
Hindawi Publishing Corporation
International Journal of Biomedical Imaging
Volume 2012, Article ID 864827, 6 pages
doi:10.1155/2012/864827

Research Article

Real-Time Compressive Sensing MRI Reconstruction Using GPU
Computing and Split Bregman Methods

David S. Smith,1, 2 John C. Gore,1, 2, 3, 4, 5 Thomas E. Yankeelov,1, 2, 3, 5, 6 and E. Brian Welch1, 2

1 Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
2 Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
3 Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
4 Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
5 Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
6 Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA

Correspondence should be addressed to David S. Smith, david.smith@vanderbilt.edu

Received 25 July 2011; Revised 25 October 2011; Accepted 31 October 2011

Academic Editor: Yibin Zheng

Copyright © 2012 David S. Smith et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Compressive sensing (CS) has been shown to enable dramatic acceleration of MRI acquisition in some applications. Being
an iterative reconstruction technique, CS MRI reconstructions can be more time-consuming than traditional inverse Fourier
reconstruction. We have accelerated our CS MRI reconstruction by factors of up to 27 by using a split Bregman solver combined
with a graphics processing unit (GPU) computing platform. The increases in speed we find are similar to those we measure for
matrix multiplication on this platform, suggesting that the split Bregman methods parallelize efficiently. We demonstrate that the
combination of the rapid convergence of the split Bregman algorithm and the massively parallel strategy of GPU computing can
enable real-time CS reconstruction of even acquisition data matrices of dimension 40962 or more, depending on available GPU
VRAM. Reconstruction of two-dimensional data matrices of dimension 10242 and smaller took ∼0.3 s or less, showing that this
platform also provides very fast iterative reconstruction for small-to-moderate size images.

1. Introduction

Magnetic resonance imaging (MRI) is an important appli-
cation of compressive sensing (CS) [1–4]. CS in MRI [5]
has the potential to significantly improve both the speed of
acquisition and quality of MR images, but requires an iter-
ative reconstruction that is more computationally intensive
than traditional inverse Fourier reconstruction. Compressive
sensing accelerates MR acquisitions by reducing the amount
of data that must be acquired. Reconstruction of this partial
data set is then accomplished by iteratively constraining the
resulting image to be sparse in some domain while enforcing
consistency of the measured subset of Fourier data.

One practical barrier to the routine adoption of CS MRI
is the delay between acquisition and reconstruction of im-
ages. Compressed sensing solvers work almost entirely with
vector and image arithmetic, making them an excellent can-
didate for acceleration through using graphics processing
units (GPUs) for parallelization. Here we illustrate how

GPUs can be used to achieve significant increases in speed
of CS reconstructions of large MRI data sets.

GPU computing means using the GPU to perform gen-
eral purpose scientific and engineering computation. High-
end video cards can contain hundreds of separate floating-
point units, allowing for massively parallel computations
at a fraction of the cost of CPU-based supercomputers, as
measured on a per gigaFLOP basis (one gigaFLOP is equiva-
lent to one billion floating point operations per second).
GPU computing works best in single instruction, multiple
data (SIMD) situations, such as the solution of large systems
of linear equations. The power of GPU computing is al-
ready being realized in several advanced medical image re-
construction applications [6–9].

2. Materials and Methods

2.1. Hardware. The reconstruction platform tested was a
high-performance GPU server designed to serve an MRI
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(1) Transfer Fourier data and k-space mask to GPU.

(2) Initialize necessary temporary arrays on the GPU.

(3) Precompute outer and inner loop-independent factors.

outer loop n times:

inner loop m times:

(4) Minimize L2 norm by direct matrix inversion.

(5) Update solution image.

(6) “Shrink” TV of solution.

(7) Update Bregman parameters.

end

(8) Update Fourier data matrix.

(9) Update inner loop-independent matrices.

end

(10) Transfer solution to CPU.

Algorithm 1: GPU-based Split Bregman Compressive Sensing Reconstruction.

scanner as a dedicated reconstructor. This system contained
a six-core, 2.67 GHz Xeon X5650 with 12 GB of 1333 MHz
DDR3 RAM, 32 KB of L1 cache, 256 KB of L2 cache, and
12 MB of L3 cache. An NVIDIA Tesla C2050 was used for
this experiment. The Tesla C2050 contains 448 CUDA cores
arrayed as 14 Streaming Multiprocessors (SMs) with 32 cores
per SM. It has 3 GB of VRAM and 64 KB of memory per SM.
All SMs share 768 KB of L2 cache. The Tesla C2050 has a
theoretical maximum double-precision performance of 515
GFLOPs.

2.2. Reconstruction Problem. The optimization problem we
are choosing to explore is the reconstruction of partial MRI
data sets using CS. MRI is proving to be a fertile application
for CS because many MR images can be highly compressed
by transform coding with little loss of information. Con-
ventional MRI data is acquired according to the Fourier
sampling pattern required to satisfy the Nyquist criterion
while producing an image of a given field of view and spatial
resolution. To sample the Fourier domain “compressively,”
only a random subset of the full Nyquist Fourier sampling
scheme is acquired. Reconstruction of the conventional
fully sampled MRI data requires simply an inverse Fourier
transform,

u = F
−1
b, (1)

but the inverse problem becomes underdetermined when
part of the Fourier data is omitted, so approximate methods
must be used.

One highly successful method in particular has been to
formulate the CS MRI reconstruction as a sparse recovery
problem, in which an image is found that is consistent
with the acquired Fourier data while having the sparsest
representation in a chosen basis (e.g., gradient and wavelet).
The typical formulation of the reconstruction of a complex
image u from a partial Fourier data set b is then

u = arg min
x

‖x‖1 + λ‖Ax − b‖
2
2, (2)

where A is a measurement operator that transforms the
sparse representation x to the image domain then performs
the subsampled Fourier measurement, and the l1 and l2

norms are, respectively,

‖x‖1 =
∑

i

|xi|,

‖x‖
2
2 =

∑

i

xixi,
(3)

where the bar denotes complex conjugation. With the addi-
tion of the l1 norm, the problem is more difficult to solve, and
iterative techniques such as interior point methods [10, 11],
iterative soft thresholding [12, 13], and gradient projection
[14–16] are typically employed.

2.3. Software. The open-source split Bregman code of Gold-
stein and Osher [16] was chosen as the starting point for the
GPU-based CS solver. The solver was originally written in
Matlab. This solver was chosen for its rapid convergence and
lack of array reduction steps, which hinders parallelization.
We modified the original code to work with Jacket 1.8.0
(AccelerEyes, Atlanta, GA) and Matlab R2010b (Mathworks,
Natick, MA). CUDA Toolkit 4.0 and CUDA developer driver
270.41.19 were used for all computations.

Algorithm 1 briefly outlines the procedure for running
the split Bregman reconstruction on the GPU. Note that the
split Bregman algorithm runs for a fixed number of itera-
tions, so there is no variation in run time due to different
descent trajectories as with a tolerance-based stopping crite-
rion. Furthermore, the choice of image reconstructed has no
bearing on the results, since the fixed number of iterations
ensure that the same number of operations are performed
on any input data set.

At the beginning of the reconstruction, the Fourier data
in main memory must be transferred to the GPU with
Jacket’s gsingle and gdouble Matlab commands. Next, tem-
porary storage is allocated on the GPU using Jacket’s gzero
and gones commands. All subsequent arithmetic operations,



International Journal of Biomedical Imaging 3

including the Fourier transform, are carried out on the GPU
using function overloading. Function overloading simplifies
code syntax by enabling a single function to encapsulate
different functionality for different types of arguments. The
specific behavior is typically chosen by the compiler or at
run time. In our case, Matlab automatically calls the Jacket
library if an operation is requested on a matrix that lies in
GPU memory, while identical operations on a matrix in main
memory are carried out with Matlab’s built-in functions.
After the last loop iteration on the GPU, the solution is
transferred back to main memory with overloaded versions
of Matlab’s double and single commands; all temporary
storage is automatically freed.

2.4. Experiments. Two numerical experiments were per-
formed. The first was a pure matrix multiplication, designed
to measure practical peak floating-point performance of
the CPU and GPU as realized by Jacket 1.8.0. To remove
dependencies on the multithreading performance of Matlab
R2010b and provide easier comparison of the CS reconstruc-
tions, the CPU experiment was run both with and without
multithreading enabled.

The second experiment, and the focus of this work, was
a CS MRI reconstruction of a T1-weighted breast image sub-
jected to a 50% undersampling in Fourier (spatial frequency)
space. Total variation was used as the sparsity constraint and
was defined as the sum of the magnitudes of pixels in the gra-
dient image. (See [5] for more details about CS MRI recon-
struction in general.) Figure 1 shows sample images from the
experiment and the random Fourier sampling pattern.

CS MRI reconstructions were performed for powers-of-
two image sizes ranging from 322 to 81922 (up to 40962 only
for double precision, due to memory limitations). This range
covers the range of realistic MR acquisition matrix sizes for
2D scans with allowance for specialty techniques at very low
or very high resolutions or future developments in imaging
capabilities. The largest matrix sizes can also be indicative
of the performance of three-dimensional reconstruction
problems. For example, a 2563 data set is the same size as a
40962 one.

The CPU-based reconstructions were performed with
and without multithreading enabled. All reconstructions
were timed eleven times, with the first iteration discarded
and the following ten iterations averaged. This avoids biasing
the results with startup costs associated with both Jacket
and CUDA. Jacket uses Just-in-Time (JIT) compilation to
improve performance of repeated function calls, so the
first call to the Jacket library is slowed by this compilation
step. The CUDA driver, upon initial invocation, optimizes
the low-level GPU code for the particular hardware being
used. These two processes increase code performance across
multiple runs but reduce it for the initial function calls.

For timing experiments, the startup penalty is a con-
founding factor. Accurate timing thus requires that the re-
construction be “warmed up” with a similar problem before
timing the full-scale computation. Here we used the simplest
approach of discarding the first iteration. In principle,
though, the warmup problem can be much smaller in data

size as long as it uses the same set of Jacket functions needed
in the full-size reconstruction.

3. Results

3.1. Baseline. Table 1 shows the result of the matrix multi-
plication experiment with and without CPU multithreading
enabled. In terms of CPU performance, Matlab R2010b
accelerated the CPU-based matrix multiplication by ∼6
on this six-core processor using multithreading. Using the
GPU then yielded an additional factor of ∼5 beyond this,
with a combined speedup of ∼30 over a single CPU core.
Based on the measured GPU single- and double-precision
performance of 650 and 311 GFLOPs, respectively, we can
see that Matlab R2010b combined with Jacket 1.8.0 reached
60%, and 63% of the theoretical maximum single- and
double-precision performance, respectively, of the GPU.

3.2. CS MRI Reconstruction. The results of the CS MR image
reconstructions are shown in Tables 2 and 3 and Figure 2.
The maximum speedup was 27 for a single-precision image
of size 20482. For a typical double-precision MRI acquisition
matrix of 2562 to 5122, we found speedups of ∼7–17.

Figure 2 shows the speed advantage of the GPU-based
code over using both one and multiple CPU cores. The
difference between enabling multithreading or not was large,
and should be considered to fairly evaluate the speed im-
provement of using a GPU. As can be seen in Figure 2, the
speedup was less than one for images smaller than about
642, followed by a rapid gain in speedup factor for images of
20482 and a decline in speedup factor for the largest matrix
sizes. Despite the performance falloff, the largest image was
reconstructed over an order of magnitude faster on the
GPU. The single-precision GPU code was able to reconstruct
images up to 81922 before running out of GPU memory since
single-precision matrices require half the storage per element
of double-precision matrices.

4. Discussion

Two notable features are evident in Tables 2 and 3. First,
the GPU reconstruction times are very similar for images
below 2562, regardless of numerical precision. This is due to
the communication overhead in transferring the data from
the CPU memory to the GPU memory. For the smallest
images, this cost dominated the computation time and,
for images below 642, even caused the GPU reconstruction
to take longer than the CPU reconstruction. This suggests
that for very small acquisition matrices an efficient GPU
reconstruction should combine multiple 2D data sets, such
as different slices or echoes, into one reconstruction problem.

The second interesting feature of Tables 2 and 3 is
that GPU reconstruction times for images of size 10242

and smaller were effectively instantaneous. A typical rapid
gradient echo sequence may employ a repetition time of
5 ms, so a 50% undersampling of an N2 Fourier matrix
would require roughly 2.5N ms to acquire (ignoring other
acceleration methods for simplicity). The smallest image
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Figure 1: Sample reconstructions from the timing experiment. (a) shows the original T1-weighted breast image, (b) is the result of replacing
the missing Fourier coefficients with zeros (minimum energy reconstruction), and (c) shows the CS reconstruction. (d) shows the 50%
undersampled pattern of Fourier data retained (white is acquired; black is omitted). Entire lines of the Fourier domain were chosen to be
consistent with the constraints of a 2D MRI acquisition.

Table 1: Measured peak CPU and GPU performance in GFLOPs
for a matrix multiply experiment using Matlab and Jacket. The GPU
achieves a factor of ∼5 improvement over the multicore CPU.

CPU performance (GFLOPS)
GPU

performance
(GFLOPS)

Precision 1 Core 6 Cores

Single 23.6 121 650

Double 11.8 60.2 311

tested here would thus take 40 ms to acquire, while the CS
reconstruction would take only 60 ms to complete, even
with the severe communication penalty. The largest double-
precision image we tested (40962) would take 15 s to acquire

and 10 s to reconstruct. Thus our GPU-based platform has
the capacity to produce iteratively reconstructed CS-accel-
erated gradient echo images in real time for some MRI ap-
plications.

The decline in acceleration at 40962 was likely due to
memory limitations (Yalamanchili, private communication).
The NVIDIA Tesla C2050 card is designed such that each
streaming multiprocessor (SM; comprised of 32 floating
point units) shares a single 64 KB block of local memory.
For a double-precision complex matrix multiplication, each
matrix element requires 16 bytes of storage, so a maximum
of 4096 elements can be stored in the SM’s shared memory.

Matlab stores arrays in column major order, so a matrix
column must fit entirely into the shared memory of the SM in
order to minimize memory access overhead. Thus memory
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Table 2: Single-precision GPU CS MRI reconstruction times for
test images ranging from 162 to 81922 with and without CPU mul-
tithreading. Effective speedup is the multicore CPU time relative to
the GPU time.

Square CPU time (s) GPU Effective

image size 1 Core 6 Cores time (s) speedup

16 0.011 0.011 0.060 0.18

32 0.016 0.017 0.060 0.28

64 0.038 0.046 0.063 0.73

128 0.13 0.099 0.061 1.62

256 0.49 0.28 0.066 4.24

512 2.0 1.1 0.12 9.17

1024 8.4 3.4 0.34 10.00

2048 35 14 1.3 10.77

4096 160 68 8.3 8.19

8192 670 270 140 1.93

Table 3: Double-precision GPU CS MRI reconstruction times for
test images ranging from 162 to 40962 with and without CPU mul-
tithreading. Effective speedup is the multicore CPU time relative to
the GPU time.

Square CPU time (s) GPU Effective

image size 1 Core 6 Cores time (s) speedup

16 0.011 0.011 0.062 0.18

32 0.017 0.017 0.062 0.27

64 0.040 0.046 0.065 0.71

128 0.13 0.10 0.064 1.5

256 0.49 0.28 0.070 4.0

512 2.0 1.2 0.12 10

1024 8.4 3.4 0.35 10

2048 35 15 1.4 11

4096 160 69 15 5

access patterns will become inefficient above matrix sizes of
2048 for double-precision complex matrix multiplication.
We do in fact see a leveling off of performance at 10242

and a dramatic decline in performance above 20482, which
is consistent with this prediction.

Many alternate methods of accelerating the CS recon-
struction on a GPU platform exist, including writing custom
low-level code in CUDA C or OpenCL, using free low-level
libraries like CULA and CUFFT, using Matlab’s built-in GPU
library through the Parallel Computing Toolbox (R2010b
later only), or using other free high-level Matlab-CUDA
interfaces, such as GPUmat.

The pace of algorithmic development is accelerating in
compressed sensing, as demonstrated in Figure 3, and one
advantage of using a high-level interface to the GPU is rapid
prototyping and implementation. Debugging time is shorter
with high-level languages, and coding effort is reduced,
allowing the newest algorithms to be implemented quickly
while still retaining a majority of the theoretical compu-
tational benefit of the GPU. Matlab’s built-in GPU library
does not support the array indexing needed for the gradient
operation, so we could not compare it here. GPUmat is free
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Figure 2: Speedup factors for the CS MRI reconstruction as a
function of image size with and without CPU multithreading. The
gray, dashed horizontal line shows a speedup of one.
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Figure 3: Linear growth of yearly Google Scholar hits for “com-
pressed sensing algorithm” over the last decade. The steadily grow-
ing number indicates the increasing difficulty of keeping pace with
algorithmic improvements in compressed sensing.

and open source and a viable alternative to Jacket in theory,
but we were unable to use it with our reconstruction code
due to an unresolvable memory access error. Jacket is the only
high-level software package to support sparse matrix opera-
tions on the GPU, which allows classes of compressed sensing
algorithms that use sparse matrix operators to be used. (e.g.,
the gradient operation can be implemented as a bidiagonal
matrix.) Also, the overloaded GPU functions in Jacket are
implemented as MEX files, which are precompiled C/C++
functions callable from within Matlab; so writing custom



6 International Journal of Biomedical Imaging

CUDA subroutines could only eliminate the function call
overhead and not speed up the individual SIMD operations.

5. Conclusion

We have shown that GPU computation significantly accel-
erated CS MRI reconstruction of all but the smallest of the
tested image sizes. The combination of Matlab and Jacket
yields a processing package that is able to realize over half
of the theoretical maximum performance of the GPU, while
requiring minimal code development.

The speedup realized by the GPU for the smallest images
was progressively hampered by communication overhead,
while the largest images suffered from the limited GPU
RAM. The optimal image dimensions, however, seem to be
serendipitously close to that of high-resolution MRI data; so
GPU computing, coupled with the Goldstein and Osher split
Bregman algorithm, appears to be a well-suited platform for
rapid CS MRI reconstruction.

Future improvements to these methods include algo-
rithm modifications to allow unified reconstruction of mul-
tiple two-dimensional or a single three-dimensional Fourier
data set on the GPU with a single call to the reconstructor,
thus reducing the communication penalty. Additional cores
on the GPU card could allow higher acceleration, since we
found that the split Bregman algorithm parallelizes extreme-
ly well. And finally, more RAM onboard the GPU would
allow larger data sets to be reconstructed more efficiently.
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