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Abstract 

 The state dependent Riccati equation (SDRE) technique is a recently developed methodology 

for designing control laws and estimation algorithms for missile flight control. Although its 

potential is well recognized by control theory experts, the industry acceptance of the technique 

has been slow. The main reasons for this are: a) unlike linear control technology, the SDRE 

approach requires advanced numerical methods for its implementation, which are not currently 

available off-the-shelf,  b) the perception that this technique may not be computationally feasible 

for real-time implementation on flight control processors.  

 Both of these issues are addressed in this paper. A software package for real-time 

implementation of the SDRE technique was developed during the present research. The 

execution of this software at speeds up to 2 kHz sample rates on problems of the size commonly 

encountered in missile flight control applications was then demonstrated on commercial off-the-

shelf processors.  
 
1. Introduction 

 State Dependent Riccati Equation (SDRE) method is a recently developed technique for the 

control of nonlinear dynamic systems [1 – 4].  This paper discusses the development of 

numerical algorithms for the practical implementation of the SDRE control technology in missile 

flight control problems. The SDRE control technology has extensive applications in the design of 

advanced flight control systems, and also in numerous automotive and process control 

applications. The main difficulty encountered by the users attempting to use the SDRE 

technology is that of developing real-time computational algorithms that can be implemented on 
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commercially available processors. This is due to the fact that the SDRE control technique 

demands advanced numerical algorithms and significantly more computational resources than 

conventional control algorithms. This paper addresses the speed and performance issues that 

arise in the practical implementation of the SDRE control technique. Commercial, off-the-shelf 

computer technology such as the WindowsNT [5] and LINUX operating systems running on an 

Intel Pentium II/III platform [6] are employed in this work. 

 Model-based control concepts are currently gaining popularity in manufacturing and process 

control industries, as evidenced by the popularity of such solutions in chemical process control 

[7]. The model predictive control (MPC) methodology [8 - 14] is currently the most popular 

technique employed in these applications. The SDRE nonlinear technique is capable of 

delivering superior performance when compared with the model predictive control methodology, 

while providing stability guarantees not available from the model predictive control technique. 

However, algorithmic and implementation difficulties have not permitted faster acceptance of the 

SDRE technology by the industry. 

The following lists the accomplishments of the present research: 

1. Developed fast, C language-implementations of two algorithms for the solution of algebraic 

Riccati equations that form the central component of the SDRE design technique. The first 

approach is a direct method based on Schur decomposition of the Hamiltonian matrix [15, 

16]. The second approach is an iterative algorithm that refines an initial guess of the Riccati 

solution using the Kleinman algorithm [17, 18]. These software packages use extensively re-

worked code components from the public-domain linear algebra package LAPACK [19]. 

Results from both these algorithms have been compared with results from software packages 

such as MATLAB[20]. 

2. Solution speeds of these algorithms have been assessed on Intel Pentium II, 300 MHz and 

Pentium III 450 MHz computers running the WindowsNT operating system, and on a real-

time Motorola 604e PowerPC board (DS1103) from dSPACE Inc [21]. The dSPACE 

PowerPC board is used extensively in automotive control system development. The 

maximum speed obtained for a missile guidance-control problem is around 2 kHz. 

 

 A six-state nonlinear dynamic system representing a missile flight control system was used in 

these evaluations. Present research shows that the numerical algorithms are capable of delivering 
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computational speeds far in excess of that required for implementing high-performance weapon 

flight control systems. Since the main computational burden in implementing the SDRE 

technique is in the solution of the algebraic Riccati equation, the present research demonstrates 

the feasibility of implementing the SDRE technique on commercial, off-the-shelf processors in 

real-time. Moreover, analysis has revealed that it may be possible to gain an additional 25% 

speed improvement by further refining the C code. 

 The next section will present a brief overview of the SDRE technique. Section 3 will discuss 

an approach for numerically constructing the state dependent coefficient form (SDC form) of the 

system dynamics from a numerical simulation. Approaches for solving the algebraic matrix 

Riccati equation will be discussed in Section 4. Approximate operation counts for each of the 

computational algorithms will also be given in that section. Section 5 will discuss code 

development and speed evaluation issues. Conclusions will be given in Section 6.  

 The present research clearly demonstrates that the SDRE technique can be implemented in 

real-time for a realistic, high-order multivariable system using commercial, off-the-shelf 

computing subsystems. Real-time SDRE computations for a problem of dimensions comparable 

to missile flight control system is used as an example.  

2. An Overview of the SDRE Technique 

 State Dependent Riccati Equation (SDRE) method [1 - 4] is a recently emerged nonlinear 

control system design methodology for direct synthesis of nonlinear feedback controllers. Using 

a special form of the system dynamics, this approach permits the designer to employ linear 

optimal control methods such as the LQR methodology and the H∞ design technique for the 

synthesis of nonlinear control systems.  

 The SDRE design technique requires the dynamic model of the system to be placed in the 

state dependent coefficient (SDC) form. The SDC form has the structure: 

( ) ( )uxBxxAx +=&  

In its most general form, the SDRE technique allows the inclusion of disturbance terms [4].  If 

desired, the designer can augment this system by introducing integral states and dynamic 

compensators to improve the tracking and disturbance rejection characteristics of the SDRE 

controller. 

 Note that the SDC form has the same structure as a linear dynamic system, but with the 

system matrix A and the control influence matrix B being functions of the state variables. 
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Reference 2 has shown that the SDC form can be derived for most nonlinear dynamic systems 

using simple algebraic manipulations. An approach for numerically constructing the SDC form 

from a given nonlinear simulation model will be discussed in the next section. 

 The matrices A(x) and B(x) evaluated at all values of the state vector x are assumed to be such 

that the system dynamics is controllable. Although the original theory discussed in Reference 2 

does not impose this requirement, the need for full controllability arises from the numerical 

considerations.  

 The second ingredient of the SDRE design technique is the definition of a quadratic 

performance index in state dependent form: 

( ) ( )[ ]∫ +=
∞

0t

TT dtuxRuxxQx
2
1J  

 The state dependent weighting matrices Q(x) and R(x) can be chosen to realize the desired 

performance objectives. In order to ensure local stability, the matrix Q(x) is required to be 

positive semi-definite for all x and the matrix R(x) is required to be positive definite for all x.  

 Next, a state dependent  algebraic Riccati equation: 

( ) ( ) 0)()()()()()()()( 1 =+−+ − xQxPxBxRxBxPxAxPxPxA TT  

is formulated and is solved for a positive definite state dependent matrix P(x). The nonlinear 

state variable feedback control law is then constructed as: 

( )xxPxBxRu T )()(1−−=  

 Additional sophistication can be introduced in the SDRE design approach by including state 

estimators, and frequency weighting terms in the performance index. If adequate computational 

resources are available, the design problem can also be cast as an H∞ design or a µ-synthesis 

problem. An excellent overview of the SDRE design technique can be found in Reference [4]. 

 It may be observed that the crucial part of the control law computation is the solution of the 

state-dependent Riccati equation. In rare situations, this Riccati equation may be solvable in 

closed-form. In most problems, however, this equation will have to be numerically solved at 

each sample instant.  

 A flowchart illustrating the steps involved in the computation of the SDRE control laws is 

given in Figure 1. At each sample, the state vector obtained from feedback sensors or estimators 

are used to compute the SDC matrices, which are then used to find the state dependent gains. 

The product of the state dependent gains and the state vector then yields the control variables.  
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 Thus, the two main steps in the SDRE nonlinear control system design method are the 

computation of the SDC matrices A(x) and B(x), and the solution of an algebraic matrix Riccati 

equation for P(x). The remaining steps involve matrix inversion and multiplication. 

State Feedback
Control Law:
u = - K(x) x

Compute
Model Matrices

A(x), B(x)

Formulate and Solve
The StateDependent

Riccati Equation for P(x) >0

Compute
State-Dependent Gain

K (x) = R-1(x) BT(x) P(x)

State
Vector: x
From the

Dynamic System

Off-Line Selection of
State & Control

Weighting Matrices
Q(x), R(x)

Control
Vector: u

To the
Dynamic System

 
Fig. 1. SDRE Control Law Computations 

 If the nonlinear system dynamics is given in symbolic form, it is possible to derive the SDC 

model using algebraic manipulations. However, in many practical problems where the system 

model is given as a computer simulation rather than an analytical model, numerical approaches 

will have to be employed to construct the SDC form. The next section will discuss a reliable 

numerical approach for obtaining the SDC form from a given numerical simulation model. 

 While the user may have a choice in how the system dynamics are transformed to the SDC 

form, the solution of the Riccati equation almost always requires numerical approaches. Closed-

form solutions may be possible under special conditions. It most cases, numerical algorithms 

must be employed to find the solution to the Riccati equation. Several reliable algorithms have 

been advanced in the literature [16] for the solution of algebraic Riccati equations, four of which 

will be reviewed in Section 3. These algorithms require the use of numerical linear algebraic 

methods. Computer codes for implementing linear algebraic algorithms available in the public 

domain [19] formed the starting point for the present work. Highly optimized versions of these 

code components were developed to assemble the SDRE control software.  

 The following section will discuss a numerical approach for transforming a given simulation 

models of the dynamic system into the SDC form. Methods for the solving algebraic Riccati 
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equations, together with an approximate assessment of the computational requirements with then 

be discussed in Section 4. 

3. Numerical Approach for Obtaining the SDC Model 

It will be assumed that the dynamic system is given in the standard form: 

( ) ( )u xgxfx +=&  

Here, x is the state and u is the control vector. Note that the control vector appears linearly in the 

system dynamics.  If the control variables appear nonlinearly in the system dynamics, an input 

dynamic compensator can be introduced to transform the model into standard form. For instance, 

if the model is given in the form:  

)v,z(hz =&  

The user can introduce an input dynamic compensator of the form wv =& , such that the new 

dynamic system:  

w
1
0

0
)v,z(h

v
z









+








=








&

&
 

is in the standard form with respect to the redefined control vector w.  

 Any input dynamic compensators can be employed, provided that the redefined control 

variable appears linearly in the dynamics. At any given value of x, finding the SDC form  

( ) ( )u xgx xAx +=&  

from the given nonlinear dynamic system requires the solution of a system of n equations: 

( ) ( )xfx xA =  

The matrix A(x) has n×n elements. Since only n equations are available, additional relations must 

be found to solve for the elements of A(x). If the vector nonlinear function f(x) is available in 

analytical form, algebraic manipulations can be used to construct the matrix A(x). Reference 2 

has advanced several approaches for the construction of the A(x) matrix. 

 However, if the model is specified in the form of a computer simulation, a numerical 

approach will need to be set up. Instantaneous SDC parameterization can be obtained by 

evaluating the vector nonlinear function f(x) using a set of linearly independent probe vectors 

n2 ......,, ζζ . As a practical matter, since the behavior of the nonlinearities in the neighborhood of 

the current system state are not explicitly known, it is wise to choose probe vectors that are close 

to the current state vector.  
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 The probe vectors can be constructed by adding small magnitude perturbation vectors 

σ2, σ3, σ4,....σn, to the nominal state vector to yield a set of  linearly independent vectors: 

nn433222 x......,,x,x,x σζσζσζσζ +=+=+=+=  

The nonlinear function f(x) is next evaluated using these linearly independent vectors. Assemble 

the matrix equation  

[ ] ( )[ ]n2n2 .........x xA)(f.......)(f)x(f ζζζζ = . 

At any given value of x, this linear matrix equation can be solved for the elements of A(x). Since 

the probe vectors and the state vector are linearly independent, this equation is well-conditioned, 

and can be solved using well-known linear algebraic methods.  

 Note that the foregoing computations will have to be carried out at every sample. The SDC 

matrix A(x) from these computations can next be used to formulate and solve the SDRE control 

problem. As an aside, it is interesting to examine the relationship between the numerical 

construction of the SDC model and the conventional Taylor series approximation. If the 

perturbation vectors σ2, σ3, σ4,....σn, are small, it can be found that: 

0xat,
x
fA =

∂
∂

≅  

Note that this corresponds to the Taylor series linearization of the system dynamics about the 

origin. Thus, the present methodology for constructing the SDC model automatically reverts to 

Taylor series linearization of the system dynamics near the origin of the state space. For constant 

control influence matrix case, the present SDC parameterization scheme preserves the 

controllability properties of the dynamic system near the origin. 

 Since the only restriction on the probe vectors is that they be linearly independent, it is 

possible to construct an infinite variety of SDC parameterizations for a given dynamic system.  

4. Efficient Algorithms for Solving Algebraic Riccati Equations 

 As discussed in Section 2, the main computational steps in the implementation of the SDRE 

technique are the computation of the SDC form of the system dynamics and the solution of a 

high-dimensional algebraic matrix-Riccati equation. Riccati equation solution methods discussed 

in the following subsections fall into two basic categories: direct and iterative. The following 

subsections will review four numerical techniques that have been found to be useful in 

applications [16 - 18]. These are: 

1. Solution using Schur-decomposition of Hamiltonian matrix 
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2. Kleinman algorithm 

3. Solution via discrete-time transformations 

4. Solution via spectral factorization 

 Techniques not examined in this paper include doubling algorithm, Chandrasekhar algorithm, 

square root algorithm, information filter algorithm, and the matrix sign function algorithm. Some 

of these are discussed in Reference 16. 

 The methods (1) and (4) are direct methods while the others are iterative. Generally speaking, 

direct methods are computationally faster than iterative methods, especially in poorly 

conditioned problems and in cases where a good quality initial guess is not available. On the 

other hand, the computation and storage requirements for a direct method can be more than twice 

as much as that for an iterative method because the former operates on a nn 22 ×  Hamiltonian 

matrix for a Riccati equation of order n .  Iterative techniques can outperform direct methods if 

the starting solution is close to the final solution.   

4.1. Direct Solution Using the Hamiltonian Matrix 

 The solution of Riccati equation of order n  can be obtained in terms of the solution of a 

linear Hamiltonian equation of order n2 . The Hamiltonian matrix corresponding to the algebraic 

matrix Riccati equation is defined as: 
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The Hamiltonian matrix satisfies the condition: 
1−−== JJMJJMM TT . 

M is assumed to have no imaginary eigenvalues. Given the stabilizability and detectability of the 

dynamic system, if λ  is an eigenvalue of the Hamiltonian matrix, so is λ− . Thus, there exists a 

real W  such that 
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and 1Λ , 2Λ  are real Jordan matrices such that the real parts of all eigenvalues are respectively 

negative and positive. Under these assumptions, the solution to the matrix-Riccati equation can 

be written as  
1

1121
−= WWP . 

Since 1
11111

1 −− Λ−=− WWPBBRA T , the eigenvalues of 1Λ  represent the closed loop system 

modes.  Note that the matrix 







=

2221

1211

WW
WW

W  consists of the eigenvectors of the Hamiltonian 

matrix .M   

It is numerically preferable to use a Schur form 

U
L
LL

UM T








=

22

1211

0
 

where L  is a Schur form of M  with 11L  possessing all negative real part eigenvalues, and the 

matrix U  is orthogonal. Then, the solution to Riccati equation is given by 
TT UUP )( 1

1112
−= . 

Since 1
111111

1 )( −− −=− TTT ULUPBBRA , the eigenvalues of 11L  represent the closed loop system 

modes. A flowchart of this direct solution methodology is given in Figure 2. 

Given RQBA ,,,

Form Hamiltonian Matrix, 
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Reduce M  to an ordered real Schur form, U
L
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UM T








=

22

1211

0

Solve linear system of equations for P : TT UPU 1211 =
 

Fig. 2. Direct Solution of the Riccati Equation Using  

Schur Decomposition of the Hamiltonian Matrix 
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 As is evident from the above flowchart, two distinct steps are involved in the Schur 

decomposition approach. The first is the reduction of a nn 22 ×  Hamiltonian matrix to an 

ordered real Schur form; the second is the solution of an nn ×  linear matrix equation. An 

approximate estimate of operation counts required to solve the Riccati equation using the Schur 

method is given in Reference 16. That work indicates that the solution requires approximately 
375n  floating point operations (FLOPS), where n is the dimension of the system. Missile 

autopilots typically involve five states and three controls [22]. Thus, about 10,000 floating-point 

operations per second (10 MFLOPS) will be required to implement the SDRE technique for a 

missile autopilot at about 1 kHz sample rate. Implementing more advanced integrated guidance-

control algorithms [23, 24] will require additional 2 MFLOPS. 

4.2. The Kleinman Algorithm 

 The Kleinman recursive algorithm [17, 18] uses an initial guess of the closed gain to obtain 

the solution to the algebraic Riccati equation. This algorithm is implemented as follows. Let 0K  

be such that closed-loop system )( 0
TBKA +  has all eigenvalues with negative real parts. Define 

iP , iK  recursively as: 

QRKKPBKABKAP T
iii

TT
i

T
ii −−=+++ )()(  

1
1

−
+ −= BRPK ii  

Then 1+≥ ii PP  and PPii
=

∞→
lim . Further, 2

1 PPcPP ii −≤−+ , 0c > , implying that the 

convergence of the algorithm is quadratic. Initial guess of the closed loop system gain can be 

generated using any available technique. For instance, pole placement can be used as the starting 

point. Alternately, the Schur algorithm discussed in the previous section can be used to obtain a 

first estimate 0P  of P, and then the algorithm can be initialized with 1
00

−−= BRPK . A 

computational flowchart for the Kleinman algorithm is given in Figure 3. 
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Choose 0K such that 0)]([ 0 <+ℜ TBKAe λ ; 0=i

Given ε,,,, RQBA

QRKKPBKABKAP T
iii

TT
i

T
ii −−=+++ ++ 11 )()( ; 1

11
−

++ −= BRPK ii

ε≤−+ ii PP 1

1+= ii

1+= iPP

True

False
 

 
Fig. 3. The Kleinman Algorithm 

 The Kleinman algorithm requires approximately 6n3 floating point operations per iteration. 

Depending upon the initial guess, 10 or more iterations may be required to obtain the solution. 

Thus, the Riccati equation solution can be accomplished in 60n3 floating point operations. A 

better quality initial guess can produce faster convergence of the algorithm. It has been shown 

[17, 18] that the algorithm will converge to the true solution, if the starting guess of the gain 

matrix provides a stable closed-loop system. 

 In the case of SDRE computations, even if a good quality guess is not available initially, the 

quality of initial guess will improve as the computations proceed.  

4.3. Recursive Solution Using Discrete Time Transformations 

 The solution to the matrix Riccati equation can be obtained by setting up a discrete-time 

linear-quadratic problem for which the limiting solution of the discrete-time Riccati equation 

is P . Given the elements of the Riccati equation ,,, TDDQBA =  and R , define 

)()(
2
1,)()(2,

2
1

)(2,))((

11

11

FIQFIEBAIQAIDQGGRC

BAIGAIAIF

TTT ++=−−=+=

−=−+=

−−

−−

 

Then, the solution to the matrix Riccati equation can be obtained using the recursive formula:  

EDGFGGCDGFFF T
i

T
i

T
i

T
i

T
i ++ΦΦ++Φ−Φ=Φ −
+ )())(( 1

1  

Note that: ii
P Φ=

∞→
lim .  
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 The discrete-time transformation approach requires about 20n3 operations per recursion. 

Although the number of recursions required depend strongly on the initial guess, typically 10 to 

20 recursive steps are necessary for convergence. The main advantage of this technique is its 

simplicity.  

4.4. Direct Solution Using Spectral Factorization 

 This technique is based on the spectral factorization of the Hamiltonian matrix M  as 

),()( spsp −  where )(sp  has all stable eigenvalues. Then the solution to the Riccati equation P  

is uniquely defined by 

0
P
I

)M(p =
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21
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The computational requirements for the spectral factorization approach are comparable to the 

direct solution approach described in 4.1. 

 The algorithms described in Sections 4.1 and 4.2 were coded and evaluated during the 

present research. Some of the issues involved in these implementations, together with 

computational speed evaluation on representative hardware are given in the following section. 

5. Coding and Evaluation of ARE Solvers 

 The algorithms for Riccati equation solution described in Sections 4.1 and 4.2 formed the 

basis for the development of the software for implementing the SDRE control laws. The Schur 

direct method and the Kleinman iterative method were coded in ANSI-C. Basic numerical 

algebraic routines required for the implementation of these methods were obtained from the 

LAPACK [19] software package, and were optimized for improved performance.  

 LAPACK can solve systems of linear equations, linear least squares problems, eigenvalue 

problems and singular value problems. It can also handle many associated linear algebraic 

computations such as matrix factorizations or estimating condition numbers. LAPACK software 

supercedes the well-known LINPACK and EISPACK software packages. This software forms the 

basis for several well-known commercial computer programs. An interesting aspect of the 
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LAPACK package is that it is provided in both single and double precision versions. Moreover, it 

provides the same range of functionality for real and complex data.  

 The algebraic Riccati equation solution codes were developed using Microsoft Visual C/C++ 

compiler, Version 6.0 for WindowsNT operating system. Each solution method is coded as a 

project.  

 Two versions of the software were assembled. The first version is for use in standalone speed 

evaluations, while the second version is for implementation in the MATLAB-Simulink® 

environment. The latter was used to compare the accuracy of the present implementations with 

those from MATLAB, and was also useful for algorithm evaluation on hardware platforms such 

as the dSPACE-DS1103 PowerPC 604e machine.  

5.1. Performance Evaluation 

 The Riccati solution algorithms discussed in the foregoing section were next evaluated for 

accuracy and speed. The accuracy of Riccati solutions was ascertained by comparing the results 

from the present implementation to those obtained from MATLAB. The MATLAB command:  
[X,L,M,RR]=care(f,g,q,r) 

was used for this purpose. Controllable systems of several sizes were used in these evaluations. 

In every case, the direct solution method produced results that were indistinguishable from the 

MATLAB solution. The accuracy of the iterative solution is essentially a function of the 

specified tolerances. However, in all cases, five to six iterations were sufficient to produce 

results comparable to the direct method. 

 Next, to evaluate the speed of execution of these algorithms, a missile autopilot example 

containing six states and three control variables was selected. This problem size is comparable to 

the realistic guidance-control system for an advanced weapon system. Executable programs 

generated from the code described in the previous sections were then used to solve this problem 

on three different machines. The first two employed commercial versions of the WindowsNT 

operating system, while the third employed a proprietary operating system from dSPACE Inc.  

The WindowsNT evaluations were conducted on an Intel Pentium II 300 MHz workstation, and 

an Intel Pentium III 450 MHz workstation. The dSPACE proprietary operating system 

implementation was evaluated on  a PowerPC 604e processor (DS1103) from dSPACE Inc [21]. 

The dSPACE PowerPC board is used extensively in automotive control system development. 

Speed comparisons for the Riccati solutions on these three machines are presented in Table 1. 
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 Algorithm Processor Operating System Execution Time 

 Schur Method Pentium II, 300 MHz Windows NT 2.38 ms 

 Schur Method Pentium III, 450 MHz Windows NT 1.57 ms 

 Schur Method PowerPC 604e dSPACE Proprietary 1.56 ms 

 Kleinman Method Pentium II, 300 MHz Windows NT 1.46 ms 

 Kleinman Method Pentium III, 450 MHz Windows NT 0.91 ms 

 Kleinman Method PowerPC 604e dSPACE Proprietary 0.476 ms 

Table 1. Execution Times for the Two Riccati Solution Methods 

Computing times are given for one full-cycle of these algorithms. The computing time for the 

Kleinman method is given for three iterations. Note that the computational times deliver speeds 

far in excess of those required for implementing high-performance missile flight control systems. 

Since the main computational burden in implementing the SDRE technique is in the solution of 

the algebraic Riccati equation, these speed evaluations demonstrate the feasibility of 

implementing the SDRE technique on commercial, off-the-shelf processors in real-time. 

Moreover, analysis of the C code has revealed that it may be possible to gain an additional 25% 

speed improvement by further refining the code. 

6. Conclusions  

 The present research was motivated by the application potential of the SDRE nonlinear 

control technique in practical nonlinear control problems. The state dependent Riccati equation 

(SDRE) technique is a recently developed methodology for designing control laws and 

estimation algorithms for general nonlinear dynamic systems. Although its potential is well 

recognized, the industry acceptance of the technique has been slow. The main reasons for this 

are: a) Unlike linear control technology, the SDRE approach requires advanced numerical 

methods for its implementation, which are not currently available off-the-shelf,  b) the perception 

that this technique may not be computationally feasible for real-time implementation on 

commercial off-the-shelf processors.  

 The main objective of the present research was to address these two issues. The following 

tasks were accomplished during the Phase I research. 

1. Developed C language-implementations of two algorithms for the solution of algebraic 

Riccati equations that form the central component of the SDRE design technique. The first 

approach is a direct method based on Schur decomposition of the Hamiltonian matrix. The 
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second approach is an iterative algorithm that refines an initial guess of the Riccati solution 

using the Kleinman algorithm. These software packages use extensively re-worked code 

components from the public-domain linear algebra package LAPACK. Results from both 

these algorithms have been compared with results from software packages such as 

MATLAB. 

2. Solution speed of these algorithms has been assessed on Intel Pentium II, 300 MHz and 

Pentium III 450 MHz computers running the WindowsNT operating system, and on a real-

time Motorola 604e PowerPC board from dSPACE Inc. The dSPACE PowerPC board is 

used extensively in automotive control system development. The execution of these 

algorithms at speeds up to 2 kHz sample rates on problems of the size commonly 

encountered in missile flight control applications was then demonstrated on commercial-off-

the-shelf processors. This  research also developed a numerical algorithm for the construction 

of dynamic system models in state dependent form from a given computer simulation. 

 The present research has demonstrated the feasibility of implementing the SDRE technique 

in real-time using commercial, off-the-shelf computers.  The computational accuracy of these 

implementations has been shown to be comparable to other commercial software packages.  

References 

[1] Cloutier, J. R., “Adaptive Matched Augmented Proportional Navigation”, Proceedings of the 

AIAA Missile Sciences Conference, Monterey, CA, November 1994. 

[2] Cloutier, J. R., D’Souza, C. N., and Mracek, C. P., “Nonlinear Regulation and Nonlinear H∞ 

Control Via the State-Dependent Riccati Equation Technique”, Proceedings of the International 

Conference  on Nonlinear Problems in Aviation and Aerospace, Daytona Beach, FL, May 1996 

[3] Mracek, C.P. and Cloutier, J. R., “Missile Longitudinal Autopilot Design using the State 

Dependent Riccati Equation Method”, Proceedings of the 1997 American Control Conference, 

June 4 - 6, Albuquerque, NM. 

[4] Cloutier, J. R., “State-Dependent Riccati Equation Techniques: An Overview”, Proceedings 

of the 1997 American Control Conference, June 4 - 6, Albuquerque, NM. 

[5] Venturcom Web site: http://www.vci.com/prod_serv/nt/rtx/index.html”. 

[6] Intel Web site:  “http://developer.intel.com/technology/itj/q11998/articles/art_2d.htm”. 



 16

[7] Volckmar, F., “Model-Based Controllers for the Process Industries now Supports Multi-

Model Capability”, Instrumentation and Automation News, Vol. 46, No. 10, October 1998, pp. 

87. 

[8] Richalet, J., Rault, A., Testud, J. L., and Papon, J., "Model Predictive Heuristic Control," 

Automatica, V14, 1978, pp. 413-428 

[9] Richalet, J., "General Principles of Scenario Predictive Control Techniques," Proceedings of 

the 1980 American Control Conference, San Francisco, CA, June 1980, FA9-A 

[10] Morari, M., and Zafiriou, E., Robust Process Control, Prentice Hall, Englewood Cliffs, NJ, 

1989 

[11] Prett, D. M., and Gillette, R. D., "Optimization and Constrained Multivariable Control of a 

Catalytic Cracking Unit," Proceedings of the 1980 American Control Conference, San 

Francisco, CA, June 1980, WP5-C 

[12] Mehra, R. K., Rouhani, R., and Praly, L., “New Theoretical Developments in Multivariable 

Predictive Algorithmic Control," Proceedings of the 1980 American Control Conference, San 

Francisco, CA, June 1980, FA9-B 

[13] Garcia, C. E., Prett, D. M., and Morari, M., "Model Predictive Control: Theory and Practice 

- A Survey," Automatica, V25 N3, May 1989, pp. 335-348. 

[14] The Control Handbook, William S. Levine-Editor, CRC Press, Boca Raton, FL, 1996. 

 [15] Laub, A. J., “A Schur Method for Solving Algebraic Riccati Equations”, IEEE 

Transactions on Automatic Control, Vol. AC-24, No. 6, December 1979. 

[16] Anderson, B. D. O., and Moore, J. B., Optimal Control: Linear Quadratic Methods, 

Prentice Hall, 1990. 

[17] Kleinman, D. L., “On an Iterative Technique for Riccati Equation Computation”, IEEE 

Transactions on Automatic Control, Vol. AC-13, No. 1, February 1968, pp. 114-115. 

 [18] Anderson, B. D. O., “Second-order convergent algorithms for the steady-state Riccati 

equation”, International Journal of Control, Vol. 28, No. 2, 1978. 

[19] Anderson, F., et al, LAPACK User’s Guide, Society for Industrial and Applied 

Mathematics(SIAM), Philadelphia, PA, August 1999. (http://www.netlib.org/lapack) 

[20] Anon, MATLAB User’s Manual, The MathWorks, Inc., Natick, MA, 1998. 

[21] Anon, Solutions for Control-dSPACE Catalog 1999, dSPACE Inc., 22260 Haggerty Road, 

Suite 120, Northville, MI 48167. 



 17

 [22]  Zarchan, P., Tactical and Strategic Missile Guidance, American Institute of Aeronautics 

and Astronautics, Reston, VA, 1997.  

[23] Menon, P. K., Iragavarapu, V. R., and Ohlmeyer, E. J., "Integrated Design of Agile Missile 

Guidance and Control System”, 1998 Missile Sciences Conference, November 17-19, Monterey, 

CA.  

[24] Menon, P. K., Dewell, L. D., and Sweriduk, G. D., “Integrated Guidance-Autopilot Designs 

for Anti-Jam Operation of Precision Munitions”, Phase I SBIR Project Final Report being 

Prepared under Air Force Contract No F08630-99-C-0040, December 1999. 


