
Krzysztof A. Apt

L.I.T.P, Universite Paris 7

2, Place Jussieu

75251 Paris, France

Jean-Luc Richier

IMAG, LGI,
B.P. 68

St Martin d'Heres Cedex, France

Abstract symmetric distributed termination algorithms are systematically

developed. Solutions are first presented in an abstract setting of Dijkstra,

Feijen and Van Gasteren [DFGJ and then gradually transformed into solutions to

the distributed termination problem of Francez [FJ. The initially used global

real time clock is eventually replaced by local virtual clocks. A dependence

between the degree of clock synchrC)nization and the efficiency of the

solutions is indicated.

1. ABS'.l.'RACT SOID.l'IONS

Following Dijkstra and Scholten [DSJ and Dijkstra, Feijen and van

Gasteren [DFGJ and Topor [TJ we consider a fixed finite set of machines which

communicate by exchanging messages. Communication is considered instantaneous.

At each moment machines are either active or passive. Only active machines can

send messages. The receipt of a message by a machine is the only mechanism

that triggers its transition passive - active. In contrast, the transition

active - passive may occur within each machine "spontaneousily". If there is an

active machine then either a machine will turn passive or a message will

eventually be sent. But when all machines are passive no conununication is any

more possible and the activity ceases.

Similarly as in the above papers we are interested in designing an

algorithm allowing to detect termination of the computation, i.e. to detect

the situation when all machines are passive. AS in [D.PGJ we assume that the

machines can be arranged in a ring along which detection messages will be

propagated. Unlike in [DFGJ we develop here symmetric termination detection

algorithms.

suppose that all machines have access to a global clock. Whenever a

machine turns passive it notes down the current time instant t and sends to

its right-hand side neighbour a detection message with the time stamp t. The

aim of this message is to verify whether other machines were also passive at

the time instant t. If this is the case then termination is detected : at the

time instant t all machines were passive. By assumption detection messages

do not affect machine state. Detection messages are sent clockwise. When

machine a receives from its left-hand side neighbour a detection message

created by machine b two things may happen.

NATO ASI Series, Vol. F14

Control Flow and Data Flow: Concepts of

Distributed Programming. Edited by M. Broy

© Springer-Verlag Berlin Heidelberg 1985

476

If upon its reception it is active then this attempt of machine b

to detect termination fails. The detection message is thus annihilated.

But if upon reception of the detection message machine a is passive
then there is a possil>ility that the inquiry is successful. To this purpose it
suffices to consult the time instant t 0 at which machine a turned for the
last time passive. Machine a was passive since the time instant t 0 until
the moment t 1 of reception of the detection message. We have t .;; t 1 . Thus if

t 0 < t then machine a was passive at the time instant t and the
detection message is forwarded to the right-hand side neighbour.

If t 0 > t then machine a was active at a time instant t 2 such

that t < t 2 .;; t 0 • Thus some machine (not necessarily machine a) was not
passive at the time instant t. Indeed, otherwise no machine could have :been
active at a later time instant. Thus this attempt of machine b to detect
termination fails and the detection message is annihilated.

summarizing, the above algorithm consists of the following two rules.

Whenever a machine turns passive it notes down the current time
instant t and sends to its right-hand neighbour a detection message with the
time stamp t.

When a detection message with the time stamp t is received by a
machine, the message is

- destroyed if
i) it was created by the machine, or

ii) the machine is active, or
iii) the machine is passive but the time instant when it turned

passive for the last time is larger than t,

-· forwarded to the right-hand side neighbour otherwise.

Actions prescribed by each rule are considered atomic, i.e. they
cannot be interrupted.

This algorithm satisfies the following three properties.

Property l

When a machine receives back its detection message then termination is
detected.

477

Property 2

When the computation proper terminates its termination will be
eventually detected by one of the machines.

Property 3

If some of the machine is active then eventually either a machine will
turn passive or a message belonging to the computation proper will be sent.

Proof of property 1

By construction if a detection message with the time stamp t makes a
full cycle then every process was passive at the time instant t.

Proof of property 2

Suppose that the computation proper terminates. consider a machine
which became passive as the last one, say at the time instant t. The
detection message of this machine with the time stamp t will make a full
cycle. By property 1 termination will thus be eventually detected.

Proof of property 3

suppose that at least one of the machines remains active but none of
them performs the computation proper. By construction only finitely many
detection messages can be created - one per passive machine. AJl of them will
be eventually destroyed. By assumption the next action performed will belong
to the computation proper.

The last property states that the superimposed detection scheme does
not delay indefinitely the computation proper.

To implement the above algoritlun each machine should be able to
recognize its own detection messages. one possi.bi.lity to achieve this consists
of making available to each of the machines the total number of machines in
the system. Then to each detection message a field can be attached indicating
the total number of machines which have received it. If this number equals the
number of the ma.chines then the detection message returned to the machine that
created it. Another possibility consists of "signing" each message with a name
of the machine that created it provided all names are different and each
machine knows its name.

An obvious defficiency of the algoritlun is the relatively large size
of the atomic actions which limits the possible parallelism. we shall now
present an alternative solution obtained by splitting the first rule into two

Rule l a
Whenever a machine turns passive it notes down the current time

instant t.

478

Rule l b ---·-
When a machine is passive and noted down the time instant t at which

it turned passive for the last time it sends a detection message with the time
stamp t.

In contrast, rule 2 is adopted without changes.

This algorithm allows for more computations than the previous one and
yet its correctness proof is exactly the same as that of the previous one.

There are several ways the al>ove algorithm can be improved. First of
all we might try to replace the global real time clock by the local ones.
Next, we might try to replace real t:illle clocks by the virtual ones.

Independently on the clock considerations we might also reconsider
rule 2 which could be also split into subrules. Also in the present setting
detection messages cannot overtake each other and are destroyed when received
at an inappropriate moment. These conditions might be appropriately relaxed.

rt is possible to present the consecutive versions of the algorithm in
the current setting of the abstract machines. However, lack of a rigorous
programming notation impedes a compact and unambigous presentation. Therefore
we shall present all the further versions of the algorithm in a concrete
programming language. we choose here a variant of CSP of Hoare [HJ in which
output guards are allowed.

2. PROM ABS'.l'RnC'.r 'l'O OONCRE'l'E SOUJ'l'IOllS

We first model the behaviour of the machines. Each machine will be
represented by a process. Processes have distinct names P1 , ... ,Pn and are
connected by unidirectional co11U11unication channels. For i = l, ... ,n ri
stands for the set of indices of the processes with which process Pi is
connected by a channel outgoing from Pi and Ai stands for the set of
indices of the processes with which Pi is connected by a channel ingoing
into Pi• By definition for i,j = l,.,,,n j E ~i iff i E rj•

Behaviour of each process Pi is represented by the following program
text reflecting the previous assumptions about C011111111nication and status of the
components of the system 1

Pi : : * [a activei j Pj ! tj - skip
jeri
a Pj ? xj - activei:-true

jEAi
o activei activei:•false

].

479

E:xpression tj represents a message sent by process Pi to process
>~. _on:iis message is assigned to variable xi of Pj. To make the processes
l1s]o1nt we should actually rename the variables appropriately. The status of
!ach process is described by its Boolean variable active.

This representation of machines behaviour can be a starting point to a
:ranslation of abstract distributed tennination algorithms into solutions
rritten in CSP. However, this representation is not satisfactory as it models
rn extremely restrictive situation in which processes either communicate or
:hange their status. No useful work is done and the distributed computation
:onsists of a useless exchange of messages.

A more realistic representation takes into account a possible work
:arried out by each process. sending or receiving of a message will now be
:ollowed by a local computation.

In CSP collUllunication is symmetric in the sense of synchronization
>etween input and output connnands. Therefore it is more convenient to consider
•idirectional channels. Moreover, we assume that two processes can be
:onnected by more than one channel. For i = l, ... ,n ri will now be a
wltiset consisting of the indices of the processes with which Pi is
:onnected.

lhere

Summarizing, processes will now have the following bodies :

Si e INITi ; * [a gi,j - si,jJ
jEI'i

i) each guard gi,j contains an I/O guard adressing process Pj•
ii) none of the statements INITi, si,j contains an I/O command.

We still have to make precise the rules for communications between
•recesses. With each process we associate a Boolean e:xpression Bi, called a
tabl/lty condition. Bi involves variables of Pi and possibly some other
.uxiliary variables. A process will be called active if its control is at the
ain loop entry and I Bi holds and will be called passive if its control is
.t the main loop entry and Bi holds. Thus a process has a status only when
ts control is at the main loop entry.

Previous rules for communication related directly the status of each
achine to its involvement in communication. This point of view has now to be
IOdified once we introduced a possibility of carrying out a local computation
.fter being engaged in a communication.We adopt the following two assumptions:

a) no communication can take place between a pair of passive
processes,

b) if there is an active process some communication will take place.

Assumption a) reflects the symmetric role of sending and receiving -
eing active is not any more a necessary condition to be able to send.
ssumption b) can be stated differently as : whenever deadlock takes place,
11 processes are passive.

480

The problem consists of detecting in the program

P =[Pi: :Sill·· ·llPn::SnJ the situation when all processes are passive. But

once we deal with processes which have a concrete syntax and not with abstract

machines, we can strengthen the requirements.

The problem will be now phrased as follows : transform P

another program P' which eventually properly terminates whenever

processes become passive. Obviously, detection by a process of the

all processes are passive will be a crucial step of a solution.

into
all

fact that

In such a way we arrived to a formulation of the problem within CSP

which becomes exactly the distributed termination problem of Francez [FJ.

To describe more precisely the desired properties a solution to the

distributed termination problem should satisfy, we should take into account a

relation between the computations of P and P'. In general, P' will use some

additional variables and allow for some additional collU!lunications of new

types. P' will be of the form [P1 : : s' 1 II . . . II Pn : : s 'n] . Every

computation of P' can be naturally restricted to a computation of P by

disregarding all new variables and statements refering to them and all new

communications. we shall then say that in a computation of P' a process

becomes passive if it becomes passive in the restriction of the computation to

a computation of P.

We should also define when a property involving variables belonging to

different processes holds in a distributed computation. This would require an

introduction of a formal semantics for CSP programs, a subject we prefer not

to discuss here. Informally, a global property B holds in a distributed

computation if it holds in its possible global state.

A solution P' to the distributed termination problem should satisfy

the following four properties.

Property 1

Whenever P' properly terminates then all processes are passive.

Property 2

There is no deadlock in P'.

Property 3

If a.11 processes become passive then eventually P' will properly
terminate.

Property 4

If not all processes are passive then eventually a statement from the
original program will be executed.

481

Properties 1,3,4 correspond to properties 1,2,3 from the previous
section, respectively. Property 2 is new and makes no sense when considered in
the framework of abstract machines - deadlock coincides there with termination
as there is no distinction between final and non-final states of the machines.

As in section 2 we are interested here in symmetric solutions to the problem. Therefore we assume that the processes can be arranged in a ring.
Neighbours of process Pi are processes Pi-l and Pi+l where counting is done within {1, ... ,n} clockwise. By assumption for each i = l, ... ,n
i-1Eri, i.e. the neighbours in the ring are connected by a col!B!lunication
channel.

The notion of a symmetry in the context of concurrent programs is a subtle one. one can easily construct distributed programs which look symmetric yet some of their components are favoured with respect to the others. For a
discussion of this issue reader is referred to Lehmann and Rabin [LRJ and for
extensive treatment in the framework of CSP programs to Boug~ [BiJ

The solutions we discuss are symmetric in a purely syntactic sense -
texts of the transformations are identical for all components (for a more
interesting semantic definition of symmetry for CSP programs see [B1J).
Moreover, none of the processes knows its identity nUillber (this excludes
"tricks" of the form Pi : : •.. [i = i 0 - •.. J ••• for a c::onstant i 0 , which
allows one to distinguish process Pi from the others). On the other hand the
total number of the processes in the gystem is available to each of the
processes.

3. A SOLOTION WITH A GLOBAL REAL TIME CUlCK

we now obtain a symmetric solution to the distributed termination
problem by translating into CSP one of the algorithms of section 2. To this purpose we additionally assume existence of a global real time clock which is
absent in the original CSP. Within process Pi its value can be read by
executing the assignment T:= CLOCK-TIME which results in assigning to
variable T of Pi the current clock time. This assignment is used to record
the time when Bi holds.

A natural translation of rule l into CSP consists of adding to the
main loop within process Pi an additional branch

D Bi - T:=CLOCK-TJME ;
Pi+l ! detection-message (TIME)

unfortunately such a modification of the program leads to
difficulties. Namely consider a situation when all processes become passive and subsequently all choose the newly added branch. Then a deadlock arises
which violates property 2.

Thus rule l cannot be adopted literally. A solution consists of
adoptj_ng rules la and lb instead.

482

Rule la can be translated as the branch

D Bi ; -, OK - T:=CLOCK-TIME ; OK:=tru~.

OK is a new boolean variable whose role is to ensure that reading of

the clock value takes place at most once during a period during which the

process is passive. Thus initially OK should be set to false and also reset to

false after every original communication.

Before we translate rule Jb we fix the form of the detection messages.

They will have two parameters : the time value T and a field COUNT

indicating the total number of processes which have received it. Thus

initially COUNT will equal 1.

Now rule lb can be translated as the branch

o OK I SENT; Pi+1 !detection-message (T,l) - SENT:=true.

SENT is a new boolean variable whose role is to ensure that sending of

a detection message takes place at most once during a period when the process

is passive. Thus initially SENT should be set to false and also reset to false

after every original communication.

consider now rule 2. Its formulation presupposes that the step

prescribed by rule la is carried out if upon reception of a detection message

the process is passive. This will be formalized by the use of the guard

Bi - OK in front of the reception of a detection message. Rule 2 will now be

translated as the branch

o Bi - OK ; Pi-l ? detection-message (TlME,COUNT)

[COUNT = n - skip -- destroy the message
Cl COUNT < n -

[-1 Bi - skip -- destroy the message

D Bi -

[TIME < •r - skip -- destroy the message

a TIME ~ T - COUNT:=COUNT + l ;

Pi+1! detection-message (TIME,COUNT)

483

This concludes the translation of the algorithm. The transformed
version of process Pi thus has the following form :

Pi:: INITi OK:=false; SENT:=false;
* [a gi,j - OK:-~ ; SENT:=false ; si,j

jeri

a Bi I OK - T:-=CLOCK-TIME ; OK:=true
a OK I SENT ; Pi +l l detect ion-message (T, l) - SENT: =true
a Bi OK ; Pi-1 ? detection-message (TIME, COUNT) -

[COUNT = n - skip
a COUNT < n -

[I Bi - skip
a Bi -

[TIME < T - skip
a TIME ~ T - COUNT:.-.COUNT + l ;

Pi+1! detection-message (TIME, COUNT)

Here and elsewhere all variables are assumed to be local to pi. When
reasoning about the programs we shall use subscripts to distinguish between
the variables of different processes.

The presented solution is clearly not the desired one-the obtained program
can never properly terminate,so property l is not satisfied. In fact, once all
processes become passive the program will eventually deadlock.It seems that we
made no progress with respect to the original problem as we now have to
transform the last program into another one which satisfies property l.

But this step is simpler than the original task. we build into the
last program a possibility of initiating by a process a wave of termination
messages which will cause proper termination of all processes. This wave will
be initiated by a process which receives back its own detection message. In
general several termination waves can be propagated at the same time in the
ring. Moreover, we have to cope with a possible presence in the ring of both
detection and termination messages.

To solve these problems we introduce three new boolean variables FAIT,
RECU and EMIS (French for done, received and emitted, respectively) all
tnitialized to false. FAIT will be set to true once a detection message with
COUNT = n is received. setting FAIT to true will enable a process to exit the
main loop and send a termination message. Within the second loop RECU will be
set to true once a termination message is received and EMIS will be set to
true once a termination message has been sent. A process will terminate when
it -;ill both send and receive a termination message (not necessarily the same
one). Thus the program will terminate when each process will send a
termination message.

summarizing, this revised version of Pi is as fol.lows

484

FAIT:=!:_alse ; RECU:=false ; EMIS:=false ;

* [a-, FAIT gi,j - OK:•!alse ; SENT:=false ; si,j

jE:ri
a I FAIT
a I FAIT

Bi -1 OK - T:=CLOCK-TIME ; OK:=true
OK -, SENT ; Pi +1 ! detect ion-message (T, l) -

SEN'l':=tru~

a -, FAIT Bi - OK ; pi-l ? detection-message (TIME,COUNT)

[COUNT = n - FAIT:=tr1:c1!

] I

a COUNT < n -
[(Bi - skip -- purge the message

a Bi -
[TIME < T - skip -- purge the message

a TIME ~ T - COUNT:=COtlNT + l ;
Pi+l! detection-message (TIME,COUNT)

Pi-l ? termination-message - FAIT:=true
RECU: .. true

* [-1 RECU v I EMIS Pi-l ? detection-message (TIME,COUNT)

D I RECU

CJ I EMIS

skip -- purge the message

Pi-l ? termination-message RECU:=true
Pi+l ! termination-message - EMIS:-true

A possible presence in the ring of both detection and termination
messages is reflected by the added last guard of the first loop and the first
guard of the second loop.

The resulting program is a correct solution to the distributed
termination problem. We now wish to reduce in this solution the number of
detection messages sent by the processes. To this purpose we shall ensure that
whenever process Pi transmitted to Pi+l a detection message it had received
from Pi-i then it will not send to Pi+l any detection message of its own
(unless an original conununication with Pi occurs). This can be simply
achieved by setting SENT to true after the I/O conunand
Pi+1 ! detection message (TIME-;-COUNT). Now it can be checked (and we shall
prove it rigorously in the next section) that whenever Pi receives back its
own detection message it will not receive any further detection messages. This
allows us to restructure the program and bring it back to the form of one
loop.

This final version of Pi has the following form

485

Pi:: INITi I OK:=false; SENT:=false
FAIT: =,fa~s~ ; EMIS: =false ;

w [a I FAIT 9i,j - OK:=false SENT:=false ; si,j
jEri

a I FAIT

a I FAIT

Bi IOK - T:=CLOCK-TIME; OK:=true
OK I SENT ; Pi+l ! detection-message (T,1) -

SENT:=true

a (FAIT Bi - OK; pi-1? detection-message (TIME, COUNT) -
[COUNT = n - FAIT:=true

CJ COUNT < n -

[-1 Bi - skip -- purge the message

a Bi -
[TIME < T - skip -- purge the message

CJ TIME~ T - COUNT:=COUNT+lj

Pi+l ! detection message (TIME, COUNT)
SEN'l':=true

o I RECU ; Pi-l ? termination-message - RECU:=true ;
FAIT :=true

CJ FAIT ; I EMIS Pi+l! termination-message - EMIS:~rue

486

correctness of the above program, even though it has been

systematically derived from the abstract solution presented in section 1, is

by no means obvious. In the last phase we transformed the program into another

one which is deadlock free. The provided reasoning was completely informal and

it requires justification.

4. A <X>RRE'C'l'MESS PROOF

We now provide a correctness proof of the program presented in the

previous section. More precisely, we claim that the assumption from the

introduction implies assertions 1 and 2 from section 2.

For the sake of the proof we consider a failure (an attempt to

col!llllunicate only with terminated processes) as a special case of a deadlock.

In a deadlock situation no process can proceed and at least one of them did

not terminate. When considering messages we shall often informally refer to

their creation, sending, reception and an attempt to send them.

The following notion will be helpful in the sequel.

Definition 1 In a computation of P • a Boolean expression is monotone if,

once it holds, it continues to hold.

The proof consists of a sequence of lemma's, all about the final

program given in the previous section.

Lennna 1
n

i) The Boolean expression A Bi is monotone.

i = 1

ii) The Boolean variables FAIT, RECU and EMIS are monotone.

n

Proof i) The condition A Bi is monotone for the original program. The

i = 1

parts added to Pi do not invalidate the condition Bi.

ii) All three variables are never reset to false. o

Lennna 2 If a process E1c received a detection message (TIME,n) then

n

A Bi holds since the time instant TIME (i.e. each Bi holds since

i = 1

the time instant TIME).

Proof This detection message has made a full cycle so necessarily Tj ~ TIME

for all j. Consider the time instant tj when Pj received this detection

message. We have tj ~ TIME. Bj held at the time instant tj, so it held

throughout the time interval [Tj,tjJ. In particular Bj held at the time

instant TIME. Thus for all j Bj held at the time instant TIME. The claim

now follows by lennna 1 . o

487

proof of property l
=-

consider a properly terminating computation of p•. A termination

ssage must have been created by some process P1 . Thus p1 must have

:ceived a detection message (TIME,n). The claim now follows from lemma's 1

and 2. a

~ 3 If a process Pit received a detection message (TIME,n) then Pic-l

;111 not attempt to send to Pie another detection message.

proof suppose otherwise. call the first detection message m1 and the second

~ 2 must have been created by some Pi. after the time instant t • at

which P1 sent m1 to Pl+l' SENT1 held at t•. But TIME.Ot' so by

n

1emma 2 A Bi holds since t' . so by the assumption from

i = 1

section l also SENT1 holds since t'. Thus m2 could not have been created

by p1 • contradiction. a

i:.emna 4 No Cleadlock. is possible with some process Pi being in front of the

I/O commanCl Pi+1!detection message (TIME,COCIN.I').

488

Proof suppose otherwise. Observe first that it cannot be the case that all
Pi's are blocked in front of Pi+l ! detection-message (TrME, COUNT). Indeed, till the time of deadlock only finitely many detection messages have been sent. Thus there must exist a process which did not receive any detection message after sending for the last time a detection message. This process cannot find itself in front of the above I/O command a.

Thus if some Pi is blocked in front of a then some other Pk is not. Consider then the first Pit counting from Pi clockwise which is not blocked in front of a. Then Ek is either at the outer level or has
terminated.

If Pit is at the outer level then, since a deadlock takes place and Pk-l is in front of a, FAITic holds. Thus, once again because of the
deadlock, either EMI8k or RECUit+l holds. This means that a termination message has been sent from Pk to Pit+i· If ~ has terminated then a termination message must have been sent from Ek to Pit+l• as well.

Now, since Pk-l is in front of a, -, FAITic-l holds. Thus this termination message could not have been transmitted to Pk by ~-l· so it has been created by Pk itself. In other words Pit must have received a detection message with COUNT = n. We get now a contradiction with lemma 3. o

Proof_of property_~

suppose a deadlock is possible. Consider a deadlock situation. By the previous lexmna for all i Pi either has terminated or is at the outer level.

case I For some i FAITi holds.

489

Then EMISi v RECUi+l holds. Thus a termination mesi:iage has been se~t

from Pi to Pi+l· Consider the first process Pi cJ..ockW:i..se from Pi which

did not receive a termination message (i . e. whose RECU j is fal.se) · If it does

not exist then for all j RECUj a FAITj. But if RECUj then EMIS~-1' so also

for all j EMIS · . Thus all processes have terminated and there is no

deadlock. we thu~ have for some l -1 RE:cu1 and FAITJ..-1 h -1 EMIS1-1· But this

means that a termination message can be sent from P1-1 to P1 so there is no

deadlock.

case II For all i -1 FAITi holds.

Then a.11 processes are at the outer J..eve l . No

possible, so for all i Bi holds. Thus also for all

consequently for all i SENTi holds.

basic communication is

i OKi holds and

This means that every pi has sent a detection message with its

current value of BTIMEi and all of them have been eventual.ly purged. Consider

a largest BTIMEj. The detection message with BTIMEj has been purged by some

Pk. This means that -1 8k held at some time instant t ;;.. BTIMEj. Thus also I

OKj held at t so it must be the case that BTIMEk > t. contradiction.

This concludes the proof.a

Lemma 5 There does not exist an infinite computation with finitely many

original communications and infinitely many other communicati.ons.

Proof suppose otherwise. Then by lemma l ii) some Pi has created infinitely

many detection messages so the variable SENTi has changed its value infinitely

often. But this is only possible if the basic communications took place

infinitely often. Contradiction.a

We can now prove assertions l and 2 from section 2 •

Proof of Property 3

Consider a computation of P' in which at a certain moment all

n

processes are passive. By lenuna 1 i) A Bi holds from this moment on so

i = 1

no original communication will take place any more. Due to property 2 this

computation cannot end in a deadlock. By lemma 5 this computation cannot be

infinite. So it has to terminate properly.a

Proof of pr~~

By lemma 5 and the form of the program. o

Comparing the above correctness proof with the one presented in the

first section we observe that the main burden lies here in proving property 2,

i.e. deadlock freedom. In contrast, proofs of properties 1, 3 and 4 are nothing

else but rewordings of the corresponding proofs given in section i.

490

An existence of a global real time clock in a distributed system is
c1early not a realistic assumption. We now modify the solution presented in
section 3 and replace the global real time clock by local rea1 time clocks.
The local clocks have to be synchronized properly. The solution we propose
consists simply of integrating the standard clock synchronization procedure of
Lamport [L] into the previously given program. Thus we advance the value
CLOCK-TIMEi of the local clock of Pi to max(CLOCI<-TIMEi,TIME) upon reception
by Pi of a detection message with the time stamp TIME. The program has now
the following form :

pi .. INITi I OK:-false ; SENT:=false ;
FAIT:=false ; RECU:=false ; EMIS:=false

... [a -·1 FAIT gi,j - OK:=false ; SENT:=false I si,j
jeri
a I FAIT

a I FAIT

Bi -, OK - T:=CLOCI<-TIMEi ; OK:=Erue
OK I SENT ; Pi+l ! detection-message (T,l) -

SENT:=true
a I FAIT Bi OK ; Pi-1 ? detection-message (TIME,COCJNT)

[COUNT = 2n - FAIT:=true
a COUNT < 2n - CLOCK-TIMEi:=max(TIME,CLOCI<-TIMEi)

[I Bi - skip -- purge the message

a Bi -
[TIME < T - skip -- purge the message

a TIME ;;> T - COUNT:=COONT+l ;
Pi+l ! detection-message (TIME,COUNT)
SENT:=true

a I RECU ; Pi-l ? termination-message - RECU:=true ;
FAIT:=true

a FAIT ; I EMIS Pi.f-1 ! termination-message - EMIS:=true

There is one striking difference between this program and the previous
one - upon receiving a detection message its COUNT value is compared in the
above program with 2n instead of n. In other words termination is detected in
the above program only when a detection message has successfully made two full
cycles.

It is useful to see why one cycle is not sufficient here to detect
termination. To this purpose consider a hypothetical execution of the program
with n ;;. 3. A detection message sent by Pi can make successfully a full
cycle even if not all processes become passive. Indeed, a communication can
take place between Pi and Pj for 1 < i+l < j ~ n at the moment when the
detection message is "between" then and activate process Pi. This fact will
not be discovered when comparing the time stamp of the message with the value
Tj of Pj if the clock of Pj advances slowly. Observe that Tj refers to
the reading of the clock before the synchronization.

491

Informally, the first cycle is used to synchronize the clocks
whereupon the second cycle is needed to check that no process was active since
then. A formal proof of the correctness of the above solution is a combination
of the proof given in the last section and the proof of the nert solution and
is omitted.

Why where the clocks needed in the presented solutions ? Initially,
the idea of the algorithm was to verify that all processes were passive at a
time instant t. With the introduction of the local clocks this idea becomes
less transparent. A close inspection of the last solution reveals that the
clocks were needed in order to be able to find that a process was active after
a given time instant. To this purpose it is needed that two successive
readings of a clock give different, increasing values, i.e. that each clock
advances. But this effect can be already achieved using virtual clocks. This
brings us to another solution to the distributed termination problem.

In each process we replace a local real time clock by an integer
variable T representing a virtual clock. T is initialized to zero. It is
incremented by one at the places Where before the clock was consulted, i.e.
where the assignment T:=CLOCK-TIMEi took place and is synchronized with other
clocks in the same way as before.

492

summarizing, this solution has the following form

pi II OK1-false I SENT:-false I FAIT:=false;
RECU:=false; EMIS:=FALSE ; T:=O ;

~ [a I FAIT;gi,j - OK:-false ; SENT:=false si,j
j E ri

a I FAIT Bi -pK - T:""Nl. ; OK:-true
a I FAIT OK -PENT ; Pi+i! detection message (T,l)

- SENT:=true
a !FAIT Bi - OK; pi-1? detection-message (TIME, COUNT)

[COUNT=2n - FAIT:=true
a COUNT < 2n -

[I Bi - T:-max(TIME,T) -- purge the message
Cl Bi -

[TIME < T - skip ~ purge the message
a TIME ;;> T T:=TIME ;

COUNT:=COCJNT+l ;
Pi+l ! detection-message(TIME,COUNT)
SENT:-true

a I RECU ; Pi-l ? termination-message - RECO:-true ;
FAIT:=true

a FAIT ; I EMIS Pi+l ! termination-message - EMIS:-true

T represents now both CLOCK-TIMEi and T from the previous program.
Therefore it is synchronized somewhat later than before.

7 • A CORREC'DIESS PROOF

The correctness proof of the solution with the virtual clocks is very
similar to the proof of the solution given at the end of section 3. we prove a
sequence of similar lemma's, this time about the program from the previous
section.

Lelllllla 6 ----
n

i) The Boolean expression ~ Bi is monotone.
i = 1

ii) The Boolean variables FAIT, RECU and EMIS are monotone. o

Lelllllla 7 Suppose that a process ~ received a detection message (TIME,COONT)
with COONT=2n. Let t be the time instant at which Pk

n
received this message with COUNT = n. Then ~ Bi holds since t.

i = l

493

Proof This detection message has made two full cycles. consider the time
instants t'j and t"j at which Pj sent this detection message to Pj+l.
during the first and second cycle, respectively. we have both at the time
instant t'j and t"j Tj=TIME. Since the value of TIME did not change, this
means that the value of Tj did not change during the time interval
[t'j,t"j]. But Bj and OKj held both at t'j and t"j• so this implies that
both Bj and OKj held throughout the time interval [t • j,t"j). In particular
Bj held at the time instant t E [t'j,t"jl. The claim now follows by lemma 6.
D

Lemma a If a process P]!: received a detection message (TIME, 2n) then Pk-1
will not attempt to send to Pk another detection message.

Proof Suppose otherwise. Call the first detection message m1 and the second
m2 • mz must have been created by some P1 after the time instant t· 1 at
which Pi sent m1 to Pl+l during its first cycle. SENT1 held at t• 1 . But
by the proof of lemma 7 OK1 holds since t· 1 . so also SENT1 holds since
t'1· Thus m2 could not have been created by P1 . Contradiction. a

Proof of property 2

The proof is identical to the proof given in section 4. The only
difference is in the treatment of the case II.

So suppose that all processes are blocked at the outer level and that
for all i -1 FAITi holds. As before this means that every Pi has sent a
detection message and all of them have been eventually purged. Moreover, at
the moment of deadlock for all i OKi holds. consider a largest Tj. Process
Pj has sent a detection message with the time stamp Tj. Since it was purged
by some P1 , it must have been the case that -1 a 1 held upon its recepti.on by
P1. Thus Ti was set to Tj. Since -1 BL implies -1 OK1 and at the moment
of deadlock oK1 holds, it must be the case that T1 was incremented. Thus
at the moment of deadlock T1 is larger than Tj. Contradiction. a

The proofs of properties 1, 3 and 4 are the same as those given in
section 4 with the only difference that a creation of a termination message by
a process now means that it has received a detection message (TIME, 2n).

494

In the solution presented in section 6 detection messages cannot
overtake each other. In other words, detection messages are transmitted by the
processes in the order of their arrival. This can lead to an unnecessarily
orderly traffic of the detection messages in the system. We now present a
modified solution in which detection messages can overtake and destroy the
detection messages which precede them. This is achieved by allowing the
processes to store the detection messages before forwarding them.

'!'he solution is obtained by transforming the program from section 6

appropriately. We simply move the inner I/O command Pi+l ! detection-message
(TIME, COUNT) to the guard position in the outer loop. To this purpose another
Boolean variable called FORWARD is introduced. FORWARD is set to true when a
process received a detection message which is supposed to be transmitted
further. Once this or another detection message received later is forwarded,
FORWARD is reset to false. Also, as soon as an original communication takes
place, FORWARD is set to false which means that any pending message is then
purged.

'!'his solution has the following form :

EMIS:=false ;

*[a I FAIT;gi,j

jeri
a I FAIT Bi
a 'l FAIT OK

FORWARD:=false ; T:=O ;

- OK:=ialse;SENT:=false;FORWARD;=false;si,j

IOK - T:=T+l ; OK:=true
ISENT; Pi+l! detection-message (T,l)
- SENT:=true

a 'l FAIT Bi - OK ; pi-1 ? detection-message (TIME, COUNT)
[COUNT = 2n - FAIT:=true
a COtmT < 2n -

[I Bi T:-max(TIME,T) - purge the message

a Bi -

a I FAIT

TIME < T - skip - purge the message
a TIME > T - T:>=TIME ;

COUNT: =COUNT+ 1

FORWARD: =true
SENT:=true

FORWARD ; Pi+1! detection-message (TIME, COUNT)
- FORWARD:=false

a 'l RECU Pi-l ? termination-message - RECU:=true ;
FAIT:=true

a FAIT 'l EMIS

J
Pi+l ! termination-message - EMIS:=true

Note that whenever Pi receives a detection message which should be
forwarded (i.e. such that FORWARD is set to true), then SENT is set to true,
as well. This effectively blocks Pi from sending at this moment its o;;;-
detection message - Pi will be able to send further only a detection message
it received from Pi-l· It will be always the last one received - others will

495

be destroyed. This sending will take place only if in the meantime no basic
communication happened.

Correctness of this solution can be proved in a simi.lar way as that of
section 6. In fact, the proof of property 2 is now simpler because there are
fewer situations in which deadlock could arise. We leave the details of the
proof of the reader.

Finally, it is useful to observe that an analogous "store and forward"
version can be obtained for the solutions from sections3 and 5.

9. A SOIO!'IOR WITH PEHDDfG MESSAGES

In the solutions so far presented detection messages are purged when
they are received by a process which is not passive. This can be a source of
inefficiency since a purged detection message could have already been received
by a large number of processes. A possible improvement is to allow a process
to keep a received detection message until it state becomes passive. We now
present a solution in which this idea is realized but admittedly in a partial
way.

The solution consists of the following modification of the program
from section a. The only criterion whether a detection message should be kept
is now that its time stamp is at least as large as the time of the process
which received it. such a message will be forwarded only when the process is
in a stable state and the above time constraint still holds. As in the
previous solution detection messages can overtake each other.

This solution has the following form :

Pi : : OK: =false ; SENT: =false ; FAIT: =false ; RECU: =false
EMIS:=fal~ ; FORWARD:=faJ.se ; T:=O ; TIME:=O ;

*[D -1 FAIT ; gi,j - OK:-false SENT:=false ; si,j
jeri

D -, FAIT Bi I IOK - T:=T+l OK:=true ;
[TIME<T - FORWARD:=false D TIME ~ T - skip]

D I FAIT OK ; I FORWARD ; I SENT ; pi+ 1 ! detection-message (T' 1)
SENT:=true

o l FAIT Pi_1 ?detection message (TIME, COUNT) -
[COUNT 2n - FAIT:=true

D COUNT < 2n -
[TIME < T - skip -- purge the message
o TIME ~ T - COUNT:=COUNT+l

FORWARD:=true

D -, FA!T OK ; FORWARD ; pi+l ! detection-message (TIME, COUNT)
- FORWARD:=false ; SENT:=true ; T:=TIME

o I RECU Pi_1 ?termination message - RECU:=true ;
FAIT: =~.;:tJ__E!

o FAIT ; l EMIS ; Pi+i!termination-message - EMIS:=true

496

This program differs in various aspects from the "store and forward"
version from the previous section. First, sending of its own detection message
by Pi is additionally guarded by the condition -1 FORWARD indicating that
no detection message remains to be forwarded. FORWARD is set to true when a
detection message with a sufficiently large time stamp (TIME ~ T) is received.
This message remains to be kept as long as the local time T does not exceed
its time stamp. If this happens then FORWARD is set to fal~ which amounts to
a purge of the message.

secondly, the forwarding of a pending detection message only when the
process is passive is ensured by the additional guard OK. Also note that the
updating of the local time and setting SENT to true takes place only after
forwarding a pending detection message. Finally, the incrementing of the local
time by l happens only in one place in the program.

In spite of the above differences the correctness proof of this
solution is essentially the same as that of the version given in the last
section and is omitted.

Observe that the above approach does not lead to any improvements when
applied to the "store and forward" versions of the solutions from sections 3
and 5. Indeed, detection messages received by an active process will be purged
once the process becomes passive because the loca.l time will then exceed the
time stamp of the pending detection message.

10. A SOIDl'IOl!t WITH TIGBTLY S'lHCHRONIZED VIRl'UAL CLOCKS

Solutions presented in sections s and 6 are markedly different from
that of section 3 in that to detect termination a detection message has to
make two full cycles instead of one. This difference is due to the inaccuracy
of the local clocks. In the solutions from sections 5 and 6 these clocks are
synchronized exclusively by means of detection messages. The traffic of the
original communications is transparent to the clocks and as noticed in section
5 an existence of such a communication can pass unnoticed. To understand
better the nature of the problem consider a hypothetical execution of the
program from section 6 with n ~ 3 in which a detection message with T = 1
sent by P1 makes successfully a full cycle. As already observed in section 5
this does not yet mean that termination is detected since an original
communication could take place between Pi and Pj for 1 < i+l < j ~ n at
the moment when the detection message was "between" them.

In the solution from section 3 such a "hidden" original communication
cannot pass unnoticed. It will be detected by a necessarily increased value of
Tj which will cause a purge of the detection message sent by P1 .

To incorporate this observation into the framework in which local
clocks are used, we have to synchronize the clocks also after every original
communication. This has to be done lrrelevs.ntly of the direction of the
communication. To see the use of this procedure let us reconsider the above
hidden communication between Pi and Pj. As a result of it pj will set its
clock to max(Ti,Tj), i.e. to at least 1 and consequently when Pj becomes
passive its clock value Tj will be at least 2. Thus the detection message of
Pi will be purged as desired.

497

summarizing, this solution is obtained by modifying the programs from
section 5 and 6 as follows. The lines involving basic communications now read

I FAIT, 9i,j - SYNCHR(i,j) ; OK:=fal~ ; SENT:=false

SYNCHR(i,j) ""Pj! T; Pj?T if gi,j contains
an output command Pj ! t,

Pj?T' ; T:=max(T,T'); Pj ! T if gi,j contains
an input command Pj?x.

Moreover COUNT is now compared with n as in the solution from
section 3.

The correctness proofs of the above solutions are based on a
straightforward combination of the arguments used in the proofs given in
sections 4 and 7 and are left to the reader.

An obvious disadvantage of these solutions are the overhead caused by
a frequent clock synchronization. Note also that the same modifications can be
applied to the solutions from sections a and 9.

498

l.l. REIA'l'ED WORIC

The problem of detection of termination in distributed systems has
been extensively studied in the literature. The problem was originally posed
and solved in the framework of CSP programs by Francez [F]. Francez called it
the distributed termination problem, a name we adopted in this paper. A
different solution was proposed in an abstract setting similar to the one of
section l by Dijkstra and Scholten [DSJ. Several other solutions appeared
since then. They were presented in the framework of CSP programs in Francez
and Rodeh [FR], Misra and Chandy [MC], Francez et al. [FRS] and Rana [RJ. For
other models of distributed computing solutions were presented in Dijkstra et
al. [DFGJ, Gouda [G], Lennan and Schneider [LS], Misra [MJ and Topor [TJ. Also
solutions for an extension of CSP allowing dynamic creation of processes were
proposed by Cohen and Lehmann [GLJ and Lozinsku [LJ.

symmetric solutions were first studied by Rana [RJ. His algorithm uses
real time clocks. Even though based on a sound idea it is for several reasons
incorrect. our paper is motivated by an effort to correct Rana's solution. His
algorithm corresponds to a direct translation of the abstract solution
consisting of rules l and 2 given in section l. As noted in section 3 such a
translation leads to an algorithm conta.ining deadlock. Moreover, the final
termination wave was improperly built into this algorithm. The proposed
program does not satisfy properties 2,3 and 4 of section 2 and property l is
voidly satisfied since the program never properly terminates I

His version of transformed process Pi (after correcting some obvious
misprints) looks as follows :

Pi::" [Si
o Bi BTIMEi:=CLOCK-TIME

TIME:=BTIMEi ;
COUNT:=l ;

Pi+1!detection-message(TIME,COUNT)
o Pi_1 ?detection-message(TIME,COUNT) -

[COUNT = n -

Pi+1!termination-message;
TERMINATE

a COUNT ;t n -

[,Bi - purge the message

D Bi -
[TIME < BTIMEi - purge the message
o TIME ;. BTIMEi -

COUNT:-..COUNT+l ;

Pi+1!detection-message (TIME, COUNT)

o Pi-1?termination-message -
Pi+1!termination-message

TERMINATE

(In Rana's proposal Si is replaced by S'i but it is not explained how S'i

relates to Si• The above discussion did not depend on this item).

499

We leave to the reader checking validity of our comments concerning the above algorithm.

An obvious disadvantage of the solutions presented in this paper is
that the (virtual) clock variables can assume arbitrarily large values. A
natural question to ask is whether there exist symmetric solutions to the
distributed termination problem in which all variables are bounded. The answer is positive. such solutions for a ring configurations were recently
constructed by the second author in Richier [RJ and for arbitrary strongly
connected graphs in Boug~ [B2 J. These solutions are not based on the idea of clock synchronization.

symmetric solutions to the distributed termination problem for the
ring configuration are necessarily more complex than the asymmetric ones of
[FRSJ and [DFGJ because more parallelism in the system is possible. In the
asymmetric solutions two types of activities could take place in parallel -
exchanges of basic communications and exchanges of the control (detection)
messages. But the control messages were originated by one a priori designed
process so at each moment at most one control message was present in the
system. In contrast, in the case of symmetric solutions each processes can
initiate a wave of control messages and the system can contain at a given
moment up to n-1 control messages. Moreover, different processes at roughly the same moment can initiate a wave of termination messages, so the system can also contain several termination messages at the same time. In spite of these
differences our second, third and fourth solutions are similar in nature to the solution of [FRS] in that the global stability of the system is detected
essentially using the so-called Interval assertions which allow to test whether
a value of Bi has changed in a given interval of time. In our solutions this method is incorporated by the use of virtual clocks and (virtual) time stamps
of the detection messages.

we conclude by observing that when clocks are synchronized only by
means of detection messages then a detection message has to make two full
cycles in order to detect termination. In contrast, when the clocks are
synchronized using arbitrary messages containing time stamps then one cycle is already sufficient. Thus there is a direct trade off between the work
needed for clock synchronization and the time needed for detection of the
termination.

Acknowledgements. we thank L. Boug~ and Ph. Darondeau for helpful comments on
the first version of this paper.

[Bl] BOUGE, L., Syametric election in CSP, Tech. Report 84-31, LITP,
universit~ Paris 7, 1984.

[B2J BOUGE, L., More about the snapshot algorithm: repeated synchronous
snapshots and their implementation in CSP, Tech. Report 84-56, LITP,
universit~ Paris 7, 1984.

[CLJ

[DFG)

[DSJ

[F)

[FR]

[FRS)

[G)

500

COHEN, s. and LEHMANN, D., Dynamic systems, their distributed
termination and dead-lock detection, in : Proc. Symp. on Principles
of Distributed computing, Ottawa, pp. 29-33, 1982.

DIJKSTRA, E.W. I FEIJEN, W.H. and van GASTEREN, A.J.M.' Derivation
of a termination detection algorithm for distributed computations,
Inform. Processing Letters 16, 5, pp. 217-219, 1983.

DIJKSTRA, E.W. and SCHOI.TEN, c.s., Termination detection for
diffusing computations, Inform. Processing Letters, 11, 1,
pp. 1-4, 1980.

FRANCEZ, N., Distributed termination, ACM-TOPI.AS, 2,1,
pp. 42-55, 1980.

FRANCEZ, N. and RODEH, M., Achieving distributed termination
without freezing, IEEE Trans. Soft. Eng., SE-8, 3, pp. 287-292, 1982.

FRANCEZ, N., ROOEH, M. and SINTZOFF, M., Distributed termination
with interva.l assertions, in : Proc. Int. Colloq. Formalization of
Programming concepts, Peniscola, Spain, Lecture Notes in Comp.
Science, vol. 107, 1981.

GOOD.A, M.G., Distributed state exploration for protocol validation,
Tech. Report 185, Dept. of Computer Sciences, University of
Texas at Austin, 1981.

(HJ HOARE, C.A.R., co111111unicating sequential processes, CACM 21, 8,
pp. 666-677, 1978.

[LJ LAMPORT, L., Time, clocks and the ordering of events in a distributed
system, CACM 21, 7, pp. 558-565, 1978.

[LRJ LEHMP.NN, D. and RABIN, M.O., on the advantages of free choice :
A symmetric and fully distributed solution to the dining philosophers
problem, Proc. of the eth Annual ACM Syrop. on POPL, Williamsburg,
Virginia, January 1981.

[LSJ LERMAN, c.w. and F.B. SCHNEIDER, Detecting distributed termination
when processors can fail, Tech. Report TR 80-449,Cornell University,
Dept. of Computer Science, 1980.

[Lo] LOZINSKII, E.L., Yet another distributed termination, Tech. Report
84-2, Dept. of computer Science, The Hebrew University of Jerusalem,
1984.

[MJ MISRA J., Detecting termination of distributed computations using
markers, in : Proc. 2nd Annual Symp. on Principles of Distributed
Computing, Quebec, pp. 290-294, 1983.

[MC] MISRA, J. and CHANDY, K.M., Termination detection of diffusing
computations in communicating sequential processes, ACM-TOPLAS, 4, 1,
pp. 37-43, 1982.

501

[RJ RANA, s.P., A distributed solution of the distributed termination
problem, Inform. Processing Letters 17, 1, pp. 43-46, 1983.

[RiJ R!C!iJ:ER, J .-L., Distributed termination in CSP : symmetric
solutions with minimal storage, Proc. STACS 85, to appear.

[TJ 'I'OPOR, R. w., Termination detection for distributed computations,
Inform. Processing Letters 18, 1, pp. 33-36, 1984.

