
Real-time classification of datasets with
hardware embedded neuromorphic
neural networks
Laszlo Bako

Submitted: 3rd September 2009; Received (in revised form): 4th December 2009

Abstract
Neuromorphic artificial neural networks attempt to understand the essential computations that take place in the

dense networks of interconnected neurons making up the central nervous systems in living creatures. This article

demonstrates that artificial spiking neural networksçbuilt to resemble the biological modelçencoding information

in the timing of single spikes, are capable of computing and learning clusters from realistic data. It shows how a spik-

ing neural network based on spike-time coding can successfully perform unsupervised and supervised clustering on

real-world data. A temporal encoding procedure of continuously valued data is developed, together with a hardware

implementation oriented new learning rule set. Solutions that make use of embedded soft-core microcontrollers

are investigated, to implement some of the most resource-consuming components of the artificial neural network.

Details of the implementations are given, with benchmark application evaluation and test bench description.

Measurement results are presented, showing real-time and adaptive data processing capabilities, comparing these

to related findings in the specific literature.

Keywords: spiking neuron models; embedded design; hardware implementation; clustering; FPGA

INTRODUCTION
Research into artificial neural networks (ANNs) has

seen the development of a variety of neuron models

from the initial McCulloch and Pitts concept to the

more biologically realistic spiking models [1]. Recent

trends in computational intelligence have indicated a

strong tendency towards forming a better under-

standing of biological systems and the details of neu-

ronal signal processing [2, 3]. Research in this area is

motivated by the desire to form a more comprehen-

sive understanding of information processing in bio-

logical networks and to investigate how this

understanding could be used to improve traditional

information processing techniques. Spiking neurons

(SNs) differ from conventional ANN models as

information is transmitted by means of spikes rather

than by firing rates. It is believed that this allows SNs

to have richer dynamics as they can exploit the tem-

poral domain to encode or decode data in the form

of spike trains. However, this has demanded the

development of new learning rules drawing again

on inspiration from biology. For example, Hebbian

learning has been identified as a closely biologically

related learning rule and more recent research has

reported a spike timing dependent variation of this

rule called spike timing dependent plasticity (STDP)

[4], which modulates the synaptic efficiency of syn-

apses. Other learning rules, similar to those used in

sigmoidal neural networks, can be devised to be

applied in spiking neural networks, as well, e.g. a

back-propagation-like rule presented in [5], named

Spike-prop. There are also other interesting

Laszlo Bako received the BS and MS degrees in electrical engineering in 2000 and 2001, respectively from the ‘Petru Maior’

University, Tirgu-Mures, Romania. He will present his PhD thesis on Hardware Implemented Neuromorphic Neural Networks

in November 2009 at the ‘Transilvania’ University of Brasov, Romania. He is an Assistant Professor with the Electrical Engineering

Department, of the Sapientia University, Tirgu-Mures, Romania. His research interests include embedded systems, reconfigurable

computing, artificial intelligence, and real-time systems.

Corresponding author. Laszlo Bako, Sapientia University, Electrical Engineering Department, Research Group on Biological

signal processing and artificial intelligence, Str. Sos. Sighisoarei 1C, Tg-Mures/Corunca, Romania. Tel.: þ40-365-403033;

Fax: þ40-265-206211; E-mail: lbako@ms.sapientia.ro

BRIEFINGS IN BIOINFORMATICS. VOL 11. NO 3. 348^363 doi:10.1093/bib/bbp066
Advance Access published on 6 January 2010

� The Author 2010. Published by Oxford University Press. For Permissions, please email: journals.permissions@oxfordjournals.org

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/1

1
/3

/3
4
8
/2

2
5
6
7
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



applications in the literature that are proposing the

use of spiking neural networks as a Bayesian interface

[6–8].

The main contributions this article brings are the

real-time, on-chip learning capabilities, the even

quicker response times after learning, the favorable

hardware resource utilization and the superior per-

formance in solving classification problems. The

implementation of a spiking neural networks pres-

ented in this paper—with embedded soft-core

microcontrollers—have also proved to be more effi-

cient in terms of FPGA hardware resource utiliza-

tion, than other, fully parallel implementations that

used spike rate coded spiking neural networks

(SNN).

Software simulation of network topologies and

connection strategies provides a platform for the

investigation of how arrays of spiking neurons can

be used to solve computational tasks. These simula-

tions face the problem of scalability, because biolog-

ical systems are inherently parallel in their

architecture whereas microcontrollers or PCs are

based on sequential processing architecture. On the

other hand, these simulations could be implemented

on computers with multi-core or many central pro-

cessing units (CPUs) but it would be a huge waste of

computing power, since the capacity of the CPU

cores is far greater than what is needed for real-time

computation of a single artificial neuron.

Therefore, it is difficult to assess the efficiency of

these models to solve complex problems [9]. When

implemented on parallel hardware, NNs can take full

advantage of their inherent parallelism allowing for

specific units to be designed and added that boost the

computing speed. Hence, these circuits will run

orders of magnitude faster than software simulations,

becoming appropriate for real-time applications

while staying low-cost. Developing custom applica-

tion specific integrated circuit (ASIC) devices for

NNs, however is both time consuming and expen-

sive. These devices are also inflexible, for instance the

modification of the basic neuron model would

require a new development cycle to be undertaken.

Field Programmable Gate Arrays (FPGAs) are

devices that permit the implementation of digital

systems, providing an array of logic components

that can be configured in a desired way by a config-

uration bit-stream. The device is reconfigurable, so a

change to the system is easily achieved and an

updated configuration bit-stream can be downloaded

to the device.

This article aims to report on the issues arising

from the author’s experience in implementing spik-

ing neural networks on reconfigurable hardware.

This enables the identification of a number of chal-

lenges facing the area in terms of creating large-scale

implementations of spiking neural networks on

reconfigurable hardware, particularly that operate in

real time, and yet demonstrate biological plausibility

in terms of the adaptability of the architecture. The

presented implementations of a SNN, partly sacrifice

the fully parallel nature of the design, by embedding

soft-core microcontroller modules (Xilinx PicoBlaze

and MicroBlaze). These microcontrollers do not use

dedicated hardware resources of the FPGA platform.

Instead, the vendor delivers these as a source code

package written in a hardware description language

(HDL). Therefore, soft-core microcontrollers con-

sume the same reconfigurable space of a FPGA cir-

cuit as any related logic the designer might develop.

The assembly or C language written code running

on these parts replaces the cell body computation

logic. By doing so, the SNN’s epoch computation

time increases slightly, but important gains can be

found in terms of slice utilization and available

embedded memory modules, also known as

BlockRAM modules. This yielded the possibility of

enhancing the precision of the input variable spike

coding, as well as the clustering capability of the

SNN. Implementing a network with more inputs

will also be possible.

The classification of datasets using spiking neural

networks presented in this paper is inspired by the

local receptive fields of natural neurons. The input

values of the implemented SNNs have been encoded

by overlapped and graded sensitivity profiles. This

multiple encoding assures that clusters will be classi-

fied flexibly. An approach like this is vital in unsu-

pervised algorithms, since the scaling information is

a-priori unknown. Extending the network to mul-

tiple layers it can be demonstrated, that the sequen-

tial nature of pulsing neurons can be exploited to

validate the correct classification of overlapping clus-

ters. It is known, that in a multilayer Radial Bases

Function (RBF) neural network, the neurons of the

first layer are focused on cluster components. This

model is designed so that the firing times of its

output pulses depend on the synchronism and the

occurring time of the synchrony of the input pulses.

The synchronism in turns can be optimized by coor-

dinating the relationship between the pattern of

the input pulses and the synaptic delay pattern.

Classification of datasets with hardware embedded neural networks 349
D

o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/1

1
/3

/3
4
8
/2

2
5
6
7
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Most applications of pulsed and conventional neural

networks are implemented using software simulators.

Moreover, the computations in the aforementioned

SNNs are also quite complex for hardware imple-

mentation. This limits one of the most important

advantages of neural networks, the massive parallel-

ism. In this article, the aim is to design hardware

circuits for the proposed neural networks using

field programmable gate arrays (FPGAs). As FPGA

circuits are digital systems, the advantages of digital

technique like robustness to noise and design flexi-

bility is naturally effective.

IMPLEMENTINGA PULSED
NEURALNETWORKWITH SPIKE
DELAYS
The architecture of the SNN is feed-forward, using

leaky integrate-and-fire neurons. The connections of

the network are composed of a set of k synapses,

each with a wk
ij weight and a dk delay (Figure 1).

An input pulse from neuron I generates a set of

post-synaptic weighted potentials (PSP, a function

that models the impact of an input pulse on the tar-

get neuron as a temporal function). The magnitude

of the synaptic weight determines the height of

the PSP. In each time step, these PSP values are

added to form a membrane potential at the tar-

get neuron. Given that this sum exceeds a

predefined threshold �, the J output neuron will

generate an axonal spike. The values given as

inputs to the network can be encoded into the

synaptic values through delayed learning [10–12].

After the learning phase, the temporal moment of

the activation of the output neurons will reflect

the distance between the sample given and sample

that has been learned, thus implementing a RBF-like

neuron behavior.

The implemented spiking neural model
From a formal point of view, a neuron j, with a set

of �j pre-synaptic neurons receives a set of spikes

with activation moments ti. The dynamism of the

internal state variable xj(t) (1) is determined by the

arriving spikes, with the influence given by the spike

response function e(t), weighted with the synaptic

efficiency wij.

xjðtÞ ¼
X

i2�j

wij" t� tið Þ ð1Þ

The spike response function given in (2) models effi-

ciently the un-weighted postsynaptic potential (PSP)

for an input spike which affects a single neuron. The

amplitude of PSPs to obtain the effective post-

synaptic potentials are modulated with post-synaptic

weights wij. A simplified version of the spike response

function defined in (3) was used in experiments.

In the implemented network, an individual con-

nection consists of a fixed number of synaptic termi-

nals, where all the terminals constitute a

sub-connection associated with a delay and a differ-

ent weight.

The synaptic terminal delay dk at synaptic terminal

k is defined as the time difference between

the pre-synaptic neuron activation time and the

time when the post synaptic potential starts

increasing.

A pre-synaptic spike at synaptic terminal k is

described like a PSP with standard amplitude and a

delay dk. The un-weighted contribution of a single

terminal to the value of the state variable is presented

in the formula:

yki ðtÞ ¼ " t� ti � dk
� �

ð2Þ

with a spike response function form like a PSP, with

e(t)¼ 0 for t < 0.

Time ti represents the activation time for the

pre-synaptic neuron i, and dk is the delay associated

with synaptic terminal k. The response function, for

a single spike which describes a standard PSP has the

form:

"ðtÞ ¼
t

�
e1�

t
� ð3Þ

modeling a simple � function for t > 0, and � model-

ing the membrane potential delay time constant

which determines the rising time and the delay for
Figure 1: Theoretical concept of the implemented

neural network.

350 Bako
D

o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/1

1
/3

/3
4
8
/2

2
5
6
7
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



a PSP. Expanding (1) to include multiple synapses in

a connection, and inserting (2), the state variable xj
of neuron j, which acquires spikes from all the neu-

rons I, can be described like a weighted sum of

pre-synaptic contributions:

xj tð Þ ¼
X

i2�j

X

m

k¼1

wk
ijy

k
i tð Þ ð4Þ

where wk
ij represents the synaptic weight of terminal

k. The activation time tj for a neuron j is determined

by the first time when the state variable exceeds the

v: xj (t� v) threshold. As a result, the activation time

tj is a nonlinear function of the state variable xj:

tj¼ tj(xj).

A novel hybrid learning rule is introduced, that

mixes unsupervised (Hebb) and supervised algo-

rithms. The weights are tuned according to a tem-

poral version of the Hebb algorithm with regard to

the desired output of the network, as described in the

following sections. If a PSP precedes closely the arri-

val of an axonal activation pulse, then the weight is

increased, because it is considered to be of high effi-

cacy in increasing the membrane potential of the

post-synaptic neuron. Other synapses, which receive

input spikes at a greater relative temporal distance

from the axonal spike will have their weights

decreased, reflecting their reduced addition to the

post-synaptic membrane potential. For a weight

with a delay dk from neuron I to neuron J, a

proper formula would be:

�wk
ij ¼ �L �tð Þ ¼ � 1� bð Þ exp

�t� cð Þ2

�2

� �

þ b, ð5Þ

according to [7], but this formula is unrealistic in

terms of hardware implementations, hence a simpler

method is needed. The weights are protected against

overflow and underflow events. The input values are

encoded into delayed spikes emitted by the input

neurons. Each input neuron is allowed to emit a

single spike during the encoding time frame.

After studying [13–15], several schemes, using

multiple domain receptive fields have been investi-

gated in order to extend the encoding precision and

capacity, distributing an input variable through mul-

tiple input neurons. A distribution code, where the

input variables are encoded with integrated and

overlapping functions, can be found as an often stud-

ied method to represent real values. In these studies,

the activation function of an input neuron is mod-

eled as a receptive field that determines the activation

rate. Translating this paradigm into relative activation

moments is relatively simple: an optimally stimulated

neuron will fire at time t¼ 0, while an activation

timestamp of up to t¼15 is assigned to neurons

with weaker stimulation (Figure 3).

In order to encode multidimensional data in

the manner presented above, a choice has to be

made regarding the dimension of the neuron’s

receptive fields. The least expensive way to do this,

in terms of number of neurons needed, is to

encode each input with 1-D, independent receptive

fields.

Since the interest is in multidimensional classifi-

cation, this encoding is the most convenient, because

it is linear with regard to the number of needful

neurons per dimension and it is, also, adaptable

allowing the dimension encoding with higher preci-

sion, without excessive neural costs.

In the following sections two benchmark test

implementations will be presented aiming to assess

the computational performance of this method, and

proving that it could be suitable as an analytical tool

in genetics or molecular biology.

BENCHMARKTEST
IMPLEMENTATIONç
CLASSIFICATIONOF THE
FISHER IRIS DATASET
The first benchmark implementation is the classic

test that proposes the classification of Fisher’s IRIS

dataset [16], solved using hardware implemented

SNN. This test is often used even today, being a

reference for many applications. The dataset contains

three classes of fifty samples each, describing three

types of Iris flowers by enumerating four attributes

per sample.

The spiking neural network implemented on the

FPGA circuit, that solves this benchmark test has

four inputs and three outputs, as Figure 2 shows.

In order to classify correctly the elements of the

IRIS dataset the values of the attributes—presented

as inputs to the network—were scaled (original

values range from 0.1 to 7.9, these were scaled

between 1 and 80) so that an integer representation

to be possible in the FPGA circuit.

The SNN was trained to activate one of its output

neurons only when the sample presented at the

inputs belongs to the class associated with the respec-

tive output neuron.

Classification of datasets with hardware embedded neural networks 351
D

o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/1

1
/3

/3
4
8
/2

2
5
6
7
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Implementing the input neuronsç
encoding the input variables into
spike delays
Having a hardware implementation as aim, a choice

has been made to use a spike-time encoding scheme

of the input variables instead of spike-rate coding.

This simplified the circuit needed for this encoding,

while using the inherent sequential nature of these

digital systems to encode the information.

Only a small number of the synaptic weights are

represented here, in order to show properly the

effect of the learning mechanism. Note that some

of the weight values do not change at all. This hap-

pens due to the fact that the input neuron, to which

the respective synapse is connected to, did not fire

for the given input values.

Several versions of the encoding algorithm (of the

input values into delayed spikes) have been experi-

mented, considering the reconfigurable resources

available in the FPGA chip (Xilinx Spartan3E

XC3S1200E) of the utilized development board. In

order to make the best use of the reconfigurable logic

blocks, specifically, to free up as many logic cells as

possible for the implementation of spiking neurons,

different approaches have been tested, to store the

values of the functions of the input neurons in

memory modules embedded into the reconfigurable

FPGA circuit (BlockRAM) modules.

The designer’s dilemma is to decide how to use

these resources, sacrificing—even if only partially—

the pure parallel nature of the implementation or to

exploit more BlockRAMs than it would actually be

necessary to store the targeted data.

The input space defined by the IRIS attribute

values could be covered smoothly by 13 input neu-

rons with triangular activation functions, displayed in

Figure 3.

It is easy to notice, that the vertical bar in this

figure, representing the value 35 given as example

input value intersects four of the thirteen triangular

functions (numbers 5, 6, 7 and 8), thus activating the

corresponding input neurons. Each of these input

neurons will fire (emit an output spike) a number

of cycles after it has received the input value,

depending on the position of the intersection point

with its activation function. The inactive neurons

will not fire for this input value.

It is important to notice, that each input neuron

will activate only for a reduced number of input

values with a properly delayed spike. These values

might be calculated in-circuit, but it would consume

precious resources and computing power. Therefore,

it has been decided to pre-compute these values

using a Matlab program and then to store them in

the BlockRAM modules of the FPGA circuit. Using

this program it is easy to vary the overlapping areas

Figure 2: Block diagram of the implemented SNN, for the IRIS dataset classification.

352 Bako
D

o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/1

1
/3

/3
4
8
/2

2
5
6
7
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



of the receptive fields as well as the number of input

neurons used. On the other hand, the program gen-

erates the VHDL code for the BlockRAM

initialization.

These values will determine the moment when

the input neurons will emit an output spike, relative

to the moment of appearance of the new input value

to be encoded (steps 0–15 of each timeframe). The

values given as addresses to the memories are actually

the input values of the SNN.

The synapse module
This module is responsible for the amplification or

attenuation of the input spikes, sending a weighted

value to the neuron soma.

This module also implements the novel, super-

vised learning algorithm, which is an adapted version

of the Hebb method, based on temporal delay rules,

as described below.

Since it is easier to implement a rule based learn-

ing algorithm in hardware than one based on math-

ematical formulas, this has been an obvious choice.

On the other hand, due to the need for a supervised

method, a new rule-set has been devised, that can be

considered as a new, hardware implementation-

friendly learning rule for SNNs.

The synapses will test the time-stamp of each

incoming pre-synaptic pulse and will adjust the

weight value according to a temporal version of

the Hebb rules but will also take into account if

the target neuron was supposed to fire for the

actual input value pair or not. Therefore, as

Table 1 shows, during a time-frame of 16 clock

cycles, for those pulses, that arrived with at most

five cycles before the post-synaptic activation

(of the corresponding output neuron, axonal pulse)

and if the corresponding neuron should

spike (in order to correlate its activation with the

presence of an input pair of the relating cluster)

the weight increases sharply. In the case of pulses,

that have a delay between 5 and 10 clock cycles

and similar conditions, the weight is increased

moderately. For those delayed postsynaptic pulses,

that arrive after the axon has spiked the synapse

will be weakened proportionally, but only if the

axonal spike shouldn’t be there for the actual input

pair.

The inputs and outputs of this module are used

to control the learning process and to load or store

Figure 3: Triangular functions of the receptive fields, with scaled delay values (IRIS). As this figure presents, the

functions of the receptive fields (generated by a Matlab program) of the input neurons are not Gaussians but trian-

gular, to simplify the hardware implementation. The x-axis of Figure 3 holds the input values given to the network,

values that are positive integer numbers between 1 and 80 (scaled values of the IRIS dataset element properties).

Each value of this interval is distributed to four input neurons, activating as many receptive fields.

Classification of datasets with hardware embedded neural networks 353
D

o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/1

1
/3

/3
4
8
/2

2
5
6
7
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



the weight values. These randomly generated weight

values (represented on 8 bits) of the synapses will be

adapted according to the rules of the learning mech-

anism (Figure 4), as the inputs are presented to the

network by a Control Unit that reads them from a

pre-loaded BlockRAM memory.

The output neuronmodule of the psSNN
The soma unit or output neuron is responsible for

the summation of the arriving, weighted and tempo-

rally delayed, postsynaptic values. Each of the three

output units of the implemented network receives

a number (equal to the number of synapses in the

project, that is 156, calculated by multiplying the nr.

of inputs� nr. of input neurons for one

input� number of output neurons - 4� 13� 3) of

inputs represented on 8 bits each. By summing these

values, and following the same time-step pace than

the synapses, the somas computes the membrane

potential (MP) of the cell. If this MP exceeds a pre-

defined threshold value (THP), than the spiking

neuron will fire (emit an axonal spike), and the

MP will be reset to a special, hyper-polarization

level, which is lower than the resting potential. If

no incoming, postsynaptic values are received

during a certain time-step, then the MP will decrease

linearly, thus implementing a kind of leaky

integrate-and-fire neuron. Implementing this

module is one of the key issues of the project,

Table 1: The implemented novel learning rule

Synaptic

input present

Axon value

-SNoutput

Time-step

value rules

Target

output value

Adapt

weights

Compute

somas

0 0 ^ 0 ^ ^

0 0 ^ 1 ^
P

0 1 ^ 0 ^ ^

0 1 ^ 1 ^
P

1 0 ^ 0 ^ ^

1 0 PreTS << PostTS 1 ""
P

1 0 PreTS < PostTS 1 "
P

1 1 PreTS > PostTS 0 # ^

1 1 PreTS >> PostTS 0 ## ^

1 1 ^ 1 ^
P

Figure 4: Changing weight values during learning.

354 Bako
D

o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/1

1
/3

/3
4
8
/2

2
5
6
7
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



because it presumes the summation of more than 156

variables on 8 bits (flowchart of the implemented

PicoBlaze assembly code can be seen in Figure 5),

comparisons and register value adjustments, all

performed in parallel. All these operations inherently

lead to high FPGA hardware resource utilization.

Setting as aim to implement a fully parallel archi-

tecture for the SNN, using distinct reconfigurable

elements of the FPGA for each task, thus

performing concurrent computations, would yield

in a very constrained size of the neural network,

due to the limited number of reconfigurable blocks

available.

The embedded Xilinx PicoBlaze soft-core micro-

controller used to implement the soma modules,

also known as KCPSM3, is an 8-bit RISC micro-

controller with a small footprint of only 96 Spartan3

slices, which is about 1,10% of the total of 8672

slices of the Xilinx XC3S1200E FPGA used. The

highest clock frequency it supports is 87MHz that

yields a respectable �43.5MIPS. By implementing

in the PicoBlaze software the functionality of the

soma modules, important reconfigurable resources

have been freed up, maintaining real-time

performance.

A very important and difficult to solve issue in this

project was the timing of the different algorithms in

the design running on different circuits (dedicated

hardware resources or embedded microcontrollers).

Therefore, all the synchronization is commanded

by the three PicoBlazes implementing the somas,

as these modules generate the clock signals for

the other parts. Besides doing so, the soma algorithm

is also executed. In order to be able to follow

the evolution of the internal variable of the SNN

(MPs and weights) a monitoring unit has been

designed, featuring a separate PicoBlaze, which peri-

odically reads these values and sends them to a con-

nected PC.

Test bench system description
The entire neural circuit is controlled by a fourth

embedded soft-core PicoBlaze microcontroller,

shown as Monitoring Unit in Figure 8. This

module commands the step-by step execution of

the training process.

The flowchart of the assembly program running

in this microcontroller is presented in Figure 10,

while the phases and steps of the neural network

operation are summarized in Figure 9.

The IRIS dataset has been split into a training set

containing 80% of the samples and a test set with the

rest of 20% of the elements.

The first loop in Figure 10 (epochs) goes ran-

domly through all these input values of the training

set, enabling the input generation module (Control

Unit) to read these values from the attached

BlockRAM memory. Then, the Input encoding

block is enabled, and the input blocks containing

the input neurons will read the corresponding

delay values from their embedded BlockRAM mem-

ories. Afterwards, the encoding sequence (of 16 cycle

timeframe) of these values into delayed spikes will be

started with the proper command signals activated by

the Control Unit PicoBlaze.

Next, the synapse modules are activated. At this

point the somas have the first set of inputs at their

ports, so their implementing PicoBlazes are activated

to compute one time step. At the proper moments

(Figure 9) the SNN’s most important parameters

(weights, MPs, Axon values) are read into the

Monitoring Unit’s controller, then sent via a

Figure 5: Flowchart of the PicoBlaze assembly code

that implements the soma algorithm.

Classification of datasets with hardware embedded neural networks 355
D

o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/1

1
/3

/3
4
8
/2

2
5
6
7
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



UART module to a PC, for later analysis and visu-

alization (Figures 6 and 7).

One of the great assets of the present implemen-

tation is that it performs in real-time, despite the fact,

that the involved computation is partially serialized

due to the use of embedded microcontrollers. These

controllers operate at a clock frequency of 50MHz,

executing an instruction in two clock cycles.

Figure 6: Soma dynamism with (A) and without (B) lateral inhibition. This figure presents two sets of these MP

data, during the training of the SNN. The somas deliver laterally connected inhibitory signals to the other somas,

in order to prevent them from spiking together, hence differentiating the individual components to be learned.

If these inhibitory signals are removed, the somas will behave differently, as the figure on the right shows. Note

that when one of the two somas is firing, the MP of the other neuron is reset to the resting value. After activation

a neuron goes into hyper-polarization and according to the used model this neuron should not emit another spike

so the MP will rise slowly, only to reach the resting value by the end of the current time-step.

356 Bako
D

o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/1

1
/3

/3
4
8
/2

2
5
6
7
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



The soma algorithm is implemented in a code of

about 200 instructions, while all the other compo-

nents of the SNN are implemented as modules oper-

ating in parallel. This yields a computation time/

epoch of about 64 ms, with a learning time of

16ms. Therefore it can be stated, that this approach

in implementing neuromorphic neural networks has

great potential even in real-time applications.

BENCHMARKTEST
IMPLEMENTATIONç
CLASSIFICATIONOF THE
WISCONSIN BREASTCANCER
DATASET
The second benchmark implementation is the test

that proposes the classification of Wisconsin Breast

Cancer Dataset IRIS dataset (WBCD), solved using

hardware implemented SNN. The dataset contains

two classes (malign and benign) of features sets (com-

puted from a digitized image of a fine needle aspirate

(FNA)) of a breast mass. These nine features or attri-

butes of each of the 683 elements of the dataset

describe characteristics of the cell nuclei present in

the image [17].

Since this is a more complex classification task,

than the one previously presented, in this case the

greatest computational load of the project has been

assigned to be carried out by an embedded

32 bit soft-core processor, the Xilinx MicroBlaze.

Figure 7: Measurement results on all the output neurons of the FPGA implemented SNN. The three subplots in

this figure show the variation of the membrane potential in the output neurons. The specific parameters of the

soma model are also plotted, to aid the readability of the figure. Also, the axonal values can be noted, showing

when the particular output neurons identified the input pattern of the attributes as a sample of the IRIS dataset cor-

responding to one of the classes.

Figure 8: Block diagram of the test bench system.

Classification of datasets with hardware embedded neural networks 357
D

o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/1

1
/3

/3
4
8
/2

2
5
6
7
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



The MicroBlaze embedded soft core is a reduced

instruction set computer, optimized for Xilinx

FPGAs, implemented with Harvard architecture. It

means that it has separate bus interface units for data

and instruction access.

The input encoding unit (IEU) (into delayed

spikes) has been designed as a separate peripheral

device—in the remaining reconfigurable FPGA

fabric –, and has been connected to the

MicroBlaze on the Processor Local Bus (PLB).

The task of the input encoding peripheral is to

convert those nine attributes of the elements in the

WBCD, that are used as inputs to the hardware

SNN, into spikes emitted by the activated input neu-

rons at different time-steps of a given time-frame

(similarly to the IRIS encoding, see Figure 11).

These pulses (emitted by 4 input neurons out of 16

per input, a total of 4� 9¼ 36 in a time-frame of 15

cycles) are then transmitted to the MicroBlaze pro-

cessor that performs the rest of the SNN

computation.

The WBCD element attributes are values repre-

sented with one decimal place (range 0–10), hence a

pre-scaling operation (to the range 0–100) was

needed to ease the digital hardware storage (in

embedded BlockRAMs).

The code running in MicroBlaze will extract an

element of the WBCD from the BlockRAM storage

by sending a proper command to the IEU as a 64 bit

value containing all nine attributes (represented on 7

bits) and the class identifier as the 64th bit (0-benign,

1-malign).

The synapses (with the learning rules) and

all the neuron bodies or somas (Figure 12) of

the SNN (six in the hidden layer and two in the

output layer) are implemented as functions of the

Figure 9: Steps of the SNN computation.

Figure 10: Flowchart of the PicoBlaze program of the

Control and Monitoring Unit.

358 Bako
D

o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/1

1
/3

/3
4
8
/2

2
5
6
7
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



software executed by the embedded MicroBlaze

processor. Since the SNN is fully connected the

number of synapses—connecting the input neuron

to the hidden neurons and these to the output neu-

rons, respectively—is much larger than in the IRIS

application. This number yields to 876, if we multi-

ply the number of aforementioned elements (9

inputs� 16 encoding input neurons� 6 hidden neu-

rons¼ 864) plus the 12 synapses connecting the

hidden layer neurons to the output somas. This

also results in a 4-fold increase in memory capacity

to store the synapse variables (weights). Inevitably,

the available BlockRAM capacity of the used

FPGA circuit (Xilinx Spartan3E XC3S1200E) has

been exceeded. Therefore, the external DDR

RAM module of the development board had to be

used to store the data segment of MicroBlaze

software.

The role of the hidden layer neurons in this appli-

cation is feature extraction form the 9D space

defined by the inputs of the SNN, the WBCD attri-

butes, leading to better classification results.

Figure 11: Triangular functions of the receptive fields, with scaled delay values (WBCD).

Figure 12: Block diagram of the implemented SNN, for theWBCD classification.The SNN contains 9 input encod-

ing units with 16 input neurons each that turn the input values into time-delayed spike patterns. The network is

fully connected, with the six hidden layer neurons connecting to the input neurons through 9*16*6¼ 864 synapses.

Further 12 synapses connect the hidden layer neurons to the two output neurons.

Classification of datasets with hardware embedded neural networks 359
D

o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/1

1
/3

/3
4
8
/2

2
5
6
7
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



The implemented learning algorithm
The neurons of the hidden layer are built on the

same model as the one in the output layer, hence

their operation is identical, both types being imple-

mented as functions written in C language, to be

executed by the MicroBlaze processor. Two groups

of three were formed in the hidden layer, alternating

their prescribed activation value according to the

class of the current element presented at the inputs,

showed in the WBCD.

Obviously, the WBCD has been split into a train-

ing set, containing some 65% of the original dataset’s

elements, the rest forming the test set.

The neurons of the output layer (Figure 13) have

been trained to activate when at least half of the

hidden neurons are active. The synaptic weight of

all neurons will be adjusted with a value that depends

on the number of the time-step in which the corre-

sponding post-synaptic value has been received.

Hence, for post-synaptic values received in the

first time-step—which means, that one of the input

neurons was activated with the maximum value of its

sensitivity profile—the connected synapse has to be

strengthened firmly (it will be increased with 0.5% of

the maximum value of the weight, for instance 60,

Figure 13: Model of the neurons used in the WBCD

application. The soma accumulates the weighed

post-synaptic values from the input encoding neuron

assemblies into a membrane potential parameter. If

this value exceeds the predefined thershold potential

(THS), then the neuron will activate, emitting an

axonal spike, or action potential. After activation, the

neuron will enter a state named refractoy period,

where further activations are inhibited due to the

membrane potential being reset to a hyper-polarization

value, well below the resting potential. If no inputs are

received during a 15 cycle time-frame, the membrane

potential’s only change will be the loss of a charge

equal to the leak value that eventually would lower it

to the resting value.

Figure 14: Sammon projection plot of an intermediary learning stage of the SNN implementing theWBCD classi-

fication. The smaller dots (blue) and the larger ones (red) denote elements classified to the two classes of the

WBCD. The Z axis (Sammon dimension 3 or hight) can be interpreted as the error percent (scaled between 0^1)

of the classification accuracy. This means, that elements plotted on the base of the cube are already 100% trained,

the error increasing towards the top.

360 Bako
D

o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/1

1
/3

/3
4
8
/2

2
5
6
7
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



weights ranging 0–1200). When a synapse will emit a

post-synaptic value in a later time-step, the axonal

value is also active, so is the prescribed, the weight

will be increased with the time-step number’s

value, according to the following formula: (weights

were initialized with random values limited to

wik
j max � 0:3):

�wik
j ¼

wik
j max

m
ð6Þ

where m¼ [1/14] is the time-step number. If a

neuron activates when the prescribed value does

not require it to, the weights that contributed to

this activation are weakened.

Sammon’s projection [18] (used to plot Figures 14

and 15) is a nonlinear projection method to map a

high dimensional space onto a space of lower dimen-

sionality. The algorithm maps the original space onto

the projection space in such a way that the inter

object distances in the original space are being pre-

served in the projected space.

CONCLUSIONS
The SNN implementing the IRIS dataset classifica-

tion has shown an error rate of about 18% after 300

training cycles. On the other hand, the hardware

SNN that performs the classification of the WBCD

did not manage to classify correctly the presented

elements in �8% of the cases, after 150 training

cycles. It is very important to mention, that after

the on-chip training has finished, in the testing

phase both applications performed in real-time

(IRIS: sub-millisecond, WBCD 5–10ms), despite

the fact that both use embedded soft-core processors,

that partially serialize the computations.

The plot in Figure 16 compares the performance

of the presented IRIS benchmark test’s hardware

Figure 15: Sammon projection plot at the end of the learning stage of the SNN implementing theWBCD classifi-

cation. Darker and lighter dots denote elements classified to the two classes of the WBCD. The Z-axis (Sammon

dimension 3 or hight) can be interpreted as the error percent (scaled between 0 and1) of the classification accuracy.

This means, that elements plotted on the base of the cube are already 100% trained, those that stayed at the top

have not been properly trained, but might deliver correct classification on the test set with lower probability.

Classification of datasets with hardware embedded neural networks 361
D

o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/1

1
/3

/3
4
8
/2

2
5
6
7
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



SNN implementation, with other known methods,

that are usually implemented on general purpose

single or multi-core CPUs. A similar chart, in

Figure 17, displays the comparison of the WBCD

classification solving hardware SNN’s accuracy with

software implemented methods.

Although, the accuracy of the implemented sys-

tems, presented by these charts, does not excel

amongst the other methods, the main contributions

they bring are the real-time, on-chip learning cap-

abilities, the even quicker response times after learn-

ing and the favorable hardware resource utilization.

The yielded computation time/epoch of about

64 ms, with a learning time of 16ms of the IRIS

implementation, for instance, outperforms the results

presented in [19], where the authors report, that

their FPGA implemented, genetically evolved

ANN system takes approximately 65ms to complete

the clustering of the Fisher’s Iris data.

The results presented in Table 2 have been

obtained through software implementations of the

author (Matlab, SNN) and from the specific litera-

ture, respectively [20]. Both datasets had been

divided into training and test sets. The Matlab LM

algorithm has been run for 50 epochs of 1500 cycles

each.

Concluding, the implementation of a spiking

neural networks presented in this article—with

embedded soft-core microcontrollers—have proved

to be more efficient in terms of FPGA hardware

resource utilization, than other, fully parallel imple-

mentations, that implemented spike rate coded

SNN. This justifies further research in this field, of

SNN with partially serialized computation and

RAM stored state variables for the components,

which are also present in the recent specific literature

[21–24].

This study reviewed the concepts of neuro-

morphic artificial neural networks and their possible

digital hardware implementations. It proposed a

framework on implementing these intelligent sys-

tems on reconfigurable circuits with embedded

microcontrollers to demonstrate their superior

performance in solving classification problems.

Figure 17: Comparative plot of the implemented

SNN’s performance with other methods (WBCD).

Table 2: Detailed comparison of the implemented hardware SNN’s performance and structure with software

implementation executed on single-core general purpose processor based PCs

Precision (%)

Algorithm Inputs Hidden Outputs Iterations Training set Test set

Fisher IRIS dataset

Spike-Prop 50 10 3 1000 96.4 95.3

Matlab BP 50 10 3 2.6�106 97.9 95.8

Matlab LM 50 10 3 3750 98.8 95.9

SNNBako¤ 4 0 3 300 85 83.4

Wisconsin Breast Cancer dataset

Spike-Prop 64 15 2 1500 97.6 97.3

Matlab BP 64 15 2 9.2�106 97.8 96.2

Matlab LM 64 15 2 3500 98.1 96.5

SNNBako¤ 9 6 2 250 90.2 89.5

Figure 16: Comparative plot of the implemented

SNN’s performance with other methods (IRIS).

362 Bako
D

o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/1

1
/3

/3
4
8
/2

2
5
6
7
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



The resulting systems show the potential of becom-

ing useful tools in a wide range of possible

applications in contemporary genetics and molecular

biology.

Key Points

� Themethodologypresented canbe a useful tool inmanybiology

related applications.

� Hardware implementation oriented new learning rules and an

input encodingmechanism are presented.

� Thehardware implemented intelligent systemsprovidereal-time

and adaptive data processing.

FUNDING
The achievements presented in this article are part of

the results of the research grant CNCSIS TD84/

2008, directed by the author and funded by The

National University Research Council of the

Romanian Ministry of Education and Research.

References

1. Wulfram G, Werner W. SpikingNeuronModels. Cambridge:
Cambridge University Press, 2002.

2. Roth U, Jahnke A, Klar H. Hardware requirements for
spike-processing neural networks. In: Mira J, Sandoval F,
(eds). From Natural toArtificial Neural Computation (IWANN).
Berlin: Springer, 1995;720–7.

3. Schaefer M, Schoenauer T, Wolff C, et al. Simulation of
spiking neural networks – architectures and implementa-
tions. Neurocomputing 2002;48(1):647–79.

4. Bi GQ, Poo MM. Synaptic modifications by correlated
activity: Hebb’s postulated revisited. Ann Rev Neurosci
2001;24:139–66.

5. Bohte SM, Kok JN, La Poutré H. Spike-prop: error-back-
propagation in multi-layer networks of spiking neurons.
Neurocomputing 2002;48(1–4):17–37.

6. Deneve S. Bayesian inference in spiking neurons. In:
Lawrence KS, Yair W, Léon B, (eds). Advances in Neural
Information Processing Systems. Vol. 17. Cambridge, MA:
MIT Press, 2005;353–60.

7. Rajesh PNR. Hierarchical bayesian inference in networks
of spiking neurons. In: Lawrence KS, Yair W, Léon B,
(eds). Advances in Neural Information Processing Systems.
Vol. 17. Cambridge, MA: MIT Press, 2005:1113–20.

8. Richard SZ, Quentin JMH, Rama N, et al. Probabilistic
computation in spiking populations. In: Lawrence KS,

Yair W, Léon B, (eds). Advances in Neural Information
Processing Systems. Vol. 17. Cambridge, MA: MIT Press,
2005:1609–16.

9. Delorme A, Gautrais J, VanRullen R, et al. SpikeNET: a
simulator for modeling large networks of integrate and fire
neurons. Neurocomputing 1999;26^27:989–96.

10. Natschläger T, Ruf B. Spatial and temporal pattern analysis
via spiking neurons. Network Comp Neural Syst 1998;9(3):
319–32.

11. Bohte SM, Kok JN, La Poutre H. Unsupervised classifica-
tion in a layered network of spiking neurons. Proc
IJCNN’2000 2000;IV:279–85.

12. Omondi AR, Rajapakse JC, (eds). FPGAImplementations of
Neural Networks, Springer. The Netherlands: Springer, 2006.
ISBN-10 0-378-28485-0.

13. Snippe HP. Parameter extraction from population codes:a
critical assessment. Neural Comput 1996;8(3):511–29.

14. Marchesi M, Orlandi G, Piazza , et al. Fast neural networks
without multipliers. IEEETrans Neural Net 1993;4(1):53–62.

15. Hikawa H. Frequency-based multiplayer neural network
with on-chip learning and enhanced neuron characteristics.
IEEETrans Neural Net 1999;10:545–53.

16. Fisher RA. The use of multiple measurements in taxonomic
problems. Ann Eugen 1936;7:179–88.

17. Mangasarian O, Wolberg W. Cancer diagnosis via linear
programming. SIAMNews 1990;23(5):1–18.

18. Sammon JW, Jr. A nonlinear mapping for data structure
analysis. IEEETrans Comput 1969;C-18:401–9.

19. Low KS, Krishnan V, Zhuang H, et al. On-chip genetic
algorithm optimized pulse based rbf neural network for
unsupervised clustering problem. Lect Notes Comput Sci
2006;4222:851–60.

20. Bohte S, Kok J, La Poutré H. Spike-prop: errorbackpropa-
gation in multi-layer networks of spiking neurons. In:
Verleysen M, (ed). Proc Europ Symp Artificial Neural Networks
(ESANN). D-Facto, 2000;419–25.

21. Maass W, Natschlager T, Markram H. Real-time comput-
ing without stable states: A new framework for neural com-
putation based on perturbations. NeuralComput 2002;14(11):
2531–60.

22. Schrauwen B, Van Campenhout J. Parallel hardware imple-
mentation of a broad class of spiking neurons using serial
arithmetic. In: Verleysen M, (ed). ESANN’2006Proceedings^
European Symposium on Artificial Neural Networks, Bruges
(Belgium). D-Facto, 26–28 April 2006.

23. Bako L, Brassai ST. Spiking neural networks built into
FPGAs: Fully parallel implementations. WSEAS Trans
Circuits Syst 2006;5(3):346–353.

24. Floreano D, Dürr P, Mattiussi C. Neuroevolution: from
architectures to learning. Evolutionary Intelligence 2008;1:
47–62.

Classification of datasets with hardware embedded neural networks 363
D

o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/1

1
/3

/3
4
8
/2

2
5
6
7
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2


