a sampling approximation normally requires creating

enough samples such that the network can settle into an equi-

librium. However, for a RBM the CD algorithm (Hinton et al.,

2006) has been developed, which uses only a single sample for

the data and model distribution, and performs very well in prac-

tice. CD first samples new values for all hidden units in parallel,

conditioned on the current input, which gives a complete sample

(vdata, hdata) for the data distribution. It then generates a sample

for the visible layer, conditioned on the hidden states hdata sam-

pled in the first step, and then samples the hidden layer again,

conditioned on this new activity in the visible layer. This gener-

ates a sample (vmodel, hmodel) from the model distribution. The

weight update can then be computed as

�wij = η
(

vi,datahj,data − vi,modelhj,model

)

. (6)

2.1.2. Persistent CD and transient weights

Since the form of sampling induced by CD strongly biases

the samples from the model distribution toward the most

recently seen data, one can alternatively use so-called Persistent

Contrastive Divergence (Tieleman, 2008). In this approach, the

model distribution is initialized arbitrarily, and at every iteration

of the training process further samples are created by sampling

conditioned on the most recently sampled hidden states, which

are maintained between data points.

There is a delicate balance between sampling and learning in

Persistent CD: Although fast learning is generally desirable, too

fast learning can result in too fast changes of the encoded joint

probability distribution, which can cause the equilibrium distri-

bution to change too fast for the Markov chain of model states

to ever settle in. Nevertheless, high learning rates have turned

out to be beneficial in practice, since they increase the mixing

rates of the persistent Markov chains (Tieleman and Hinton,

2009). Following the suggestions in Tieleman and Hinton (2009)

we used so called “fast weights,” which are added to the regular

weights of the network, and decay exponentially with each train-

ing step. When sampling from the model distribution, the fast

weights are updated with the rule:

�wfast
ij = −α

〈

vihj

〉

model
. (7)

We will later show that such transient weight changes can be

interpreted as short-term plasticity in a spiking neural network

implementation.

2.1.3. Constructing DBNs by stacking RBMs

As discussed previously, DBNs can be constructed by stacking

RBMs and interpreting the hidden layer of the lower RBM as

the visible layer of the next layer. It has been shown that adding
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hidden layers and applying the previously discussed unsuper-

vised learning methods for RBMs is guaranteed to increase the

lower bound on the log-likelihood of the training data (Hinton

et al., 2006). Higher layers will tend to encode more abstract fea-

tures, which are typically very informative for classification tasks.

The top-layer of the DBN can then be trained with supervised

learning methods, and the whole multi-layer network can be opti-

mized for the task through error backpropagation (Hinton and

Salakhutdinov, 2006; Hinton et al., 2006).

DBNs can also be used for associating different sets of inputs,

e.g., from different sensory modalities. In this case one can build

pre-processing hierarchies for both inputs independently, and

then treat the top layers of these hierarchies as a common visi-

ble layer for a new association layer on top of them (Hinton et al.,

2006). DBNs are therefore not necessarily single hierarchies, but

can also exhibit tree-like architectures.

2.2. DISCRETE-TIME AND EVENT-DRIVEN NEURON MODELS

Traditional RBMs are, like most machine-learning models, sim-

ulated in time-stepped mode, where every neuron in a layer gets

updated at every time step, and the size of this time step �t is

fixed throughout the simulation. While training is typically eas-

ier to achieve with continuous and time-stepped neuron models,

the event-driven model has the potential to run faster and more

precisely. This is because the states of LIF neurons in the event-

based network are only updated upon the arrival of input spikes,

and only at these times the neurons decide whether to fire or not.

Temporal precision is limited only by the numerical representa-

tion of time in the system (as opposed to the duration of the

time-step parameter). A drawback is that not all neuron models,

e.g., smooth conductance-based models, can be easily converted

into event-driven models.

In the standard formulation (Hinton et al., 2006), units within

RBMs are binary, and states are sampled according to the sig-

moidal activation probabilities from Equations (3) and (4). We

call such neuron models sigmoid-binary units. In Nair and

Hinton (2010) it was shown that an equivalent threshold-linear

model can be formulated, in which zero-mean Gaussian noise

N (0, σ2
n) with variance σ

2
n is added to the activation functions:

hj = max

(

0,
∑

i

wijvi + bh
j +N (0, σ

2
n)

)

, (8)

and similarly for the sampling of visible units.

A threshold-linear function can also be used to approximate

the expected firing rates of simplified spiking neurons under

constant current stimulation, such as the LIF neuron (Gerstner

and Kistler, 2002), which is one of the simplest, yet biolog-

ically relatively plausible models for spiking neurons. In this

model each incoming event adds to the membrane potential Vm

according to the strength wij of the synapse along which the

event occurred. Incoming spikes within an absolute refractory

period tref after an output spike are ignored. Spikes are gener-

ated deterministically whenever the membrane potential crosses

the firing threshold Vth, otherwise the membrane potential decays

exponentially with time constant τ. Simple versions of LIF neu-

rons can be simulated in an event-based way, since membrane

potentials only need to be updated upon the arrival of input

spikes, and spikes can only be created at the times of such input

events. For a LIF neuron representing hj, which receives a con-

stant input current sj = ∑

i wijvi corresponding to the weighted

sum of inputs from connected visible units, the expected firing

rate ρj(sj) is:

ρj(sj) =
{(

tref − τ log
(

1 − Vth
sj

))−1
if sj ≥ Vth

0 otherwise
(9)

The above equation holds when the neuron is injected with a

constant input, but under realistic conditions the neuron receives

a continuous stream of input spike trains, each arriving to first

approximation as samples from a Poisson process with some

underlying firing rate. For this case, a more accurate prediction

of the average firing rate can be obtained using Siegert neurons

(Siegert, 1951; Jug et al., 2012). Siegert neurons have transfer

functions that are mathematically equivalent to the input-rate

output-rate transfer functions of LIF neurons with Poisson-

process inputs. In order to compute the Siegert transformation

for a neuron receiving excitatory and inhibitory inputs with rates

( �ρe, �ρi) and weights ( �we, �wi) respectively, we first have to compute

the auxiliary variables

µQ = τ

∑

( �we �ρe + �wi �ρi) σ
2
Q = τ

2

∑

( �w2
e �ρe + �w2

i �ρi)

ϒ = Vrest + µQ Ŵ = σQ

k = √

τsyn/τ γ = |ζ(1/2)|

where τsyn is the synaptic time constant (for our purposes con-

sidered to be zero), and ζ is the Riemann zeta function. Then the

average firing rate ρout of the neuron with resting potential Vrest

and reset potential Vreset can be computed as (Jug et al., 2012):

ρout =
(

tref + τ

Ŵ

√

π

2
· (10)

∫ Vth + kγŴ

Vreset + kγŴ

exp

[

(u − ϒ)2

2Ŵ2

]

·
[

1 + erf

(

u − ϒ

Ŵ
√

2

)]

du

)−1

.

A RBM trained using Siegert units can thus be easily converted

into an equivalent network of spiking LIF neurons: By normaliz-

ing the firing rate in Equation (10) relative to the maximum firing

rate 1/tref , ρout can be converted into activation probabilities as

required to sample RBM units in Equations (3, 4) during standard

CD learning with continuous units. After learning, the parame-

ters and weights are retained, but instead of sampling every time

step, the units generate Poisson spike trains with rates computed

by the Siegert formula Equation (10).

2.3. TRAINING THE NETWORK

2.3.1. Task

The network was trained on a visual classification task on the

MNIST benchmark dataset for machine learning (LeCun et al.,

1998). This set consists of a collection of 28 × 28 gray-scale

images of handwritten digits, of which 60,000 form a training set,
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and 10,000 an independent test set. In order to make the network

more robust, we modified the training set by adding small ran-

dom translations (±15%), rotations (±3◦) and scalings (±10%).

The modified training set contains 120,000 images.

2.3.2. Network Architecture

For the visual classification task we trained a DBN with one input

layer of 784 visual input units (corresponding to the pixels of

28 × 28 input images), a 500-unit “Visual Abstraction Layer,” a

500-unit “Association Layer,” and a 10-unit “Label Layer,” with

units corresponding to the 10 digit-classes. The architecture of

the network is shown in Figure 2. Since our goal in this arti-

cle is to demonstrate a proof-of-concept for spiking DBNs, the

785-500-500-10 network we used is substantially smaller than the

784-500-500-2000-10 network used previously for the MNIST

task (Hinton et al., 2006), or the state-of-the-art network in

Ciresan et al. (2010).

2.3.3. Training

Each RBM in Figure 2 was first trained in a time-stepped mode

with Siegert neurons as individual units, for which we fixed the

parameters for resting and reset potential, membrane time con-

stants, and refractory period. Since the output rates of Siegert

neurons are not constrained to the interval [0, 1] like in Sigmoid-

Binary units, the outputs were normalized, such that the maxi-

mum possible firing rate (given by 1/tref ) had a value of 1. As

training algorithm for RBMs we applied persistent Contrastive

Divergence learning (Hinton et al., 2006) and the fast weights

heuristics described in Section 2.1.2. We also applied a modi-

fication to the training process proposed by Goh et al. (2010)

to encourage sparse and selective receptive fields in the hidden

layer.

Learning proceeded in a bottom-up fashion, starting by

training the weights between the Visual Input and the Visual

Abstraction Layers. Next, the weights of the Associative Layer

were trained, using input from the previously trained Visual

Abstraction Layer and the supervised information in the Label

Layer as the joint visible layer of the RBM. For each layer we

trained for 50 iterations over the complete training set.

FIGURE 2 | Architecture of the DBN for handwritten digit recognition.

The connections between layers represent the weights of a RBM.

2.4. SIMULATION OF AN EVENT-DRIVEN DBN

We created simulators for arbitrary event-driven DBNs in Matlab

and Java. The simulation can be either run in Recognition mode,

where input is applied at the bottom layer, and the label has to be

inferred through bottom-up processing, or in Generation mode,

where the activity of the label layer is fixed, and the network

samples activity in the Visual Input Layer through top-down con-

nections, according to the learned generative model. Bottom-up

and top-down processing can also be activated simultaneously.

In Recognition mode, the DBN is shown a number of test

images, which are transformed into spike trains that activate

the Visual Input Layer. A Poisson spike train is created for each

pixel with a rate proportional to the pixel intensity, and all fir-

ing rates are scaled such that the total input rate summed over all

28 × 28 pixels is constant (between 300 and 3000 spikes per sec-

ond). The goal is to compute the correct classification in the Label

Layer. For every input image, the input activations are sampled as

Poisson spike trains with rates proportional to the pixel intensi-

ties. Classification can be done in one of two ways: first, we can

turn on only bottom-up connections from the Visual Input Layer

toward the Label Layer, and observe which of the neurons in the

Label Layer spikes the most within a fixed time interval. The sec-

ond variant is to use only bottom-up connections between Visual

Input and Visual Abstraction Layer, but activate all recurrent con-

nections in the other RBMs. Information about previous inputs

is stored both within the membrane potentials and the recurrent

spiking activity within the network. Recognition is thus achieved

through a modulation of the persistent network activity by input

spike trains. In the absence of input, the network will continue to

be active and drift randomly through the space of possible states

according to the encoded generative model.

This principle is exploited in the Generation mode, where units

within the Label Layer are stimulated, and activation propagates

recurrently through the top-level RBM, and top-down to the

Visual Input Layer. Thus, analyzing these samples from the gen-

erative model provides a way to visualize what the network has

learned so far. If the DBN is activated in this way, it might settle

into a particular state, but could become stuck there, if this state

corresponds to a local minimum of the Energy landscape accord-

ing to (1). This can be avoided by using a short-term depressing

STDP kernel in Generation mode, which temporarily reduces

the weights of synapses where pre- and post-synaptic neurons

are active within the same short time window (see Figure 3).

These short-term modifications vanish over time, and the weights

return to their original values. This modification is inspired by

the idea of using auxiliary “fast-weights” for learning (Tieleman

and Hinton, 2009), which transiently raise the energy of any state

that the network is currently in, thereby slightly pushing it out

of that state. The effect is that the network, instead of settling

into an energy well and remaining there, constantly explores the

whole space of low-energy states. This is a useful feature for search

and associative memory tasks, where the network represents a

cost function through the encoded energy landscape, and the task

is to converge to a maximally likely state starting from an arbi-

trary initial state, e.g., an incomplete or ambiguous input. We

demonstrate this in Section 3.4 in the context of multi-sensory

integration.
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FIGURE 3 | Short-term plasticity kernel for Generation mode. The

“fast-weight” STDP kernel temporarily depresses all synapses in which the

pre- and post-synaptic neurons were active shortly after each other,

depending on the spike timing difference tpre − tpost . As a result, the

network is constantly being pushed out of its present state.

2.5. REAL-TIME IMPLEMENTATION

2.5.1. Neuromorphic visual input

We developed a real-time variant of the event-driven DBN which

receives inputs from neuromorphic sensors. Visual input was

obtained from the DVS (Lichtsteiner et al., 2008), an event-

generating image sensor consisting of 128 × 128 pixels, which

asynchronously outputs streams of address events in response to

local relative light-intensity changes. The events are tagged with

the address of the creating pixel, a time-stamp, and an ON or

OFF polarity tag, which indicates whether the event was created

in response to an increase or decrease of light intensity over that

pixel. Events are transmitted via a USB port to a computer, and

processed in the open-source jAER software framework written in

Java (Delbruck, 2013). The networks were first trained in Matlab,

and then transferred into the jAER software, where they could run

in real-time in response to event stream inputs. We did not use

the polarity information for our purposes, and down-sampled the

128 × 128 pixels to a resolution of 28 × 28, which matched the

resolution of the images in the MNIST training set. These events

were fed into the Visual Input Layer (see Figure 2) while the DVS

was moved by hand across several hand-drawn images.

2.5.2. Multi-sensory fusion

We also created a task in which visual stimuli from a silicon retina

and auditory stimuli from a silicon cochlea (see Section 2.5.3)

were associated with each other in real-time. During training the

presentation of a pure tone was always paired with the presenta-

tion of an image of a handwritten digit. Table 1 shows the tones

and frequencies that were used, and the visual-auditory pairing

scheme. The network thus had to learn to associate the two sen-

sory domains, e.g., by resolving ambiguity in one sensory stream

through information from the other stream.

The DBN architecture for sensory fusion is described in detail

in Section 3.4 and shown in Figure 8.

2.5.3. Neuromorphic Auditory Input

Auditory input was received from the AER-EAR2 (Liu et al.,

2010) neuromorphic auditory sensor, which was built to mimic

the biological cochlea. The device transforms input sounds into

streams of spikes in 64 channels responsive to different frequency

ranges. We found that since spikes of the silicon cochlea tend

Table 1 | Paired tones and digits in multi-sensory fusion task.

Tone A4 B4 C5 D5 E5 F5 G5# A5 B5 C6

Freq.(Hz) 440.0 493.9 523.3 587.3 659.3 698.5 830.6 880.0 987.8 1046.5

Digit 0 1 2 3 4 5 6 7 8 9

During training pure tones with given frequencies (upper rows) were paired with

an associated digit (bottom row).

to be phase-locked to the sound waveform to which they are

responding, the distribution of Inter-spike Intervals (ISIs) was

a more precise indicator of the frequency of pure input tones

than the distributions of channels from which the spikes origi-

nated. We preprocessed the auditory spikes with an event-based

ISI histogramming method wherein 100 ISI bins were distributed

logarithmically between 0.833 and 2.85 ms (350–1200 Hz), and

for each bin an input LIF unit was assigned which was stimu-

lated every time an ISI occurred on any channel that was within

the unit’s designated frequency-range. The output events of these

units were then routed to the Auditory Input Layer (see Section

3.4 and Figure 8).

As stimuli we chose the pure tones from Table 1 from the

A-minor harmonic scale, ranging from A4 (440 Hz) to C6

(1046.5 Hz), which were played for 1 s each into the silicon

cochlea. We recorded the spike response of neurons in the

Auditory Input Layer, which fired whenever enough input events

from AER-EAR2 in their ISI range were received. For training in

the time-stepped domain we constructed data vectors for audi-

tory data by computing the average firing rates of Auditory Input

Layer neurons over time bins of 100 ms, evaluated every 30 ms.

3. RESULTS

This section presents the classification performance, shows the

generative mode of operation, and presents sensor fusion exper-

iments. For the results in sections 3.1 and 3.2 we use simulated

spike-train input (see Section 2.4). Inputs from neuromorphic

sensors (Section 2.5) are directly used in the results of sections

3.3 and 3.4.

3.1. CLASSIFICATION PERFORMANCE

Three variants of DBNs were trained, using the architecture

shown in Figure 2 for the MNIST visual classification task: the

first two variants are time-stepped models using sigmoid-binary

or Siegert neurons respectively (see Section 2.2), the third is an

event-driven DBN using LIF neurons that were converted from

Siegert neurons used during training. The networks were all

trained in time-stepped mode for 50 iterations over the modified

120,000 example MNIST dataset using a variant of Contrastive

Divergence learning (see Section 2.3). Figure 4 shows the features

learned by a subset of the neurons in the RBM for the Visual

Abstraction Layer. One can see that this first layer has learned

through unsupervised learning to extract useful features for the

discrimination of handwritten digits, in this case parts of digits.

The classification performance shown in Table 2 was evaluated

on images from the MNIST test set, using simulated Poisson

spike trains with a total rate of 300 spikes per second for the

whole image as input for event-based models. The size of our
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FIGURE 4 | Analysis of weights learned in the DBN. Visualization of the

weights learned by a subset of neurons in the Visual Abstraction Layer for

28 × 28 images in the MNIST task. Each image shows the vector of

weights feeding into one neuron.

Table 2 | Classification performance on the MNIST test set for two

time-stepped and one event-based LIF neuron model.

Neuron model Domain % correct

Sigmoid-Binary time-step 97.48

Siegert time-step 95.2

LIF event-based 94.09

Inputs for the event-based model were simulated Poisson spike trains (see

Section 2.4).

DBN is substantially smaller than in current state-of-the-art deep

network approaches for MNIST, e.g., (Ciresan et al., 2010), but

Table 2 shows that the performance is in a very good range (above

94%). More importantly for this proof-of-concept study, the per-

formance loss when switching to spiking neuron models is small

(on the order of 1%), and can possibly be further improved when

going to larger network sizes.

3.2. GENERATION MODE

In Generation mode the network does not receive external input

at the bottom layers. Instead one of the top layers (in our case

the Label Layer in Figure 2) is stimulated, and activity spreads

in top-down direction through the network. This provides a way

to visualize what has been learned in the probabilistic generative

model encoded in the bi-directional weights.

Since the network is event-driven, and neurons fire only upon

the arrival of input spikes, an initial stimulus in at least one of the

layers is needed to push the network from a silent state into one

of self-sustaining activity, provided that the neuron parameters

and recurrent connectivity allow this. We performed empirical

exhaustive parameter search over firing thresholds Vth and mem-

brane time constants τ in a fully trained network of LIF neurons

and measured the mean firing rate within the network after 1 s of

100 Hz stimulation of one Label Layer unit, and 5 s without exter-

nal stimulation. This allowed us to identify parameter regimes

that allow self-sustained activity of about 20 Hz average activity

in Generation mode (τ = 800 ms, Vreset = 0, Vth = 0.005).

To visualize the activity of the DBN in Generation mode we

modified the architecture in Figure 2 that was used for training

FIGURE 5 | DBN architecture for recognition and generation. The Visual

Input Layer was split into a bottom-up and a top-down part, used for

projecting inputs in Recognition mode, or visualizing top-down activity in

Generation mode.

on the MNIST dataset. In the new architecture shown in Figure 5

the lowest layer is split up after training into two Visual Input

Layers, one projecting only bottom-up from inputs to the Visual

Abstraction Layer, and another copy that is purely driven by

top-down connections. The weight matrices for bottom-up and

top-down connections are identical. Thus, the top layers of the

network form the recurrent model that encodes the data distri-

bution, whereas the bottom part either projects inputs through

bottom-up connections in Recognition mode, or visualizes the

activity of the top layers through top-down connections in

Generation mode. If both bottom-up and top-down connections

are activated at the same time, the top-down Visual Input Layer

visualizes a processed image of what the network ‘believes’ it is

seeing in the bottom-up Visual Input Layer. This process per-

forms probabilistic inference by which evidence from the current

input is combined with the prior distribution over likely MNIST

images encoded in the DBN weights, and a posterior estimate of

the most likely input is generated.

Figure 6A illustrates the generation of samples from the

encoded probabilistic model after activating a unit in the

Label Layer. This induces spiking activity in the intermediate

Associative and Visual Abstraction Layer, and ultimately stim-

ulates units in the top-down Visual Input Layer, which can be

visualized. Figure 6A shows the response of the network when the

label unit corresponding to the class “4” is stimulated. The snap-

shot shows the induced activity in the lower layers, and one can

clearly see that the response in the Visual Input Layer resembles

closely the handwritten digits in the MNIST set that were used

for training. By using short-term depressing synapses as described

in Section 2.1.2 and in Figure 3 the network not just samples

one single example of a “4,” but iterates through different vari-

ations that are compatible with the variance over inputs in the

learned generative model. This can be best seen in Video 1 of the

supplementary material.

Figure 6B shows the spiking activity in the different layers of

the network in generation mode, both during a forced stimula-

tion, and in a free self-sustained mode. The network is initially

stimulated for 2 s by forcing firing of neurons in the Label Layer
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FIGURE 6 | Generation mode of the event-driven DBN. (A) Screen

capture of the network while generating samples of input activations

corresponding to class “4.” The neuron corresponding to label “4” was

stimulated in the Label Layer (left), and activity propagated through the

whole network. The snapshot shows a single example of activity in the

Visual Input Layer (right) that is sampled from the generative model

encoded in the weights of the DBN. Through short-term depressing

synapses (see Figure 3) the network starts to drift through the space of

all potential compatible input activations. (B) Raster plot of the DBN in

Generation mode. The Label Layer (bottom) is initially stimulated for 2 s

(shaded region) to fire in sequence for digits 1, 2, and 3. Afterwards, the

network freely samples from the encoded generative model. Although

activity in the Label Layer jumps between digits, activity in the Visual Input

Layer transitions smoothly.

corresponding to digit classes “1,” “2,” and “3” (shaded region).

One can see that through the recurrent connectivity activity

spreads throughout the layers of the network. After 2 s the input to

the Label Layer is turned off, and the network is allowed to freely

generate samples from the encoded probability distribution. We

can see that in the Label Layer the network jumps between

different digits, whereas in the other layers, more smooth tran-

sitions are found. Switches between visually similar digits (e.g.,

4 and 9) occurred more often on average than between very

different digits (e.g., 0 and 1).

3.3. REAL-TIME VISUAL RECOGNITION

For this task the event-driven DBN was connected to a neuro-

morphic vision sensor, the 128 × 128 pixel DVS (Lichtsteiner

et al., 2008). Events indicating local light intensity changes are

used as inputs in the bottom-up Visual Input Layer. The whole

system works in real-time, i.e., while the DVS is recording visual

input, the DBN simultaneously computes the most likely inter-

pretation of the input. By splitting up the connections between

Visual Input and Visual Abstraction Layer into a bottom-up and

a top-down pathway as in Figure 5 we can simultaneously clas-

sify the input in real-time, and also visualize in the top-down

Visual Input Layer the interpretation of the input after recurrent

processing in the DBN.

The real-time system runs as a filter in the jAER software pack-

age (Delbruck, 2013) on a standard laptop, after training the

weights of the DBN offline in Matlab on the MNIST database.

Figure 7 shows snapshots of the activity within the different lay-

ers of the network during operation on various stimuli recorded

in real-time with the DVS. In Figure 7A the DVS was moved over

a hand-drawing of the digit “5” which was not included in the

training set. The left panel shows the input into the Visual Input

Layer. The digit was correctly classified as a “5” in the Label Layer.

On the right we can see the reconstruction of the image, which

closely resembles the actual input. In Figure 7B an ambiguous

FIGURE 7 | Screen captures of the real-time spiking DBN in operation

during visual handwritten digit recognition. Each row displays a

snapshot of the activity in the different layers of the network (see Figure 5)

for a different visual input recorded with the DVS (left column). Neurons in

the Label Layer (column 5) are arranged such that the first column

represent classes 0–4 (top to bottom), and the second column classes 5–9.

The rightmost column shows the top-down reconstruction of the Visual

Input Layer. (A) The network recognizes the digit 5. (B) For an ambiguous

input, the network alternates between the two possible interpretations “3”

and “5.” The top-down reconstruction shows the current interpretation. (C)

For an unfamiliar input (letter “A”), the network classifies it as the closest

resembling digit class “9,” and reconstructs a mixture between the actual

input and the generative model for class “9.” (D) For an input containing a

distractor, the network still classifies it as the most likely input, and

reconstructs an image without the distractor.

input was presented, which can either be interpreted as a “3” or

a “5.” The network iterated between both interpretations, in this

snapshot the reconstruction on the right shows that the network

currently interprets the input as a “3,” adding the missing parts

of the input to match the actual shape of a digit. In Figure 7C

the network is shown an input from an unknown input class,

namely the letter “A.” Since the generative model learned in the

Frontiers in Neuroscience | Neuromorphic Engineering October 2013 | Volume 7 | Article 178 | 8

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive


O’Connor et al. Spiking deep belief networks

network knows only digits, it classifies the input as the most sim-

ilar digit, in this case “9,” and reconstructs the input as a mixture

between the actual DVS input and the entrained model of the

digit. In Figure 7D a digit “4” with a distracting stimulus on top

was shown. It was correctly classified and reconstructed in the

top-down Visual Input Layer without the distracting stimulus.

In general, the network recognized reliably all tested classes

of handwritten digits in real-time, even in the presence of strong

distractors, with slightly rotated images, or variations in scale or

translation of the image. It can also do so very quickly: at a typical

low-rate input firing rate of 3000 input spikes per second over the

whole image, the DBN submits its first correct guess of the output

label within an average of 5.8 ms after the onset of the simulated

Poisson spike train input. Firing rates in the intermediate layers

are higher, resulting in 58800 spikes/s in the 500 neuron Visual

Abstraction Layer (see Figure 2), 147600 spikes/s in the 500 neu-

ron Association Layer, and 1800 spikes/s in the 10 neuron Label

Layer.

3.4. REAL-TIME SENSORY FUSION

We trained a DBN to associate visual stimuli from a silicon retina,

and auditory stimuli from a silicon cochlea, in order to clas-

sify them in real-time by integrating both input streams. Table 1

shows the respective association of digit images recorded with the

DVS (Lichtsteiner et al., 2008), and tones of different frequencies

recorded with the AER-EAR2 silicon cochlea (Liu et al., 2010).

We used the DBN architecture shown in Figure 8, in which a

bidirectional connection between the top-level Association Layer

and the Auditory Input Layer is added.

During training a network of Siegert neurons were presented

with input images from the MNIST database and pre-recorded

activations of Auditory Input Layer neurons in response to the

tones in Table 1 (see Section 2.5.3). After the training phase,

the DBN was converted into an event-driven DBN as described

previously, which was run in real-time in the jAER software

package.

One key aspect of sensory fusion is the ability to integrate

multiple, possibly noisy or ambiguous cues from different sen-

sory domains to decide on the actual state of the world. We

tested this by providing simultaneous visual and auditory stimuli

FIGURE 8 | DBN architecture of the multi-sensory fusion network. In

addition to the architecture for visual recognition in Figure 5 the Auditory

Input Layer is bidirectionally connected to the top-level Association Layer.

Thus, associations between visual inputs, auditory inputs, and classification

results in the Label Layer can be learned during training, and classification

can be achieved in real-time.

to the DBN, such that the combination of both stimuli would

provide more conclusive evidence of the true label than the sin-

gle modalities. The auditory stimulus was a mixture of A4 and

F5 tones corresponding to “0” and “5” digits, with four times

as many input spikes corresponding to class “0” as to class “5”.

Thus, if given only the audio input, the DBN should identify

a “0”. Conversely, the visual input shows an ambiguous input

that is consistent with either a “3” or a “5,” but very unlikely

for a “0”. Figure 9 demonstrates the audio-visual fusion using an

ambiguous visual input and the auditory input favoring class “0.”

However, while each input stream favors an incorrect interpreta-

tion of either “3” or “0,” class “5” is correctly chosen as the most

consistent representation for the combined visual-auditory input

stream.

In Figure 10 we analyzed how this depends on the relative

strength of visual and auditory input streams and the ambigu-

ity of the visual input by (1) changing the relative proportion of

input spikes coming from the audio stream, and (2) interpolating

the visual input between an image showing “3” and another one

showing “5.” We varied the mixture of firing rates of input neu-

rons such that 80% (Figure 10A), 20% (Figure 10B), and 10%

(Figure 10C) of all input spikes came from the auditory stream,

and measured the proportion of output spikes for the three classes

“0,” “3,” and “5”. In panels A and C the classes that are inconsistent

with the dominating auditory respectively visual input are almost

completely suppressed, and class “5” is favored. One can also see

from the difference between Figures 10A,B that an increase of a

few spikes favoring an alternative interpretation can dramatically

adjust the output choice: In this case 10% more of spikes favoring

the interpretation “5” are enough to bias the classification toward

the interpretation consistent with both visual and auditory input

over a wide range of visual ambiguity.

4. DISCUSSION

The great potential of DBNs is widely recognized in the machine

learning community and industry (MIT Technology Review,

2013). However, due to the high computational costs, and the

capability to integrate large amounts of unlabeled data that is

FIGURE 9 | Cue integration with a multi-sensory spiking DBN. (A)

When presenting only an ambiguous visual input to the DVS, the network

in the absence of auditory input will alternate between recognizing a “3” or

a “5” (see also Figure 7). (B) When presenting only an ambiguous auditory

input to the cochlea, the network in the absence of visual input will

alternate between recognizing a “0” or a “5.” (C) By combining the two

inputs (mixing at 50%), the network reliably classifies the two ambiguous

patterns as class “5,” which is the only consistent interpretation.
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FIGURE 10 | Proportion of output spikes for 3 different mixture ratios

of auditory and visual input in a multi-sensory spiking DBN. Red,

green, and blue encode the ratio of 0, 3, and 5 choices (spikes) relative to

the total number of spikes emitted from the Label Layer (averaged over 10

trials). The horizontal axis sweeps the probability that visual input spikes are

chosen from either a “3” digit or an aligned “5” digit. Auditory input

consists of a mixture of “0” and “5” inputs, with four times more spikes

indicating a “0”. Over a wide range of mixture values, the network correctly

infers the only consistent interpretation of the multi-modal input, which is

class “5”. Inputs that are inconsistent with the dominating sensory domain

(“3” in A, “0” in B,C) are mostly suppressed.

freely available on the web, applications so far have strongly con-

centrated on big data problems (Le et al., 2012). Surprisingly little

effort has gone into making this technology available for real-time

applications, although the scenarios in which DBNs excel, e.g.,

visual object recognition, speech recognition, or multi-sensory

fusion, are extremely important tasks in fields like robotics or

mobile computing. An exception is the work of (Hadsell et al.,

2009), who use small and mostly feed-forward deep networks

for long-range vision in an autonomous robot driving off road.

In general, previous attempts to reduce the running time have

mostly attempted to restrict the connectivity of networks (Lee

et al., 2008; Le et al., 2012), e.g., by introducing weight-sharing,

pooling, and restricted receptive fields. In speech processing on

mobile phones, data is first communicated to a central server

where it is processed by a large DBN before the result is sent back

to the mobile device (Acero et al., 2008). Online and on-board

processing would be very important for mobile applications

where such communication infrastructure is not available, e.g.,

for exploration robots in remote areas, underwater, or other plan-

ets, but this requires fast and efficient processing architectures,

that conventional DBNs currently cannot provide.

We think that this presents a big opportunity for neuromor-

phic engineering, which has always pursued the goal of provid-

ing fast and energy efficient alternatives to conventional digital

computing architectures for real-time brain-inspired cognitive

systems (Indiveri et al., 2011). Here we have presented a novel

method how to convert a fully trained DBN into a network of

spiking LIF neurons. Even though we have only shown a proof-

of-concept in software, this provides the necessary theoretical

framework for an architecture that can in the future be imple-

mented on neuromorphic VLSI chips, and first experiments in

this direction are promising. The event-driven approach can be

energy efficient, in particular since the required processing power

depends dynamically on the data content, rather than on the con-

stant dimensionality of the processed data. Furthermore, as we

have shown, spiking DBNs can process data with very low latency,

without having to wait for a full frame of data, which can be

further improved if individual units of the DBN compute in par-

allel, rather than updating each unit in sequence. This advantage

has been recognized for many years for feed-forward convolu-

tional networks, in which almost all operations can be efficiently

parallelized, and has led to the development of custom digital

hardware solutions and spike-based convolution chips (Camuñas

Mesa et al., 2010; Farabet et al., 2012), which through the use

of the Address Event Representation (AER) protocol, can also

directly process events coming from event-based dynamic vision

sensors (Lichtsteiner et al., 2008). For such architectures (P’erez-

Carrasco et al., 2013) have recently developed a similar mapping

methodology between frame-based and event-driven networks

that translates the weights and other parameters of a fully trained

frame-based feed-forward network into the event-based domain,

and then optimizes them with simulated annealing. In compari-

son, this offers increased flexibility to change neuronal parameters

after training, whereas our method uses the accurate Siegert-

approximation of spike rates already during the training of a

bi-directional network, and does not require an additional opti-

mization phase. The advantages of spike-based versus digital

frame-based visual processing in terms of processing speed and

scalability have been compared in Farabet et al. (2012), where it

was also suggested that spike-based systems are more suitable for

systems that employ both feed-forward and feed-back processing.

Although our model is event-based, the Siegert model (Siegert,

1951) does not make use of the precise timing of spikes. The

basic theoretical framework of DBNs is not suitable for inputs

that vary in time, and thus requires modifications to the net-

work architecture (Taylor et al., 2007), or a transformation of

inherently time-dependent inputs (Dahl et al., 2012). Learning

with STDP-like rules in spiking DBNs provides an intriguing

future possibility for a direct handling of dynamic inputs. In

our current network, the short-time memory of previously seen

inputs carried in the membrane potential of LIF neurons allows

us to process inputs from asynchronous neuromorphic sensors,

in which complete frames are never available (Lichtsteiner et al.,

2008; Liu et al., 2010). We can therefore for the first time apply

the state-of-the-art machine learning technique of DBNs directly

to inputs from event-based sensors, without any need to convert

input signals, and can classify the input while also completing the

input signals using feed-back connections.

Feed-back connections are rarely used in models of biolog-

ically inspired vision, e.g., HMAX (Riesenhuber and Poggio,

1999), but as we show e.g., in Figure 7, feed-back and recurrency

are essential for implementing general probabilistic inference,
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e.g., to infer missing, ambiguous, or noisy values in the input.

Only in recent years have models become available that directly

link spiking activity in recurrent neural networks to inference and

learning in probabilistic graphical models. Nessler et al. (2013)

have shown that learning via STDP in cortical microcircuits can

lead to the emergence of Bayesian computation for the detec-

tion of hidden causes of inputs. They interpret spikes as samples

from a posterior distribution over hidden variables, which is

also the essential idea for neural sampling approaches (Büsing

et al., 2011), in which spiking neurons implement inference in

a Boltzmann machine via Markov Chain Monte Carlo sampling.

Using clock-like waves of inhibition, Merolla et al. (2010) showed

an alternative implementation of single Boltzmann machines

with spiking neurons.

In biology, the precise role of feed-back processing is still

debated, but the deficiencies of purely feed-forward architectures

for processing the kind of clutter, occlusions, and noise inher-

ent to natural scenes point at least to a role in modulation by

attention signals, and in the integration of multiple cues, possi-

bly from different modalities as well as memory and high-level

cognitive areas (Lamme et al., 1998; Bullier, 2001; Kersten and

Yuille, 2003). A proposal from Hochstein and Ahissar (2002) even

suggests a reverse hierarchy for conscious vision, whereby fast

feed-forward perception is used for a quick estimate of the gist

of the scene, and for activating top-down signals that focus atten-

tion on low-level features necessary to resolve the details of the

task. Such a model can explain the fast pop-out effect of image

parts that violate model expectations, and also provides a model

for fast learning without changes in the early sensory process-

ing stages. This is consistent with a variety of theories that the

brain encodes Bayesian generative models of its natural environ-

ment (Kersten and Yuille, 2003; Knill and Pouget, 2004). The

hierarchical organization of sensory cortices would then natu-

rally correspond to a hierarchy of prior distributions from higher

to lower areas that can be optimally adapted to statistics of the

real world in order to minimize surprise (Friston, 2010). Rao

and Ballard (1999) suggested that inference in such hierarchical

generative models could be efficiently performed through pre-

dictive coding. In this framework, feed-back connections would

signal a prediction from higher to lower layers, whereas feed-

forward connections would encode the error between prediction

and actual input. In Rao and Ballard (1999) it was shown that

such a model can account for several phenomena concerning

the non-linear interaction of center and surround of receptive

fields, and fMRI data support the theory by reporting reduced V1

activity when recognition-related activity in higher areas increases

(Murray et al., 2002).

The framework of Bayesian generative models also provides a

principled way of associating and integrating potentially uncer-

tain cues from different sources, e.g., across sensory modalities

(Knill and Pouget, 2004). It is well known that humans use

all available cues for solving tasks, e.g., by using visual cues to

improve their understanding of speech (Kayser and Logothetis,

2007; Stein and Stanford, 2008). Although traditional mod-

els have assumed that multi-sensory integration occurs only at

higher association areas like superior colliculus (Felleman and

Van Essen, 1991), feed-back connections from higher to lower

areas or between sensory streams are likely to be involved in sen-

sory fusion tasks. Recent studies have revealed the existence of

anatomical connections that would enable cross-modal interac-

tions also at lower levels (Falchier et al., 2002; Markov et al., 2012),

and functional studies have provided some (but not conclusive)

evidence of co-activations of early sensory areas by stimulation

of different modalities [see (Kayser and Logothetis, 2007) for a

review]. Integration might also be required within the same sen-

sory modality, since e.g., the visual pathway splits up into at least

two separate major ventral and dorsal streams.

All these arguments indicate that the traditional concept

of sensory processing in the cortex as a feed-forward hierar-

chy of feature detectors with increasing levels of abstraction

in higher layers (Gross et al., 1972; Van Essen and Maunsell,

1983; Desimone et al., 1984) needs to be reassessed (Markov

and Kennedy, 2013). A closer look at the anatomy of intra- and

inter-areal cortical connectivity reveals an abundance of feed-

back and recurrent connections. Every brain area receives inputs

from a large number of cortical and subcortical sources (Douglas

and Martin, 2011; Markov et al., 2012), and feed-forward con-

nections actually make up only a relatively small fraction of

inputs to neurons along the hypothesized pathways (da Costa and

Martin, 2009). Many studies have demonstrated feed-back effects,

in which the activation or deactivation of a higher area alters

activity in lower sensory areas (Lamme et al., 1998; Bullier, 2001;

Murray et al., 2002), e.g., activation of V1 through a high-level

cognitive process like visual imagery (Kosslyn et al., 1999).

DBN models can play an important role in capturing many

of those effects, and the event-based framework presented in

this article provides a model in which the dynamics and short-

term memory properties of spiking neurons can be exploited for

dealing with realistic input sequences, in our case coming from

bio-inspired sensors. There are still plenty of open research ques-

tions, in particular concerning the integration of spike-timing

based learning in the DBN framework, and the exploitation of

spike-timing for dealing with sequences of inputs. This will likely

require an adaptation of the simple RBM model used as the

building block of DBNs, and will have to include recurrent lat-

eral connections. Similar mechanisms for the processing of input

sequences have been proposed in the framework of Hierarchical

Temporal Memory (Hawkins and Blakeslee, 2004), which opens

up new directions for combining machine learning approaches

with cortical modeling.
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