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Real-Time Computerized Annotation of Pictures
Jia Li, Senior Member, IEEE, and James Z. Wang, Senior Member, IEEE

Abstract—Developing effective methods for automated annota-
tion of digital pictures continues to challenge computer scientists.
The capability of annotating pictures by computers can lead to
breakthroughs in a wide range of applications, including Web
image search, online picture-sharing communities, and scientific
experiments. In this work, the authors developed new optimiza-
tion and estimation techniques to address two fundamental prob-
lems in machine learning. These new techniques serve as the basis
for the Automatic Linguistic Indexing of Pictures - Real Time
(ALIPR) system of fully automatic and high speed annotation for
online pictures. In particular, the D2-clustering method, in the
same spirit as k-means for vectors, is developed to group objects
represented by bags of weighted vectors. Moreover, a general-
ized mixture modeling technique (kernel smoothing as a special
case) for non-vector data is developed using the novel concept of
Hypothetical Local Mapping (HLM). ALIPR has been tested by
thousands of pictures from an Internet photo-sharing site, unre-
lated to the source of those pictures used in the training process.
Its performance has also been studied at an online demonstra-
tion site where arbitrary users provide pictures of their choices
and indicate the correctness of each annotation word. The ex-
perimental results show that a single computer processor can
suggest annotation terms in real-time and with good accuracy.

Index Terms—Image Annotation, Tagging, Statistical Learn-
ing, Modeling, Clustering

I. INTRODUCTION

Image archives on the Internet are growing at a phenomenal

rate. With digital cameras becoming increasingly affordable and

the widespread use of home computers possessing hundreds

of gigabytes of storage, individuals nowadays can easily build

sizable personal digital photo collections. Photo sharing through

the Internet has become a common practice. According to reports

released in 2007, an Internet photo-sharing startup, flickr.com, has

40 million monthly visitors and hosts two billion photos, with new

photos in the order of millions being added on a daily basis. More

specialized online photo-sharing communities, such as photo.net

and airliners.net, also have databases in the order of millions of

images contributed entirely by the users.

A. The Problem

Image search provided by major search engines, such as

Google, MSN, and Yahoo!, relies on textual descriptions of

images found on the Web pages containing the images and the

file names of the images. These search engines do not analyze

the pixel content of images and, hence, cannot be used to search
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for unannotated image collections. The complex and fragmented

nature of the networked communities makes fully computerized

or computer-assisted annotation of images by words a crucial

technology to ensure the “visibility” of images on the Internet.

(a) (b)

Fig. 1. Example pictures from the Website flickr.com. User-supplied tags:
(a) dahlia, golden, gate, park, flower, and fog; (b) cameraphone, animal, dog,
and tyson.

Although photo-sharing communities can request that owners

of digital images provide some descriptive words when depositing

the images, such annotations tend to be highly subjective. For

example in the pictures shown in Figure 1, the users on flickr.com

annotated the first picture with the tags dahlia, golden, gate, park,

flower, and fog and the second picture by cameraphone, animal,

dog, and tyson. According to the photographer, the first picture

was taken at the Golden Gate Park near San Francisco. This set

of annotation words could be a problem because this picture may

show up when other users search for images of gates. Similarly,

the second picture may show up when users search for photos of

various camera phones.

A computerized system that accurately suggests annotation

tags to users could assist those labeling as well as those

searching images. Busy users can simply select relevant words

and, optionally, type in other words. The system can also be used

to check the user-supplied tags against the image content, by using

a semantic network, to improve the accuracy of keyword-based

searching. In computer security, such a system can assist trained

personnel to filter unwanted materials. No real-world applications

of automatic annotation or tagging of images with a large number

of concepts exist largely because creating a competent system is

extremely challenging.

B. Prior Related Work

The problem of automatic image annotation is closely related

to that of content-based image retrieval. Since the early 1990s,

numerous approaches, both from academia and the industry,

have been proposed to index images using numerical features

automatically-extracted from the images. Smith and Chang

developed of a Web image retrieval system [27]. In 2000,

Smeulders et al. published a comprehensive survey of the

field [26]. Progresses made in the field after 2000 is documented

in a recent survey article [8]. We review here some work closely

related to ours. The references listed below are to be taken as
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examples only. Readers are urged to refer to survey articles for

more complete references of the field.

Some initial efforts have recently been devoted to automatically

annotating pictures, leveraging decades of research in computer

vision, image understanding, image processing, and statistical

learning [3], [11], [12]. Generative modeling [2], [16], statistical

boosting [28], visual templates [6], Support Vector Machines [30],

multiple instance learning, active learning [34], [13], latent space

models [20], spatial context models [25], feedback learning [24]

and manifold learning [31], [14] have been applied to image

classification, annotation, and retrieval.

Our work is closely related to generative modeling approaches.

In 2002, we developed the ALIP annotation system by profiling

categories of images using the 2-D Multiresolution Hidden

Markov Model (MHMM) [16], [33]. Images in every category

focus on a semantic theme and are described collectively by

several words, e.g., “sail, boat, ocean” and “vineyard, plant,

food, grape”. A category of images is consequently referred

to as a semantic concept. That is, a concept in our system is

described by a set of annotation words. In our experiments, the

term concept can be interchangeable with the term category (or

class). To annotate a new image, its likelihood under the profiling

model of each concept is computed. Descriptive words for top

concepts ranked according to likelihoods are pooled and passed

through a selection procedure to yield the final annotation. If

the layer of word selection is omitted, ALIP essentially conducts

multiple classification, where the classes are hundreds of semantic

concepts.

Classifying images into a large number of categories has also

been explored recently by Chen et al. [7] for the purpose of pure

classification and Carneiro et al. [5] for annotation using multiple

instance learning. Barnard et al. [2] aimed at modeling the

relationship between segmented regions in images and annotation

words. A generative model for producing image segments and

words is built based on individually annotated images. Given a

segmented image, words are ranked and chosen according to their

posterior probabilities under the estimated model. Several forms

of the generative model were experimented with and compared

against each other.

The early research has not investigated real-time automatic

annotation of images with a vocabulary of several hundred

words. For example, as reported in [16], the system takes

about 15-20 minutes to annotate an image on a 1.7 GHz Intel-

based processor, prohibiting its deployment in the real-world

for Web-scale image annotation applications. Existing systems

also lack performance evaluation in real-world deployment,

leaving the practical potential of automatic annotation largely

unaddressed. In fact, most systems have been tested using

images in the same collection as the training images, resulting

in bias in evaluation. In addition, because direct measurement

of annotation accuracy involves labor intensive examination,

substitutive quantities related to accuracy have often been used

instead.

C. Contributions of the Work

We have developed a new annotation method that achieves real-

time operation and better optimization properties while preserving

the architectural advantages of the generative modeling approach.

Statistical models are established for a large collection of semantic

concepts. The approach is inherently cumulative because when

images of new concepts are added, the computer only needs

to learn from the new images. What has been learned about

previous concepts is stored in the form of profiling models, and

the computer needs no re-training.

The breakthrough in computational efficiency results from a

fundamental change in the modeling approach. In ALIP [16],

every image is characterized by a set of feature vectors residing on

grids at several resolutions. The profiling model of each concept is

the probability law governing the generation of feature vectors on

2-D grids. Under the new approach, every image is characterized

by a statistical distribution, and the profiling model specifies a

probability law for distributions directly.

A real-time annotation demonstration system, ALIPR (Auto-

matic Linguistic Indexing of Pictures - Real Time), is provided

online at http://alipr.com. The system annotates any on-

line image specified by its URL. The annotation is based only

on the pixel information stored in the image. With an average

of about 1.4 seconds on a 3.0 GHz Intel processor, the system

identifies annotation words for each picture.

The contribution of our work is multifold:

• We have developed a real-time automatic image annotation

system. To our knowledge, this work is the first to achieve

real-time performance with a level of accuracy useful

in certain real applications. It is also the first attempt

to manually assess the large scale performance of an

image annotation system. This system has been through

rigorous evaluation, including extensive tests using Web

images completely independent from the training images.

The system performance has also been assessed based on

the input of thousands of online users. Data from these

experiments will establish benchmarks for related future

technologies as well as for the mere interest of understanding

the potential of artificial intelligence. Our research sheds

light on the expectation of arbitrary real-world users, an area

that has been nearly unexplored.

• We have developed new generally-applicable methods for

clustering and mixture modeling, and we expect these

methods to be useful for problems involving data other

than images. First, we have designed a novel clustering

algorithm for objects represented by discrete distributions,

i.e., bags of weighted vectors. This new algorithm minimizes

the total within cluster distance, a criterion used by the k-

means algorithm. We call the algorithm D2-clustering, where

D2 stands for discrete distribution. D2-clustering generalizes

the k-means algorithm from the data form of vectors to

sets of weighted vectors. Although under the same spirit

as k-means, D2-clustering involves much more sophisticated

optimization techniques. Second, we have constructed a new

mixture modeling method, namely the hypothetical local

mapping (HLM) method, to efficiently build a probability

measure on the space of discrete distributions.

D. Outline of the Paper

The remainder of the paper is organized as follows:

In Section II, we provide an outline of our approach

and preliminaries. The D2-clustering method is described in

Section III. The mixture modeling approach is presented

in Sections IV. The assignment of annotation words and

measures for improving computational efficiency are described in
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Fig. 2. The training process of the Automatic Linguistic Indexing of Pictures - Real Time (ALIPR) system.

Section V. The experimental results are provided in Section VI.

We conclude and suggest future work in Section VII.

II. PRELIMINARIES

The training procedure is composed of the following steps. An

outline is provided before we present each step in details. Label

the concept categories by {1, 2, ..., M}. For the experiments,
to be explained, the Corel database is used for training with

M = 599. Denote the concept to which image i belongs by gi,

gi ∈ {1, 2, ..., M}.
1) Extract a signature for each image i, i ∈ {1, 2, ..., N}.
Denote the signature by βi, βi ∈ Ω. The signature consists

of two discrete distributions, one of color features, and the

other of texture features. The distributions on each type of

features across different images have different supports.

2) For each concept m ∈ {1, 2, ..., M}, construct a profiling
model Mm using the signatures of images belonging to

concept m: {βi : gi = m, 1 ≤ i ≤ N}. Denote the
probability density function under model Mm by φ(s |
Mm), s ∈ Ω.

Figure 2 illustrates this training process. The annotation process

based upon the models will be described in Section V.

A. The Training Database

It is well known that applying learning results to unseen data

can be significantly harder than applying to training data [29]. In

our work, we used completely different databases for training the

system and for testing the performance.

The Corel image database, containing close to 60, 000 general-

purpose photographs, is used to learn the statistical relationships

between images and words. This same database was also exploited

in the development of SIMPLIcity [32] and ALIP [16]. A large

portion of images in the database are scene photographs. The

rest includes man-made objects with smooth background, fractals,

texture patches, synthetic graphs, drawings, etc. This database

was categorized into 599 semantic concepts by Corel during

image acquisition. Each concept, containing roughly 100 images,

is described by several words, e.g., “landscape, mountain, ice,

glacier, lake”, “space, planet, star.” A total of 332 distinct words

are used for all the concepts. We created most of the descriptive

words by browsing through images in every concept. A small

portion of the words come from the category names given by the

vendor. We used 80 images in each concept to build profiling

models.

We clarify that “general-purpose” photographs refer to pictures

taken in daily life in contrast to special domain, such as medical

or satellite, images. Although our annotation system is training

based and is potentially applicable to images in other domains,

different designs of image signatures are expected for optimal

performance.

B. The Selection of Features and Modeling Methods

In order to achieve the goal of real-time computerized

suggestions for picture tags, the combination of feature extraction

and statistical matching with hundreds of trained models must

be confined to about a second in execution time on a typical

computer processor. This stringent speed requirement severely

limits the choices of features and methods we could use in

this work. As indicated in our recent survey article, many local

and global visual feature extraction methods are available [8].

In general, however, there is a trade-off between the number of

features we incorporate in the signature and the time it takes to

extract the features and to match them against the models. For

instance, the earlier ALIP system, which uses block-level wavelet-

based descriptors and a spatial statistical modeling method, takes

more than ten minutes on a single processor to suggest tags for

each picture [16].

To reduce from an order of ten minutes to a second (which

represents a three order of magnitude cutback), substantial

reduction in both the feature complexity and modeling complexity

must be accomplished while maintaining a reasonable level

of accuracy for practical use in online tasks. The integration

of region segmentation and extracting representative color and

texture features of the segments is a suitable time-reduction

strategy; however, sophisticated region segmentation methods

themselves are often not in real time. Borrowing from the
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experiences gained in large-scale visual similarity search, we use

a fast image segmentation method based on wavelets and k-means

clustering [32].

The low complexity of this segmentation method makes it

an attractive option for processing large amounts of images.

Unfortunately, this method is more suitable for recognizing

scenes, and thus, we expect the method will be insufficient for

recognizing individual objects, given the great variations a type

of objects (e.g., dogs) can appear in pictures. Although object

names are often assigned by the system, the selection is mostly

based on statistical correlation with scenes. On the other hand, as

pointed out by one reviewer, different levels of performance may

be possible under a more controlled image set, such as various

types of the same object or images of the same domain. We will

explore this in the future.

After the region-based signatures are extracted from the

pictures, we encounter the essential obstacle: the segmentation-

based signatures are of arbitrary lengths across the picture

collection, primarily because the number of regions used to

represent a picture often depends on how complicated the

composition of the picture is. No existing statistical tools can

handle the modeling in this scenario. The key challenge to

us, therefore, is to develop new statistical methods for feature

modeling and model matching when the signatures are in the

form of discrete distributions. The details on these are provided

in the following sections.

C. Image Signature

To form the signature of an image, two types of features

are extracted: color and texture. To extract the color part of

the signature, the RGB color components of each pixel are

converted to the LUV color components. The 3-D color vectors

at all the pixels are clustered by k-means. The number of

clusters in k-means is determined dynamically by thresholding

the average within cluster distances. Arranging the cluster

labels of the pixels into an image according to the pixel

positions, we obtain a segmentation of the image. We refer

to the collection of pixels mapped to the same cluster as

a region. For each region, its average color vector and the

percentage of pixels it contains with respect to the whole

image are computed. The color signature is thus formulated as

a discrete distribution {(v(1), p(1)), (v(2), p(2)), ..., (v(m), p(m))},
where v(j) is the mean color vector, p(j) is the associated

probability, and m is the number of regions.

We use wavelet coefficients in high frequency bands to

form texture features. A Daubechies-4 wavelet transform [9]

is applied to the L component (intensity) of each image. The

transform decomposes an image into four frequency bands: LL,

LH, HL, HH. The LH, HL, and HH band wavelet coefficients

corresponding to the same spatial position in the image are

grouped into one 3-D texture feature vector. If an image contains

nr × nc pixels, the total number of texture feature vectors is
nr

2 × nc

2 due to the subsampling of the wavelet transform. When

forming the texture features, the absolute values of the wavelet

coefficients are used. K-means clustering is applied to the texture

feature vectors to extract the major modes of these vectors. Again,

the number of clusters is decided adaptively by thresholding the

average within cluster distances. Similarly as color, the texture

signature is cast into a discrete distribution.

Although we only involve color and texture in the current image

signature, other types of image features such as shape and salient

points can also be formulated into discrete distributions, i.e., bags

of weighted vectors. For instance, bags of SIFT features [17] are

used to characterize and subsequently detect advertisement logos

in video frames [1]. As expected, our current image signature

are not sensitive to shape patterns. We choose to use color and

texture features because they are relatively robust for digital

photos generated by Internet users. Shape or salient point features

may be more appealing for recognizing objects. However, these

features are highly prone to corruption when the background is

noisy, object viewing angle varies, or occlusion occurs, as is

usually the case. Moreover, semantics of an image sometimes

cannot be adequately expressed by a collection of object names.

Deriving image signatures that are robust as well as strong for

semantic recognition is itself a deep research problem which we

would like to explore in the future.

In general, let us denote images in the database by

{β1, β2, ..., βN}. Suppose every image is represented by an array
of discrete distributions, βi = (βi,1, βi,2, ..., βi,d). Denote the

space of βi,l by Ωl, βi,l ∈ Ωl, l = 1, 2, ..., d. Then the space

of βi is the Cartesian product space

Ω = Ω1 × Ω2 × · · · × Ωd .

The dimension d of Ω, i.e., the number of distributions contained

in βi, is referred to as the super-dimension to distinguish from

the dimensions of vector spaces on which these distributions are

defined. For a fixed super-dimension j, the distributions βi,j ,

i = 1, ..., N , are defined on the same vector space, Rdj , where

dj is the dimension of the jth sample space. Denote distribution

βi,j by

βi,j = {(v(1)
i,j , p

(1)
i,j ), (v

(2)
i,j , p

(2)
i,j ), ..., (v

(mi,j)
i,j , p

(mi,j)
i,j )} , (1)

where v
(k)
i,j ∈ Rdj , k = 1, ..., mi,j , are vectors on which the

distribution βi,j takes positive probability p
(k)
i,j . The cardinality

of the support set for βi,j is mi,j which varies with both the

image and the super-dimension.

To further clarify the notation, consider the following example.

Suppose images are segmented into regions by clustering 3-D

color features and 3-D texture features respectively. Suppose

a region formed by segmentation with either type of features

is characterized by the corresponding mean feature vector. For

brevity, suppose the regions have equal weights. Since two sets

of regions are obtained for each image, the super-dimensionality

is d = 2. Let the first super-dimension correspond to color based

regions and the second to texture based regions. Suppose an image

i has 4 color regions and 5 texture regions. Then

βi,1 = {(v(1)
i,1 ,

1

4
), (v

(2)
i,1 ,

1

4
), ..., (v

(4)
i,1 ,

1

4
)}, v

(k)
i,1 ∈ R3;

βi,2 = {(v(1)
i,2 ,

1

5
), (v

(2)
i,2 ,

1

5
), ..., (v

(5)
i,2 ,

1

5
)}, v

(k)
i,2 ∈ R3.

A different image i′ may have 6 color regions and 3 texture

regions. In contrast to image i, for which mi,1 = 4 and mi,2 = 5,

we now have mi′,1 = 6 and mi′,2 = 3. However, the sample

space where v
(k)
i,1 and v

(k′)
i′,1 (or v

(k)
i,2 vs. v

(k′)
i′,2 ) reside is the same,

specifically, R3.

Existing methods of multivariate statistical modeling are not

applicable to build models on Ω because Ω is not a Euclidean
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space. Lacking algebraic properties, we have to rely solely on

a distance defined in Ω. Consequently, we adopt a prototype

modeling approach to be explained in Section III and IV.

D. Mallows Distance between Distributions

To compute the distance D(γ1, γ2) between two distributions

γ1 and γ2, we use the Mallows distance [19], [15] introduced in

1972. Suppose random variable X ∈ Rk follow the distribution

γ1 and Y ∈ Rk follow γ2. Let Υ(γ1, γ2) be the set of joint

distributions over X and Y with marginal distributions of X

and Y constrained to γ1 and γ2 respectively. Specifically, if

ζ ∈ Υ(γ1, γ2), then ζ has sample space Rk×Rk and its marginals

ζX = γ1 and ζY = γ2. The Mallows distance is defined as the

minimum expected distance between X and Y optimized over all

joint distributions ζ ∈ Υ(γ1, γ2):

D(γ1, γ2) � min
ζ∈Υ(γ1,γ2)

(E ‖ X − Y ‖p)1/p , (2)

where ‖ · ‖ denotes the Lp distance between two vectors. In our

discussion, we use the L2 distance, i.e., p = 2. The Mallows

distance is proved to be a true metric [4].

i,j

1 Z1
1,1w
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γ
2

Z

Z

2

3

Z

Z

Z

2

3

4

’

’

’

’

w

w1,2

Z

Fig. 3. Matching for computing the Mallows distance.

For discrete distributions, the optimization involved in

computing the Mallows distance can be solved by linear

programming. Let the two discrete distributions be

γi = {(z(1)
i , q

(1)
i ), (z

(2)
i , q

(2)
i ), ..., (z

(mi)
i , q

(mi)
i )}, i = 1, 2 .

Then Equation (2) is equivalent to the following optimization

problem:

D2(γ1, γ2) = min
{wi,j}

m1
X

i=1

m2
X

j=1

wi,j ‖ z
(i)
1 − z

(j)
2 ‖2

(3)

subject to

m2
X

j=1

wi,j = q
(i)
1 , i = 1, ..., m1;

m1
X

i=1

wi,j = q
(j)
2 , j = 1, ..., m2; (4)

wi,j ≥ 0, i = 1, ..., m1, j = 1, ..., m2 .

The above optimization problem suggests that the squared

Mallows distance is a weighted sum of pairwise squared L2

distances between any support vector of γ1 and any of γ2.

Hence, as shown in Figure 3, computing the Mallows distance

is essentially optimizing matching weights between support

vectors in the two distributions so that the aggregated distance

is minimized. The matching weights wi,j are restricted to be

nonnegative and the weights emitting from any vector z
(j)
i sum

up to its probability q
(j)
i . Thus q

(j)
i sets the amount of influence

from z
(j)
i on the overall distribution distance.

The optimization problem involved in computing the Mallows

distance is the same as that for solving the mass transportation

problem [22]. A well-known image distance used in retrieval,

namely the Earth Mover’s Distance (EMD) [23] is closely related

to the Mallows distance. In fact, as discussed in [15], EMD is

equivalent to the Mallows distance when the same total mass is

assigned to both distributions.

III. DISCRETE DISTRIBUTION (D2-) CLUSTERING

Since elements in Ω each contain multiple discrete distribu-

tions, we measure their distances by the sum of squared Mallows

distances between individual distributions. Denote the distance by

D̃(βi, βj), βi, βj ∈ Ω, then

D̃(βi, βj) �

d
X

l=1

D2(βi,l, βj,l) .

Recall that d is the super-dimension of Ω.
To determine a set of prototypes

A = {αη : αη ∈ Ω, η = 1, ..., m̄}

for an image set

B = {βi : βi ∈ Ω, i = 1, ..., n},

we propose the following optimization criterion:

L(B, A∗) = min
A

n
X

i=1

min
η=1,...,m̄

D̃(βi, αη) . (5)

The objective function (5) entails that the optimal set of

prototypes, A∗, should minimize the sum of distances between

images and their closest prototypes. This is a natural criterion to

employ for clustering and is in the same spirit as the optimization

criterion used by k-means. However, as Ω is more complicated

than the Euclidean space and the Mallows distance itself requires

optimization to compute, the optimization problem of (5) is

substantially more difficult than that faced by k-means.

For the convenience of discussion, we introduce a prototype

assignment function c(i) ∈ {1, 2, ..., m̄}, for i = 1, ..., n.

Let L(B, A, c) =
Pn

i=1 D̃(βi, αc(i)). With A fixed, L(B, A, c)

is minimized by c(i) = argminη=1,...,m̄ D̃(βi, αη). Hence,

L(B, A∗) = minA minc L(B, A, c) according to (5). The

optimization problem of (5) is thus equivalent to the following:

L(B, A∗, c∗) = min
A

min
c

n
X

i=1

D̃(βi, αc(i)) . (6)

To minimize L(B, A, c), we iterate the optimization of c given

A and the optimization of A given c as follows. We assume

that A and c are initialized. The initialization will be discussed

later. From clustering perspective, the partition of images to the

prototypes and optimization of the prototypes are alternated.

1) For every image i, set c(i) = argminη=1,...,m̄ D̃(βi, αη).

2) Let Cη = {i : c(i) = η}, η = 1, ..., m̄. That is, Cη

contains indices of images assigned to prototype η. For each

prototype η, let αη = argminα∈Ω

P

i∈Cη
D̃(βi, α).
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The update of c(i) in Step 1 can be obtained by exhaustive

search. The update of αη cannot be achieved analytically

and is the core of the algorithm. Use the notation α =

(α·,1, α·,2, ..., α·,d). Note that

αη = argmin
α∈Ω

X

i∈Cη

D̃(βi, α) = argmin
α∈Ω

X

i∈Cη

d
X

l=1

D2(βi,l, α·,l)

=

d
X

l=1

argmin
α·,l∈Ωl

X

i∈Cη

D2(βi,l, α·,l) (7)

Equation (7) indicates that each super-dimension αη,l in αη

can be optimized separately. For brevity of notation and without

loss of generality, let us consider the optimization of α1,1. Also

assume that C1 = {1, 2, ..., n′}. Let

α·,1 = {(z(1), q(1)), (z(2), q(2)), ..., (z(m), q(m))} ,

where
Pm

k=1 q(m) = 1, z(k) ∈ Rd1 . The number of vectors,

m, can be preselected. If α·,1 contains a smaller number of

vectors than m, it can be considered as a special case with

some q(k)’s being zero. On the other hand, a large m requires

more computation. The goal is to optimize over z(k) and q(k),

k = 1, ..., m, so that
Pn′

i=1 D2(βi,1, α·,1) is minimized. Recall the

expansion of βi,j in (1). Applying the definition of the Mallows

distance, we have

min
α·,1∈Ω1

n′
X

i=1

D2(βi,1, α·,1)

= min
z(k),q(k)

n′
X

i=1

min
w

(i)
k,j

m
X

k=1

mi,1
X

j=1

w
(i)
k,j ‖ z(k) − v

(j)
i,1 ‖2 . (8)

The optimization is over z(k), q(k), k = 1, ..., m, and w
(i)
k,j ,

i = 1, ..., n′, k = 1, ..., m, j = 1, ..., mi,1. Probabilities q(k)’s

are not explicitly in the objective function, but they affect the

optimization by posing as constraints. The constraints for the

optimization are:

m
X

k=1

q(k) = 1

q(k) ≥ 0 , for any k = 1, ..., m

mi,1
X

j=1

w
(i)
k,j = q(k) , for any i = 1, ..., n′, k = 1, ..., m

m
X

k=1

w
(i)
k,j = p

(j)
i,1 , for any i = 1, ..., n′, j = 1, ..., mi,1

w
(i)
k,j ≥ 0 , for any i = 1, ..., n′, k = 1, ..., m, j = 1, ..., mi,1 .

A key observation for solving the above optimization is that

with fixed z(k), k = 1, ..., m, the objective function over

q(k)’s and w
(i)
k,j’s is linear and all the constraints are linear.

Hence, with z(k)’s fixed, q(k), w
(i)
k,j can be solved by linear

programming. It is worthy to note the difference between this

linear optimization and that involved in computing the Mallows

distance. If q(k)’s are known, the objective function in (8) is

minimized simply by finding the Mallows distance matching

weights between the prototype and each image. The minimization

can be performed separately for every image. When q(k)’s are

part of the optimization variables, the Mallows distance matching

weights w
(i)
k,j have to be optimized simultaneously for all the

images i ∈ C1 because they affect each other through the

constraint
Pmi,1

j=1 w
(i)
k,j = q(k), for any i = 1, ..., n′.

When q(k)’s and w
(i)
k,j’s are fixed, Equation (8) is simply a

weighted sum of squares in terms of z(k)’s and is minimized by

the following formula:

z(k) =

Pn′

i=1

Pmi,1

j=1 w
(i)
k,jv

(j)
i,1

Pn′

i=1

Pmi,1

j=1 w
(i)
k,j

, k = 1, ..., m . (9)

We now summarize the D2-clustering algorithm, assuming the

prototypes are initialized.

1) For every image i, set c(i) = argminη=1,...,m̄ D̃(βi, αη).

2) Let Cη = {i : c(i) = η}, η = 1, ..., m̄. Update each αη,l,

η = 1, ..., m̄, l = 1, ..., d, individually by the following

steps. Denote

αη,l = {(z(1)
η,l , q

(1)
η,l ), (z

(2)
η,l , q

(2)
η,l ), ..., (z

(m′
η,l)

η,l , q
(m′

η,l)

η,l )} .

a) Fix z
(k)
η,l , k = 1, ..., m′

η,l. Update q
(k)
η,l , w

(i)
k,j , i ∈ Cη,

k = 1, ..., m′
η,l, j = 1, ..., mi,l by solving the linear

programming problem:

min
q
(k)
η,l

X

i∈Cη

min
w

(i)
k,j

m′
η,l

X

k=1

mi,l
X

j=1

w
(i)
k,j ‖ z

(k)
η,l − v

(j)
i,l ‖2 ,

subject to
Pm′

η,l

k=1 q
(k)
η,l = 1; q

(k)
η,l ≥ 0, k = 1, ..., m′

η,l;
Pmi,l

j=1 w
(i)
k,j = q

(k)
η,l , i ∈ Cη, k = 1, ..., m′

η,l;
Pm′

η,l

k=1 w
(i)
k,j = p

(j)
i,l , i ∈ Cη, j = 1, ..., mi,l; w

(i)
k,j ≥ 0,

i ∈ Cη, k = 1, ..., m′
η,l, j = 1, ..., mi,l.

b) Fix q
(k)
η,l , w

(i)
k,j , i ∈ Cη, 1 ≤ k ≤ m′

η,l, 1 ≤ j ≤ mi,l.

Update z
(k)
η,l , k = 1, ..., m′

η,l by

z
(k)
η,l =

P

i∈Cη

Pmi,l

j=1 w
(i)
k,jv

(j)
i,l

P

i∈Cη

Pmi,l

j=1 w
(i)
k,j

.

c) Compute

X

i∈Cη

m′
η,l

X

k=1

mi,l
X

j=1

w
(i)
k,j ‖ z

(k)
η,l − v

(j)
i,l ‖2 .

If the rate of decrease from the previous iteration is

below a threshold, go to Step 3; otherwise, go to Step

2a.

3) Compute L(B, A, c). If the rate of decrease from the

previous iteration is below a threshold, stop; otherwise, go

back to Step 1.

The initial prototypes are generated by tree structured recursive

splitting. As shown in Figure 4, suppose there are currently m̄′

prototypes formed. For each prototype, the average D̃ distance

between this prototype and all the images assigned to it is

computed. The prototype with the maximum average distance

is split to create the m̄′ + 1st prototype. The split is conducted

in the following way. Suppose the prototype to be split is αη,

1 ≤ η ≤ m̄′. An image assigned to αη is randomly chosen,

for instance, image βi. Then we set αm̄′+1 = βi. Note that αη

has already existed. We then treat the current value of αη and

αm̄′+1 as initial values, and optimize them by applying the D2-



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

0 5 10 15 20
0

50

100

150

200

250

300

Number of prototypes

N
u

m
b

e
r 

o
f 

c
a

te
g

o
ri
e

s

0 200 400 600 800 1000 1200
0

500

1000

1500

2000

2500

3000

3500

N
u
m

b
e
r 

o
f 
im

a
g
e
s

Distance to the closest prototype

(a) (b)

20 35 50 65 80 95 110 125 140 155 170 185 200
0

500

1000

1500

2000

2500

3000

3500

Scale parameters of Gamma distributions

N
u
m

b
e
r 

o
f 
p
ro

to
ty

p
e
s

10
0

10
1

10
2

10
3

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Ranked classes

P
ro

b
a

b
ili

ty

(c) (d)

Fig. 5. Statistical modeling results. (a) Histogram of the number of prototypes in each class. (b) Fitting a Gamma distribution to the distance between an
image and its closest prototype: the histogram of the distances is shown with the correspondingly scaled probability density function of an estimated Gamma
distribution. (c) Histogram of the scale parameters of the Gamma distributions for all the prototypes formed from the training data. (d) The ranked concept
posterior probabilities for three example images.
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Fig. 4. Tree structured recursive split for initialization.

clustering only to images assigned to αη at the beginning of the

split. At the end of the D2-clustering, we have updated αη and

αm̄′+1 and obtained a partition into the two prototypes for images

originally in αη . The splitting procedure is recursively applied to

the prototype currently with maximum average distance until the

maximum average distance is below a threshold or the number of

prototypes exceeds a given threshold. During initialization, the

probabilities q
(k)
η,l in each αη,l are set uniform for simplicity.

Therefore, in Step 2a of the above algorithm, optimization can

be done only over the matching weights w
(i)
k,j , and w

(i)
k,j can be

computed separately for each image.

The number of prototypes m̄ is determined adaptively for

different concepts of images. Specifically, the value of m̄ is

increased gradually until the loss function is below a given

threshold or m̄ reaches an upper limit. In our experiment, the

upper limit is set to 20, which ensures that on average, every

prototype is associated with 4 training images. Concepts with

higher diversity among images tend to require more prototypes.

The histogram for the number of prototypes in each concept,

shown in Figure 5(a), demonstrates the wide variation in the level

of image diversity within one concept.

IV. MIXTUREMODELING

With the prototypes determined, we employ a mixture modeling

approach to construct a probability measure on Ω. Every prototype

is regarded as the centroid of a mixture component. When the

context is clear, we may use component and cluster exchangeably

because every mixture component is estimated using image

signatures in one cluster. The likelihood of a signature under a

given component reduces when the signature is further away from

the corresponding prototype (i.e., component center).
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Fig. 6. Mixture modeling via hypothetical local mapping for space Ω. (a) Local mapping of clusters generated by D2-clustering in Ω. (b) Bypassing mapping
in model estimation.

A. Modeling via Hypothetical Local Mapping (HLM)

Figure 5(b) shows the histogram of distances between images

and their closest prototypes in one experiment. The curve overlaid

on it is the probability density functions (pdf) of a fitted Gamma

distribution. The pdf function is scaled so that it is at the same

scale as the histogram. This plot only reflects local characteristics

of image distances inside a cluster. We remind readers that

distances between arbitrary images in a database are expected

to follow more complex distributions. Examples of histograms of

image distances based on different features and over large datasets

are provided in [21]. Denote a Gamma distribution by (γ : b, s),

where b is the scale parameter and s is the shape parameter. The

pdf of (γ : b, s) is [10]:

f(u) =
(u

b )s−1e−u/b

bΓ(s)
, u ≥ 0

where Γ(·) is the Gamma function [10].
Consider multivariate random vector X = (X1, X2, ..., Xk)t ∈

Rk that follows a normal distribution with mean µ = (µ1, ..., µk)t

and a covariance matrix Σ = σ2I , where I is the identity matrix.

Then the squared Euclidean distance between X and the mean µ,

‖ X −µ ‖2, follows a Gamma distribution (γ : k
2 , 2σ2). Based on

this fact, we assume that the neighborhood around each prototype

in Ω, that is, the cluster associated with this prototype, can be

locally approximated by Rk, where k = 2s and σ2 = b/2. Here,

approximation means there is a one to one mapping between

points in Ω and in Rk that maximumly preserves all the pairwise

distances between the points. The parameters s and b are estimated

from the distances between images and their closest prototypes.

In the local hypothetical space Rk, images belonging to a given

prototype are assumed to be generated by a multivariate normal

distribution, the mean vector of which is the map of the prototype

in Rk. The pdf for a multivariate normal distribution N(µ, σ2I)

is:

ϕ(x) =

„

1√
2πσ2

«k

e−
‖x−µ‖2

2σ2 .

Formulating the component distribution back in Ω, we note that

‖ x − µ ‖2 is correspondingly the D̃ distance between an image

and its prototype. Let the prototype be α and the image be β. Also

express k and σ2 in terms of the Gamma distribution parameters

b and s. The component distribution around α is:

g(β) =

„

1√
πb

«2s

e−
D̃(β,α)

b .

For an m component mixture model in Ω with prototypes

{α1, α2, ..., αm}, let the prior probabilities for the components
be ωη , η = 1, ..., m,

Pm
η=1 ωη = 1. The overall model for Ω is

then:

φ(β) =

m
X

η=1

ωη

„

1√
πb

«2s

e−
D̃(β,αη)

b . (10)

The prior probabilities ωη can be estimated by the percentage

of images partitioned into prototype αη, i.e., for which αη is

their closest prototype. Note that the mixture model can be made

increasingly flexible by adding more components, and is not

restricted by the rigid shape of a single Gaussian distribution.

Here, the Gaussian distribution plays a similar role as a kernel

in nonparametric density estimate. The fact that the histogram

of within-cluster distances well fits a Gamma distribution, as

shown in Figure 5(b), also supports the Gaussian assumption for

individual clusters.

We call the above mixture modeling approach the hypothetical

local mapping (HLM) method. In a nutshell, as illustrated in

Figure 6(a), the metric space Ω is carved into cells via D2-

clustering. Each cell is a neighborhood (or cluster) around its

center, i.e., the prototype. Locally, every cluster is mapped

to a Euclidean space that preserves pairwise distances. In the

mapped space, data are modeled by a Gaussian distribution.

It is assumed that the mapped spaces of the cells have the

same dimensionality but possibly different variances. Due to

the relationship between the Gaussian and Gamma distributions,

parameters of the Gaussian distributions and the dimension of

the mapped spaces can be estimated using only distances between

each data point and its corresponding prototype. This implies that

the actual mapping into Rk is unnecessary because the original

distances between images and their corresponding prototypes,

preserved in mapping, can be used directly. This argument is

also illustrated in Figure 6(b). The local mapping from Ω to Rk

is thus hypothetical and serves merely as a conceptual tool for

constructing a probability measure on Ω.

Mixture modeling is effective for capturing the nonhomogene-

ity of data, and is a widely embraced method for classification and
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clustering [12]. The main difficulty encountered here is the un-

usual nature of space Ω. Our approach is inspired by the intrinsic

connection between k-means clustering and mixture modeling. It

is known that under certain constraints on the parameters of com-

ponent distributions, the classification EM (CEM) algorithm [18]

used to estimate a mixture model is essentially the k-means al-

gorithm. We thus generalize k-means to D2-clustering and form

a mixture model based on clustering. This way of constructing

a mixture model allows us to capture the clustering structure of

images in the original space of Ω. Furthermore, the method is

computationally efficient because the local mapping of clusters

can be bypassed in calculation.

B. Parameter Estimation

Next, we discuss the estimation of the Gamma distribution

parameters b and s. Let the set of distances be {u1, u2, ..., uN}.
Denote the mean ū = 1

N

PN
i=1 ui. The maximum likelihood (ML)

estimators b̂ and ŝ are solutions of the equations:
(

log ŝ − ψ(ŝ) = log
h

ū/(
QN

i=1 ui)
1/N

i

b̂ = ū/ŝ

where ψ(·) is the di-gamma function [10]:

ψ(s) =
d log Γ(s)

ds
, s > 0 .

The above set of equations are solved by numerical methods.

Because 2s = k and the dimension of the hypothetical space, k,

needs to be an integer, we adjust the ML estimation ŝ to s∗ =

⌊2ŝ + 0.5⌋/2, where ⌊·⌋ is the floor function. The ML estimation
for b with s∗ given is b∗ = ū/s∗. As an example, we show the

histogram of the distances obtained from the training images and

the fitted Gamma distribution with parameter (γ : 3.5, 86.34) in

Figure 5(b).

In our system, we assume that the shape parameter s of all the

mixture components in all the image concept classes is common

while the scale parameter b varies with each component. That is,

the clusters around every prototype are mapped hypothetically to

the same dimensional Euclidean space, but the spreadness of the

distribution in the mapped space varies with the clusters. Suppose

the total number of prototypes is M̄ =
P

k Mk, where Mk is the

number of prototypes for the kth image category, k = 1, 2, ..., M .

Let Cj , j = 1, ..., M̄ , be the index set of images assigned to

prototype j. Note that the assignment of images to prototypes is

conducted separately for every image class because D2-clustering

is applied individually to every class, and the assignment naturally

results from clustering. Let the mean of the distances in cluster

j be ūj = 1
|Cj|

P

i∈Cj
uj . It is proved in Appendix A that the

maximum likelihood estimation for s and bj , j = 1, ..., M̄ , is

solved by the following equation:
(

log ŝ − ψ(ŝ) = log
h

QM̄
j=1 ū

|Cj |/N
j /(

QN
i=1 ui)

1/N
i

b̂j = ūj/ŝ , j = 1, 2, ..., M̄
(11)

The above equation assumes that ui > 0 for every i. Theoretically,

this is true with probability one. In practice, however, due to

limited data, we may obtain clusters containing a single image,

and hence some ui’s are zero. We resolve this issue by discarding

distances acquired from clusters including only one image. In

addition, we modify b̂j = ūj/ŝ slightly to

b̂j = λ
ūj

ŝ
+ (1 − λ)

ū

ŝ
,

where λ is a shrinkage factor that shrinks b̂j toward a common

value. We set λ =
|Cj |

|Cj |+1
, which approaches 1 when the cluster

size is large. The shrinkage estimator is intended to increase

robustness against small sample size for small clusters. It also

ensures positive b̂j even for clusters containing a single image. By

this estimation method, we obtain s = 5.5 for the training image

set. Figure 5(c) shows the histogram of the scale parameters, bj’s,

estimated for all the mixture components.

In summary, the modeling process comprises the following

steps:

1) For each image category, optimize a set of prototypes

by D2-clustering, partition images into these prototypes,

and compute the distance between every image and the

prototype it belongs to.

2) Collect the distances in all the image categories and record

the prototype each distance is associated with. Estimate the

common shape parameter s for all the Gamma distributions

and then the scale parameter bj for each prototype j.

3) Construct a mixture model for every image category using

Equation (10). Specifically, suppose among all the M̄

prototypes, prototypes {1, 2, ..., M1} belong to category 1,

and prototypes in Fk = {M̄k−1 +1, M̄k−1 +2, ..., M̄k−1 +

Mk}, M̄k−1 = M1 + M2 + · · ·Mk−1, belong to category

k, k > 1. Then the profiling model Mk for the kth image

category has distribution:

φ(β | Mk) =
X

η∈Fk

ωη

“ 1
p

πbη

”2s
e
−

D̃(β,αη)

bη ,

where the prior ωη is the empirical frequency of component

η, ωη = |Cη|/
P

η′∈Fk
|Cη′ |, η ∈ Fk.

V. THE ANNOTATIONMETHOD

Let the set of distinct annotation words for the M concepts be

W = {w1, w2, ..., wK}. In the experiment with the Corel database
as training data, K = 332. Denote the set of concepts that contain

word wi in their annotations by E(wi). For instance, the word

‘castle’ is among the description of concept 160, 404, and 405.

Then E(castle) = {160, 404, 405}.
To annotate an image, its signature β is extracted first. We then

compute the probability for the image being in each concept m:

pm(s) =
ρmφ(s | Mm)

PM
l=1 ρlφ(s | Ml)

, m = 1, 2, ..., M ,

where ρm are the prior probabilities for the concepts and are set

uniform. The probability for each word wi, i = 1, ..., K, to be

associated with the image is

q(β, wi) =
X

m:m∈E(wi)

pm(s) .

We then sort {q(β, w1), q(β, w2), ..., q(β, wK)} in descending

order and select top ranked words. Figure 5(d) shows the sorted

posterior probabilities of the 599 semantic concepts given each of

three example images. The posterior probability decreases slowly

across the concepts, suggesting that the most likely concept for

each image is not strongly favored over the others. It is therefore

important to quantify the posterior probabilities rather than simply

classifying an image into one concept.

The main computational cost in annotation comes from

calculating the Mallows distances between the query and every
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prototype of all the categories. The linear programming involved

in Mallows distance is more computationally costly than some

other matching based distances. For instance, the IRM region-

based image distance employed by the SIMPLIcity [32] system

is obtained by assigning matching weights according to the

“most similar highest priority (MSHP)” principle. By the MSHP

principle, pairwise distances between two vectors across two

discrete distributions are sorted. The minimum pairwise distance

is assigned with the maximum possible weight, constrained only

by conditions in (4). Then among the rest pairwise distances that

can possibly be assigned with a positive weight, the minimum

distance is chosen and assigned with the maximum allowed

weight. So on so forth. From the mere perspective of visual

similarity, there is no clear preference to either the optimization

used in the Mallows distance or the MSHP principle. However,

for the purpose of semantics classification, as the D2-clustering

relies on the Mallows distance and it is mathematically difficult

to optimize a clustering criterion similar to that in (5) based on

MSHP, the Mallows distance is preferred. Leveraging advantages

of both distances, we develop a screening strategy to reduce

computation.

Because weights used in MSHP also satisfy conditions (4),

the MSHP distance is always greater or equal to the Mallows

distance. Since MSHP favors the matching of small pairwise

distances in a greedy manner [32], it can be regarded as a fast

approximation to the Mallows distance. Let the query image be

β. We fist compute the MSHP distance between β and every

prototype αη, Ds(β, αη), η = 1, ..., M̄ , as a substitute for the

Mallows. These surrogate distances are sorted in ascending order.

For the M ′ prototypes with the smallest distances, their Mallows

distances from the query are then computed and used to replace

the approximated distance by MSHP. The number of prototypes

for which the Mallows distance is computed can be a fraction

of the total number of prototypes, hence leading to significant

reduction of computation. In our experiment, we set M′ = 1000

while M̄ = 9265.

VI. EXPERIMENTAL RESULTS

We present in this section annotation results and performance

evaluation of the ALIPR system. Three cases are studied: (a)

annotating images not included in the training set but within the

Corel database; (b) annotating images outside the Corel database

and checking the correctness of annotation words manually by a

dedicated examiner; (c) annotating images uploaded by arbitrary

online users of the system with annotation words checked by the

users.

Because the first case evaluation avoids the arduous task of

manual examination of words, a large set of images is evaluated.

Performance achieved in this case, however, is optimistic because

the Corel images are known to be highly clustered, that is, images

in the same category are sometimes extraordinarily alike. In

the real-world, annotating images with the same semantics can

be harder due to the lack of such high visual similarity. This

optimism is addressed by a “self-masking” evaluation scheme,

which we will explain shortly. Another limitation of this case is

that annotation words are assigned on a category basis for the

Corel database. The words for a whole category are taken as

ground truth for the annotation of every image in this category,

and these annotations may not be complete for a particular image.

To address these issues, we experiment in the second

case with general-purpose photographs acquired completely

independent from Corel. Annotation words are manually checked

for correctness on the basis of individual images. This evaluation

process is labor intensive, taking several months to accomplish.

The third case evaluation best reflects users’ impression of the

annotation system. It is inevitably biased by whoever uses the

online system. As will be discussed, the evaluation tends to be

stringent.

We omitted comparing ALIPR with annotation systems

developed by other research teams, for instance, those of Barnard

et al. [2] and Carneiro et al. [5], for several reasons. We consider

the ultimate test of an annotation system to be its performance

assessed by users on images outside the training database. In the

current literature, when the Corel database is used for training,

annotation results have been reported using images inside the

database. It is, however, a daunting task to implement systems

of other researchers and subject all the experiments to the same

constraints because these systems are highly sophisticated in

mathematics and computation. An additional difficulty comes

from the intensive human labor needed to examine multiple sets of

test results manually. Moreover, well-known existing annotation

systems are not aimed at real-time tagging and understandably

are not provided online for arbitrary testing.

Recall from earlier discussion that the Corel database comprises

599 image categories, each containing 100 images, 80 of which

are used for training. The training process takes an average of

109 seconds CPU time, with a standard deviation of 145 seconds

on a 2.4 GHz AMD processor.

A. Performance on Corel Images

For each of the 599 image categories in Corel, we test on the

20 images not included in training. As mentioned previously, the

“true” annotation of every image is taken as the words assigned to

its category. An annotation word provided by ALIPR is labeled

correct if it appears in the given annotation, wrong otherwise.

There are a total of 417 distinct words used to annotate Corel

images. Fewer words are used in the online ALIPR system

because location names are removed.

We compare the results of ALIPR with a nonparametric

approach to modeling. For brevity, we refer to the nonparametric

approach as NP. In addition, we create two baseline annotation

schemes that rely only on the prior frequencies of words. The

frequencies of words in the given annotation vary vastly. The

most frequent word is assigned to 148 concepts, while 249 words

only once. Because a highly skewed prior of words favors the

numerical assessment of annotation results, we compare ALIPR

with the two baseline schemes to demonstrate the gain from

concept learning beyond what can be achieved by the prior alone.

Suppose each word wj , j = 1, ..., 417, appears Jj times in

the annotation of all the concepts. Since a word cannot repeat for

one concept, Jj equals the number of concepts that are annotated

by wj . The prior probability of wj is set to κj = Jj/
P

j′ Jj′ .

We rank the words in descending order according to κj’s. In

the most-frequent-word scheme, we annotate every image by the

same set of top ranked words arranged in the fixed order. For

instance, if a single word is used to describe an image, we will

always choose the word with the highest prior. In the second

scheme, namely, random tagging, we randomly select words one

by one according to the prior probabilities conditioned on no
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Fig. 7. Comparing annotation results of ALIPR, a nonparametric method NP, random tagging, and the most-frequent-word scheme, using test images in the
Corel database. (a) Precision. (b) Recall. (c) Precision obtained by the self-masking evaluation scheme. (d) Recall obtained by the self-masking evaluation
scheme. (e) The prior equalized recall. (f) The prior equalized recall over the words that are used in concept annotation more than once under the self-masking
evaluation scheme.

duplicate. When a duplicate word is drawn, it is discarded and

another random selection is made until a new word comes.

Under the NP approach, D2-clustering and the estimation

of the Gamma distribution are not conducted. We form a

kernel density estimate for each category, treating every image

signature as a prototype. Suppose the training image signatures

are {β1, β2, ..., βN}. The number of images in class k is

nk,
P599

k=1 nk = N . Without loss of generality, assume

{βn̄k+1, ..., βn̄k+nk} belong to class k, where n̄1 = 0, n̄k =
Pk−1

k′=1 nk′ , for k > 1. Under the nonparametric approach, the

profiling model for each image category is

φ(β | Mk) =

n̄k+nk
X

i=n̄k+1

1

nk

„

1√
πb

«2s

e−
D̃(β,βi)

b .

In the kernel function, we adopt the shape parameter s = 5.5
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since this is the value estimated using D2-clustering. When D2-

clustering is applied, some clusters contain a single image. For

these clusters, the scale parameter b = 25.1. In the nonparametric

setting, since every image is treated as a prototype that contains

only itself, we experiment with b = 20 and b = 30, two values

representing a range around 25.1.

The NP approach is computationally more intensive during

annotation than ALIPR because in ALIPR, we only need distances

between a test image and each prototype, while the NP approach

requires distances to every training image. We also expect ALIPR

to be more robust for images outside Corel because of the

smoothing across images introduced by D2-clustering, which will

demonstrated by our results.

We assess performance using both precision and recall.

Suppose the number of words provided by the annotation system

is ns, the number of words in the ground truth annotation is nt,

and the number of overlapped words between the two sets is nc

(i.e., number of correct words). Precision is defined as nc

ns
, and

recall is nc

nt
. There is usually a tradeoff between precision and

recall. When ns increases, recall is ensured to increase, while

precision usually decreases because words provided earlier by

the system have higher estimated probabilities of occurring.

Figure 7(a) and (b) compare the results of ALIPR, NP, random

tagging, and the most-frequent-word scheme in terms of precision

and recall respectively. Precision and recall are shown with

ns increasing from 1 to 15. Both ALIPR and NP outperform

random tagging and the most-frequent-word scheme significantly

and consistently across ns. The precision and recall percentages

achieved by ALIPR are respectively 5.2 and 5.6 times as high as

those by random tagging when one annotation word is assigned.

Although the most-frequent-word scheme outperforms random

tagging substantially, the words provided by the former tend to

be general and less interesting to users. As will be discussed

soon, real-world users often do not regard these generic words as

correct annotation. We thus offset the skewed prior probabilities

by defining a new measure of performance called prior equalized

recall. This measure is the average of recall rates for individual

words. Because the average is over words instead of images as in

the computation of conventional recall, the words are weighted

uniformly, avoiding dominance of a few high frequency words.

Specifically, for a set of test images, suppose word j appears m

times in the true annotation and the system selects this word

correctly n times, the recall rate for word j is then n
m . The

performance gap between ALIPR and random tagging, or the

most-frequent-word scheme, is more pronounced under the prior

equalized recall, as shown by Figure 7(e). Moreover, the most-

frequent-word scheme performs similarly as random tagging.

The precision of ALIPR and NP with b = 30 is nearly the same,

and the recall of NP with b = 30 is slightly better. As discussed

previously, without cautious measures, using Corel images in test

tends to generate optimistic results. Although the NP approach is

favorable within Corel, it may have overfit this image set. Because

it is extremely labor intensive to manually check the annotation

results of both ALIPR and NP on a large number of test images

outside Corel, we design the self-masking scheme of evaluation

to counter the highly clustered nature of Corel images.

In self-masking evaluation, when annotating an image in

category k with signature β, we temporarily assume class k is

not trained and compute the probabilities of the image belonging

to every other class m, m �= k:

pm(β) =
ρmφ(β | Mm)

P

m′ �=k ρm′φ(β | Mm′)
,

m = 1, 2, ..., k − 1, k + 1, ..., M .

For class k, we set pk(β) = 0. With these modified class

probabilities, words are selected using the same procedure

described in Section V. Because image classes share annotation

words, a test image may still be annotated with some correct

words although it cannot be assigned to its own class. This

evaluation scheme forces Corel images not to benefit from highly

similar training images in their own classes, and better reflects the

generalization capability of an annotation system. On the other

hand, the evaluation may be negatively biased for some images.

For instance, if an annotation word is used only for a unique class,

the word becomes effectively “inaccessible” in this evaluation

scheme. Precision and recall for ALIPR and NP under the self-

masking scheme are provided in Figure 7(c) and (d). ALIPR

outperforms NP for both precision and recall consistently over

all ns ranging from 1 to 15. This demonstrates that ALIPR can

potentially perform better on images outside Corel. In Figure 7(f),

the prior equalized recall rates under self-masking evaluation for

the “accessible” words are compared between ALIPR and the two

baseline annotation schemes.

An important feature of ALIPR is that it estimates probabilities

for the annotation words in addition to ranking them. In the

previous experiments, a fixed number of words is provided for

all the images. We can also select words by thresholding their

probabilities. In this case, images may be annotated with different

numbers of words depending on the levels of confidence estimated

for the words. Certain images not alike to any trained category

may be assigned with no word due to low word probabilities

all through. A potential usage of the thresholding method is to

filter out such images and to achieve higher accuracy for the

rest. Discarding a portion of images from a collection may not

be a concern in some applications, especially in the current era

of powerful digital imaging technologies, when we are often

overwhelmed with the amount of images.

Figure 8(a) and (b) show the performance achieved by

thresholding without and with self-masking respectively. For

brevity of presentation, instead of showing precision and recall

separately, the mean value of precision and recall is shown.

When the threshold for probability decreases, the percentage

of images assigned with at least one annotation word, denoted

by pa, increases. The average of precision and recall is plotted

against pa. When pa is small, that is, when more stringent

filtering is applied, annotation performance is in general better.

In Figure 8(a), without self-masking, ALIPR and NP with b = 30

perform closely, with ALIPR slightly better at the low end of pa.

Results for NP with b = 20, worse than with b = 30, are omitted

for clarity of the plots. In Figure 8(b), with self-masking, ALIPR

performs substantially better. The gap between performance is

more prominent at the low end of pa.

B. Performance on Images Outside the Corel Database

To assess the annotation results for images outside the Corel

database, we applied ALIPR to more than 54, 700 images created

by users of flickr.com and provide the results at the Website:

alipr.com. This site also hosts the ALIPR demonstration

system that performs real-time annotation for any image either
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Fig. 8. Comparing annotation results of ALIPR and a nonparametric method NP achieved by thresholding word probabilities for test images in the Corel
database. (a) The average of precision and recall without self-masking. (b) The average of precision and recall with self-masking.

people, man-made, car, flower, plant, rose, grass, landscape, house, people, landscape, animal,

landscape, bus, boat, cactus, flora, grass, rural, horse, animal, cloth, female, painting,

sport, royal guard, ocean landscape, water, perennial people, plant, flower face, male, man-made

grass, people, animal, grass, animal, wild life, texture, indoor, food, landscape, indoor, color,

horse, rural, dog, sport, people, rock, natural, people, animal, sky, sunset, sun,

landscape, tribal, plant tree, horse, polo landscape, rock, man-made bath, kitchen, mountain

indoor, food, dessert, landscape, building, historical, man-made, indoor, painting, grass, landscape, tree,

man-made, bath, kitchen, mountain, man-made, indoor, people, food, fruit, lake, autumn, people,

texture, landscape, bead people, lake, animal mural, old, poster rural, texture, natural

Fig. 9. Automatic annotation for photographs and paintings. The words are ordered according to estimated likelihoods. The six photographic images were
obtained from flickr.com. The six paintings were obtained from online Websites.

uploaded directly by the user or downloaded from a user-specified

URL. Annotation words for 12 images downloaded from the

Internet are obtained by the online system and are displayed in

Figure 9. Six of the images are photographs and the others are

digitized impressionism paintings. For these example images, it

takes a 3.0 GHz Intel processor an average of 1.4 seconds to

convert each from the JPEG to raw format, abstract the image

into a signature, and find the annotation words.

There are not many completely failed examples. However, we

picked some unsuccessful examples, as shown in Figure 10. In
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(a) building, people, water, (b) texture, indoor, food, (c) texture, natural, flower,

modern, city, work, natural, cuisine, man-made, sea, micro image, fruit

historical, cloth, horse fruit, vegetable, dessert food, vegetable, indoor

User annotation: photo, User annotation: User annotation: me,

unfound, molly, dog, animal phonecamera, car selfportrait, orange, mirror

Fig. 10. Unsuccessful cases of automatic annotation. The words are ordered according to estimated likelihoods. The photographic images were obtained
from flickr.com. Underlined words are considered reasonable annotation words. Suspected problems: (a) object with an unusual background, (b) fuzzy shot,
(c) partial object, wrong white balance.
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Fig. 11. Annotation performance based on manual evaluation of 5, 411 flickr.com images. (a) Percentages of images correctly annotated by the nth word.
(b) Percentages of images correctly annotated by at least one word among the top n words. (c) Histogram of the numbers of correct annotation words for
each image among the top 15 words assigned to it.

general, the computer does poorly (a) when the way an object is

taken in the picture is very different from those in the training,

(b) when the picture is fuzzy or of extremely low resolution or

low contrast, (c) if the object is shown partially, (d) if the white

balance is significantly off, and (e) if the object or the concept

has not been learned.

To numerically assess the annotation system, we manually

examined the annotation results for 5,411 digital photos deposited

by random users at flickr.com. Although several prototype

annotation systems have been developed previously, a quantitative

study on how accurate a computer can annotate images in the

real-world has never been conducted. The existing assessment

of annotation accuracy is limited in two ways. First, because

the computation of accuracy requires human judgment on the

appropriateness of each annotation word for each image, the

enormous amount of manual work has prevented researchers from

calculating accuracy directly and precisely. Lower bounds [16]

and various heuristics [2] are used as substitutes. Second, test

images and training images are from the same benchmark

database. Because many images in the database are highly similar

to each other, it is unclear whether the models established are

equally effective for general images. Our evaluation experiments,

designed in a realistic manner, will shed light on the level of

intelligence a computer can achieve for describing images.

A Web-based evaluation system is developed to record human

decision on the appropriateness of each annotation word provided

by the system. Each image is shown together with 15 computer-

assigned words in a browser. A trained person, who did not

participate in the development of the training database or the

system itself, examines every word against the image and checks

a word if it is judged as correct. For words that are object names,

they are considered correct if the corresponding objects appear

in an image. For more abstract concepts, e.g., ‘city’ and ‘sport’,

a word is correct if the image is relevant to the concept. For

instance, ‘sport’ is appropriate for a picture showing a polo game

or golf, but not for a picture of dogs. Manual assessment is

collected for 5, 411 images at flickr.com.

Annotation performance is reported from several aspects in

Figure 11. Each image is assigned with 15 words listed in the

descending order of the likelihood of being relevant. Figure 11(a)

shows the accuracies, that is, the percentages of images correctly

annotated by the nth annotation word, n = 1, 2, ..., 15. The first

word achieves an accuracy of 51.17%. The accuracy decreases

gradually with n except for minor fluctuation with the last three

words. This reflects that the ranking of the words by the system is

on average consistent with the true level of accuracy. Figure 11(b)

shows the coverage rate versus the number of annotation words

used. Here, coverage rate is defined as the percentage of images

that are correctly annotated by at least one word among a given

number of words. To achieve 80% coverage, we only need to
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use the top 4 annotation words. The top 7 and top 15 words

achieve respectively a coverage rate of 91.37% and 98.13%. The

histogram of the numbers of correct annotation words among the

top 15 words is provided in Figure 11(c). On average, 4.1 words

are correct for each image.

C. Performance Based on ALIPR Users

Fig. 12. The ALIPR Web-based demonstration site allows the users to upload
or enter the URL of a test image.

Fig. 13. The ALIPR system suggests tags in real time.

The alipr.com Website allows users to upload their own

pictures, or specify an image URL, and acquire annotation in

real time. The Web interface is shown in Figure 12. Every word

has a check box preceding it. Upon uploading an image, the user

can click the check box if he or she regards the ALIPR-predicted

word as correct and can also enter new annotation words in the

provided text box (Figure 13).

The site was made public on November 1, 2006. It was

subsequently reported on the news. In a given day, as many as

2,400 people used the site. Many of them used the site as an image

search engine as we provide keyword-based search, related image

search, and visual similarity search of images (Figures 14 and 15).

Many of these functions rely on the accurate tags stored for the

images. In order to make the site more useful for image search,

we added more than one million images from terragalleria.com

and flickr.com. We used ALIPR to verify the keywords or tags

provided by these sites. For reporting the accuracy of ALIPR,

however, we use only those images uploaded directly by online

users.

Over time, we observed the following behaviors of the users

who uploaded images:

• Many users are more stringent on considering an ALIPR-

predicted word as correct. They often only check words

Fig. 14. Related images search is provided, leveraging the tags checked by
the users.

Fig. 15. Visual similarity search uses the SIMPLIcity system and the tags
checked by the users.

that accurately reflect the main theme of the picture but

neglect other appropriate words. For example, for the picture

in Figure 16(a), the user checked the words building and

car as correct words. But the user did not check other

reasonable predictions including people. Similarly, for the

picture in Figure 16(b), the user checked only the words

people and sky. Other reasonable predictions can include

sport and male. In rare cases, as in Figure 16(c), the user

checked all reasonable predictions.

• Users tend to upload difficult pictures just to challenge

the system. Although we mentioned on the About Us

page that the system was designed only for color

photographic images, many people tested with gray-scale

images, manipulated photos, cartoons, sketches, framed

photos, computer graphics, aerial scenes, etc. Even for the

photographic images, they often use images with rare scenes

(Figure 17).

Up to the point when the manuscript was written, a total of

10, 809 images had been uploaded with some user-checked words.

On average, 2.24 words among the top 15 words predicted by

ALIPR are considered correct for a picture. The users added an

average of 1.67 words for each picture. A total of 3, 959 unique
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(a) (b) (c)

Fig. 16. Sample results collected on the alipr.com site. Underlined words are those considered correct by the user who provided the image. (a) ALIPR words:
people, man-made, cloth, guard, parade, holiday, yuletide, sport, landscape, building, historical, child, car, painting, mural. User-added words: female, bikini,
model, pose, outdoor. (b) ALIPR words: people, cloth, sky, man-made, water, balloon, ocean, boat, sport, female, male, couple, landscape, house, animal.
User-added word: (none). (c) ALIPR words: landscape, building, man-made, train, garden, sculpture, estate, rural, historical, people, ocean, tree, isle, grass,
car. User-added word: water.

(a) (b) (c) (d)

Fig. 17. Pictures of rare scenes are often uploaded to the alipr.com site. (a) ALIPR words: man-made, texture, color, people, indoor, food, painting, royal
guard, fruit, feast, holiday, mural, cloth, abstract, guard. User-added words: thirsty, kitty. (b) ALIPR words: building, historical, landscape, animal, landmark,
ruin, grass, snow, wild life, sky, people, photo, rock, fox, castle. User-added words: forest, cloud, lake. (c) ALIPR words: flower, natural, pattern, landscape,
texture, man-made, rural, pastoral, plant, tree, green, rock, color, animal, grass. User-added words: China. (d) ALIPR words: people, man-made, building,
historical, landscape, life, face, indoor, food, occupation, cloth, child, youth, decoration, male. User-added words: furniture, Buddha.

TABLE I

THE DISTRIBUTION OF THE NUMBER OF CORRECTLY-PREDICTED WORDS.

# of checked tags 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

# of images 3277 2824 2072 1254 735 368 149 76 20 22 3 1 2 3 3

(%) 30.3 26.1 19.2 11.6 6.8 3.4 1.4 0.7 0.2 0.2 0. 0. 0. 0. 0.

TABLE II

THE DISTRIBUTION OF THE NUMBER OF USER-ADDED WORDS.

# of added tags 0 1 2 3 4 5 6 7 8 9 10 11

# of images 3110 3076 1847 1225 727 434 265 101 18 3 0 3

(%) 28.8 28.5 17.1 11.3 6.7 4.0 2.5 0.9 0.2 0. 0. 0.

IP addresses have been recorded for these uploaded images. The

distribution of the number of correctly-predicted words and user-

added words are shown in Tables I and II, respectively. A total

of 295 words, among the vocabulary of 332 words in the ALIPR

dictionary, have been checked by the users for some pictures.

VII. CONCLUSIONS AND FUTUREWORK

Images are a major media on the Internet. To ensure easy

sharing of and effective searching over a huge and fast growing

number of online images, real-time automatic annotation by words

is an imperative but highly challenging task. We have developed

and evaluated the ALIPR (Automatic Linguistic Indexing of

Pictures - Real Time) system as one substantial step toward

meeting this established need. Our work has shown that the

computer can learn, using a large collection of example images,

to annotate general photographs with substantial accuracy. To

achieve this, we have developed novel statistical modeling

and optimization methods useful for establishing probabilistic

relationships between images and words. The ALIPR system has

been evaluated rigorously using real-world pictures.

Future work to improve the accuracy of the system can take

many directions. First, the incorporation of 3-D information in

the learning process may improve the models, perhaps through

learning via stereo images or 3-D images. Additionally, shape

information can be utilized to improve the modeling process.

Second, better and larger amounts of training images per semantic

concept may produce more robust models. Contextual information

may also help in the modeling and annotation process. Third, this
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method holds promise for various application domains, including

biomedicine. Finally, the system can be integrated with other

retrieval methods to improve usability.
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Appendix A

We now prove Equation (11) gives the ML estimation for the

parameters of the Gamma distributions under a common shape

parameter. Recall that the total number of prototypes across all

the image classes is M̄ and the index set of images assigned

to prototype j is Cj , j = 1, ..., M̄ . We need to estimate the

scale parameter bj for every prototype j and the common shape

parameter s. The collection of distances is u = (u1, u2, ..., uN ),

N =
PM̄

j=1 |Cj |. The ML estimator maximizes the log likelihood:

L(u|s, b1, b2, ..., bM̄ ) =

M̄
X

j=1

X

i∈Cj

log f(ui)

=

M̄
X

j=1

X

i∈Cj

»

(s − 1) log ui − s log bj − ui

bj
− log Γ(s)

–

. (12)

With a fixed s, L(u|s, b1, b2, ..., bM̄ ) can be maximized

individually on every bj :

max L(u|s, b1, b2, ..., bM̄ )

=
M̄

X

j=1

max
X

i∈Cj

»

(s − 1) log ui − s log bj − ui

bj
− log Γ(s)

–

. (13)

Since
P

i∈Cj

h

(s − 1) log ui − s log bj − ui

bj
− log Γ(s)

i

is a con-

cave function of bj , its maximum is determined by setting the

first derivative to zero:
X

i∈Cj

− s

bj
+

ui

b2j
= 0 ,

Let

ūj =

P

i∈Cj
ui

|Cj |
be the average distance for prototype j. Then, bj is solved by

bj =
ūj

s
. (14)

Now substitute Equation (14) into (13) and suppress the

dependence of L on bj :

max L(u | s)

=

M̄
X

j=1

max
X

i∈Cj

»

s log s + s · (log ui

ūj
− ui

ūj
) − log Γ(s) − log ui

–

.

Note that log Γ(s) is a convex function of s. It is easy to show

that L(u | s) is a concave function of s, and hence is maximized

by setting its first derivative to zero:

N log s +
M̄

X

j=1

X

i∈Cj

log
ui

ūj
− Nψ(s) = 0 ,

which is equivalent to:

log ŝ − ψ(ŝ) = log

2

4

M̄
Y

j=1

ū
|Cj|/N
j /(

N
Y

i=1

ui)
1/N

3

5 . (15)

Combining (14) and (15), we have proved the ML estimator in

Equation (11).
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