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A key challenge for neural modeling is to explain how a continuous
stream of multimodal input from a rapidly changing environment can be
processed by stereotypical recurrent circuits of integrate-and-fire neurons
in real time. We propose a new computational model for real-time com-
puting on time-varying input that provides an alternative to paradigms
based on Turing machines or attractor neural networks. It does not require
a task-dependent construction of neural circuits. Instead, it is based on
principles of high-dimensional dynamical systems in combination with
statistical learning theory and can be implemented on generic evolved or
found recurrent circuitry. It is shown that the inherent transient dynamics
of the high-dimensional dynamical system formed by a sufficiently large
and heterogeneous neural circuit may serve as universal analog fading
memory. Readout neurons can learn to extract in real time from the cur-
rent state of such recurrent neural circuit information about current and
past inputs that may be needed for diverse tasks. Stable internal states
are not required for giving a stable output, since transient internal states
can be transformed by readout neurons into stable target outputs due to
the high dimensionality of the dynamical system. Our approach is based
on a rigorous computational model, the liquid state machine, that, unlike
Turing machines, does not require sequential transitions between well-
defined discrete internal states. It is supported, as the Turing machine
is, by rigorous mathematical results that predict universal computational
power under idealized conditions, but for the biologically more realis-
tic scenario of real-time processing of time-varying inputs. Our approach
provides new perspectives for the interpretation of neural coding, the
design of experiments and data analysis in neurophysiology, and the so-
lution of problems in robotics and neurotechnology.
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1 Introduction

Intricate topographically organized feedforward pathways project rapidly
changing spatiotemporal information about the environment into the neo-
cortex. This information is processed by extremely complex but surprisingly
stereotypic microcircuits that can perform a wide spectrum of tasks (Shep-
herd, 1988; Douglas & Martin, 1998; von Melchner, Pallas, & Sur, 2000). The
microcircuit features that enable this seemingly universal computational
power are a mystery. One particular feature, the multiple recurrent loops
that form an immensely complicated network using as many as 80% of
all the synapses within a functional neocortical column, has presented an
intractable problem for computational models inspired by current artifi-
cial computing machinery (Savage, 1998) and for attractor neural network
models. The difficulty of understanding computations within recurrent net-
works of integrate-and-fire neurons comes from the fact that their dynamics
takes on a life of its own when challenged with rapidly changing inputs.
This is particularly true for the very high-dimensional dynamical system
formed by a neural microcircuit, whose components are highly heteroge-
neous and where each neuron and each synapse add degrees of freedom to
the dynamics of the system.

The most common approach for modeling computing in recurrent neural
circuits has been to try to take control of their high-dimensional dynamics.
Methods for controlling the dynamics of recurrent neural networks through
adaptive mechanisms are reviewed in Pearlmutter (1995). So far, no one has
been able to apply these to the case of networks of spiking neurons. Other
approaches to modeling computation in biological neural systems are based
on constructions of artificial neural networks that simulate Turing machines
or other models for digital computation (Pollack, 1991; Giles, Miller, Chen,
Sun, & Lee, 1992; Siegelmann & Sontag, 1994; Hyoetyniemi, 1996; Moore,
1998). Among these are models, such as dynamical recognizers, capable of
real-time computing on on-line input (in discrete time). None of these ap-
proaches has been demonstrated to work for networks of spiking neurons or
any more realistic models for neural microcircuits. Maass (1996) showed that
one also can construct recurrent circuits of spiking neurons that can simulate
arbitrary Turing machines. But all of these approaches require synchroniza-
tion of all neurons by a central clock, a feature that appears to be missing in
neural microcircuits. In addition, they require the construction of particular
recurrent circuits and cannot be implemented by evolving or adapting a
given circuit. Furthermore, the results of Maass and Sontag (1999) on the
impact of noise on the computational power of recurrent neural networks
suggest that all of these approaches break down as soon as one assumes that
the underlying analog computational units are subject to gaussian or other
realistic noise distributions. Attractor neural networks, on the other hand,
allow noise-robust computation, but their attractor landscape is generally
hard to control, and they need a very large set of attractors in order to store
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salient information on past inputs (for example, 1024 attractors in order to
store 10 bits). In addition, they are less suitable for real-time computing on
rapidly varying input streams because of the time required for convergence
to an attractor. Finally, none of these approaches allows several real-time
computations to be carried out in parallel within the same circuitry, which
appears to be a generic feature of neural microcircuits.

In this article, we analyze the dynamics of neural microcircuits from the
point of view of a readout neuron whose task is to extract information and
report results from a neural microcircuit to other circuits. A human observer
of the dynamics in a neural microcircuit would be looking for clearly distinct
and temporally stable features, such as convergence to attractors. We show
that a readout neuron that receives inputs from hundreds or thousands of
neurons in a neural microcircuit can learn to extract salient information
from the high-dimensional transient states of the circuit and can transform
transient circuit states into stable readouts. In particular, each readout can
learn to define its own notion of equivalence of dynamical states within
the neural microcircuit and can then perform its task on novel inputs. This
unexpected finding of readout-assigned equivalent states of a dynamical
system explains how invariant readout is possible despite the fact that the
neural microcircuit may never revisit the same state. Furthermore, we show
that multiple readout modules can be trained to perform different tasks on
the same state trajectories of a recurrent neural circuit, thereby enabling
parallel real-time computing. We present the mathematical framework for
a computational model that does not require convergence to stable internal
states or attractors (even if they do occur), since information about past
inputs is automatically captured in the perturbations of a dynamical system
(i.e., in the continuous trajectory of transient internal states). Special cases of
this mechanism have already been reported in Buonomano and Merzenich
(1995) and Dominey, Arbib, and Joseph (1995). Similar ideas have been
discovered independently by Jaeger (2001) in the context of artificial neural
networks.

2 Computing Without Attractors

As an illustration for our general approach to real-time computing con-
sider a series of transient perturbations caused in an excitable medium (see
Holden, Tucker, & Thompson, 1991), for example, a liquid, by a sequence
of external disturbances (inputs) such as wind, sound, or sequences of peb-
bles dropped into the liquid. Viewed as an attractor neural network, the
liquid has only one attractor state—the resting state—and may therefore
seem useless for computational purposes. However, the perturbed state of
the liquid, at any moment in time, represents present as well as past inputs,
potentially providing the information needed for an analysis of various dy-
namic aspects of the environment. In order for such a liquid to serve as a
source of salient information about present and past stimuli without rely-
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ing on stable states, the perturbations must be sensitive to saliently different
inputs but nonchaotic. The manner in which perturbations are formed and
maintained would vary for different types of liquids and would determine
how useful the perturbations are for such retrograde analysis. Limitations on
the computational capabilities of liquids are imposed by their time constant
for relaxation and the strictly local interactions and homogeneity of the ele-
ments of a liquid. Neural microcircuits, however, appear to be ideal liquids
for computing on perturbations because of the large diversity of their ele-
ments, neurons, and synapses (see Gupta, Wang, & Markram, 2000) and the
large variety of mechanisms and time constants characterizing their inter-
actions, involving recurrent connections on multiple spatial scales (“loops
within loops”).

The foundation for our analysis of computations without stable states
is a rigorous computational model, the liquid state machine. Two macro-
scopic properties emerge from our theoretical analysis and computer sim-
ulations as necessary and sufficient conditions for powerful real-time com-
puting on perturbations: a separation property, SP, and an approximation
property, AP.

SP addresses the amount of separation between the trajectories of internal
states of the system that are caused by two different input streams (in the
case of a physical liquid, SP could reflect the difference between the wave
patterns resulting from different sequences of disturbances).

AP addresses the resolution and recoding capabilities of the readout
mechanisms—more precisely, its capability to distinguish and transform
different internal states of the liquid into given target outputs. (Whereas SP
depends mostly on the complexity of the liquid, AP depends mostly on the
adaptability of the readout mechanism to the required task.)

3 Liquid State Machines

Like the Turing machine (Savage, 1998), the model of a liquid state machine
(LSM) is based on a rigorous mathematical framework that guarantees, un-
der idealized conditions, universal computational power. Turing machines,
however, have universal computational power for off-line computation on
(static) discrete inputs, while LSMs have in a very specific sense universal
computational power for real-time computing with fading memory on ana-
log functions in continuous time. The input function u(·) can be a continuous
sequence of disturbances, and the target output can be some chosen function
y(·) of time that provides a real-time analysis of this sequence. In order for
a machine M to map input functions of time u(·) to output functions y(·) of
time, we assume that it generates, at every time t, an internal “liquid state”
xM(t), which constitutes its current response to preceding perturbations, that
is, to preceding inputs u(s) for s ≤ t (see Figure 1). In contrast to the finite
state of a finite state machine (or finite automaton), this liquid state consists
of analog values that may change continuously over time. Whereas the state
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Figure 1: Architecture of an LSM. A function of time (time series) u(·) is injected
as input into the liquid filter LM, creating at time t the liquid state xM(t), which is
transformed by a memoryless readout map f M to generate an output y(t).

set and the state transition function of a finite state machine are in general
constructed for a specific task, the liquid states and the transitions between
them need not be customized for a specific task. In a physical implementa-
tion, this liquid state consists of all information about the current internal
state of a dynamical system that is accessible to the readout modules. In
mathematical terms, this liquid state is simply the current output of some
operator or filter1 LM that maps input functions u(·) onto functions xM(t):

xM(t) = (LMu)(t).

In the following, we will refer to this filter LM often as a liquid filter or liquid
circuit if it is implemented by a circuit. If it is implemented by a neural
circuit, we refer to the neurons in that circuit as liquid neurons.

The second component of an LSM M is a memoryless readout map f M

that transforms, at every time t, the current liquid state xM(t) into the output

y(t) = f M(xM(t)).

In contrast to the liquid filter LM, this readout map f M is in general chosen
in a task-specific manner (and there may be many different readout maps
that extract different task-specific information in parallel from the current
output of LM). Note that in a finite state machine, there exists no analogon

1 Functions F that map input functions of time u(·) on output functions y(·) of time
are usually called operators in mathematics, but are commonly referred to as filters in
engineering and neuroscience. We use the term filter in the following and write (Fu)(t) for
the output of the filter F at time t when F is applied to the input function u(·). Formally,

such filter F is a map from Un into (RR)k, where RR is the set of all real-valued functions

of time, (RR)k is the set of vectors consisting of k such functions of time, U is some subset
of RR, and Un is the set of vectors consisting of n functions of time in U.
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to such task-specific readout maps, since there, the internal finite states are
already constructed in a task-specific manner. According to the preceding
definition, readout maps are in general memoryless.2 Hence, all information
about inputs u(s) from preceding time points s ≤ t that is needed to produce
a target output y(t) at time t has to be contained in the current liquid state
xM(t). Models for computation that have originated in computer science
store such information about the past in stable states (e.g., in memory buffers
or tapped delay lines). We argue, however, that this is not necessary since
large computational power on functions of time can also be realized even if
all memory traces are continuously decaying. Instead of worrying about the
code and location where information about past inputs is stored and how
this information decays, it is enough to address the separation question: For
which later time points t will any two significantly different input functions
of time u(·) and v(·) cause significantly different liquid states xM

u (t) and
xM

v (t)? Good separation capability, in combination with an adequate readout
map f M, allows us to discard the requirement of storing bits until further
notice in stable states of the computational system.

4 Universal Computational Power of LSMs for Time-Varying Inputs

We say that a class of machines has universal power for computations with
fading memory on functions of time if any filter F, that is, any map from
functions of time u(·) to functions of time y(·), that is time invariant3 and
has fading memory4 can be approximated by machines from this class to

2 The term memoryless refers to the fact that the readout map f M is not required to
retain any memory of previous states xM(s), s < t, of the liquid. However, in a biological
context, the readout map will in general be subject to plasticity and may also contribute
to the memory capability of the system. We do not explore this issue here because the
differentiation into a memoryless readout map and a liquid that serves as a memory
device is made for conceptual clarification and is not essential to the model.

3 A filter F is called time invariant if any temporal shift of the input function u(·) by
some amount t0 causes a temporal shift of the output function y = Fu by the same amount
t0, that is, (Fut0 )(t) = (Fu)(t + t0) for all t, t0 ∈ R, where ut0 (t) := u(t + t0). Note that if U is
closed under temporal shifts, then a time-invariant filter F: Un → (RR)k can be identified
uniquely by the values y(0) = (Fu)(0) of its output functions y(·) at time 0.

4 Fading memory (Boyd & Chua, 1985) is a continuity property of filters F that demands
that for any input function u(·) ∈ Un, the output (Fu)(0) can be approximated by the out-
puts (Fv)(0) for any other input functions v(·) ∈ Un that approximate u(·) on a sufficiently

long time interval [−T, 0]. Formally, one defines that F: Un → (RR)k has fading memory if
for every u ∈ Un and every ε > 0, there exist δ > 0 and T > 0 so that ‖(Fv)(0)−(Fu)(0)‖ < ε

for all v ∈ Un with ‖u(t) − v(t)‖ < δ for all t ∈ [−T, 0]. Informally, a filter F has fading
memory if the most significant bits of its current output value (Fu)(0) depend just on the
most significant bits of the values of its input function u(·) from some finite time window
[−T, 0] into the past. Thus, in order to compute the most significant bits of (Fu)(0), it is
not necessary to know the precise value of the input function u(s) for any time s, and
it is also not necessary to know anything about the values of u(·) for more than a finite
time interval back into the past. Note that a filter that has fading memory is automatically
causal.
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any degree of precision. Arguably, these filters F that are approximated ac-
cording to this definition include all maps from input functions of time to
output functions of time that a behaving organism might need to compute.

A mathematical theorem (see appendix A) guarantees that LSMs have
this universal computational power regardless of specific structure or imple-
mentation, provided that two abstract properties are met: the class of basis
filters from which the liquid filters LM are composed satisfies the point-
wise separation property and the class of functions from which the readout
maps f M are drawn satisfies the approximation property. These two prop-
erties provide the mathematical basis for the separation property SP and the
approximation property AP that were previously discussed. Theorem 1 in
appendix A implies that there are no serious a priori limits for the computa-
tional power of LSMs on continuous functions of time, and thereby provides
a theoretical foundation for our approach to modeling neural computation.
In particular, since this theorem makes no specific requirement regarding
the exact nature or behavior of the basis filters, as long as they satisfy the sep-
aration property (for the inputs in question), it provides theoretical support
for employing instead of circuits that were constructed for a specific task,
partially evolved or even rather arbitrary “found” computational modules
for purposeful computations. This feature highlights an important differ-
ence to computational theories based on Turing machines or finite state
machines, which are often used as conceptual basis for modeling neural
computation.

The mathematical theory of LSMs can also be extended to cover compu-
tation on spike trains (discrete events in continuous time) as inputs. Here
the ith component ui(·) of the input u(·) is a function that assumes only the
values 0 and 1, with ui(t) = 1 if the ith preceding neuron fires at time t.
Thus, ui(·) is not a continuous function but a sequence of point events. The-
orem 2 in appendix A provides a theoretical foundation for approximating
any biologically relevant computation on spike trains by LSMs.

5 Neural Microcircuits as Implementations of LSMs

In order to test the applicability of this conceptual framework to model-
ing computation in neural microcircuits, we carried out computer simu-
lations where a generic recurrent circuit of integrate-and-fire neurons (see
appendix B for details) was employed as a liquid filter. In other words, com-
puter models for neural microcircuits were viewed as an implementation
of the liquid filter LM of an LSM. In order to test the theoretically predicted
universal real-time computing capabilities of these neural implementations
of LSMs, we evaluated their performance on a wide variety of challenging
benchmark tasks. The input to the neural circuit was via one or several in-
put spike trains, which diverged to inject current into 30% randomly chosen
“liquid neurons”. The amplitudes of the input synapses were chosen from
a gaussian distribution, so that each neuron in the liquid circuit received a
slightly different input (a form of topographic injection). The liquid state of
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the neural microcircuit at time t was defined as all information that a readout
neuron could extract at time t from the circuit—that is, the output at time t
of all the liquid neurons represented the current liquid state of this instan-
tiation of an LSM. More precisely, since the readout neurons were modeled
as integrate-and-fire (I&F) neurons with a biologically realistic membrane
time constant of 30 ms, the liquid state xM(t) at time t consisted of the vector
of contributions of all the liquid neurons to the membrane potential at time
t of a generic readout neuron (with unit synaptic weights). Mathematically,
this liquid state xM(t) can be defined as the vector of output values at time t
of linear filters with exponential decay (time constant 30 ms) applied to the
spike trains emitted by the liquid neurons.

Each readout map f M was implemented by a separate population P of
I&F neurons (referred to as readout neurons) that received input from all
the liquid neurons but had no lateral or recurrent connections.5 The current
firing activity p(t) of the population P, that is, the fraction of neurons in P
firing during a time bin of 20 ms, was interpreted as the analog output of
f M at time t (one often refers to such representation of analog values by the
current firing activity in a pool of neurons as space rate coding). Theoret-
ically, the class of readout maps that can be implemented in this fashion
satisfies the approximation property AP (Maass, 2000; Auer, Burgsteiner,
& Maass, 2001), and is according to theorem 1 in principle sufficient for
approximating arbitrary given fading memory filters F. In cases where a
readout with discrete values 1 and 0 suffices, one can implement a readout
map even by a single I&F neuron that represents these discrete output val-
ues by firing or nonfiring at time t. In cases where the target output consists
of slowly varying analog values, a single readout neuron can be trained to
represent these values through its time-varying firing rate. In any case, the
readout neurons can be trained to perform a specific task by adjusting the
strengths of synapses projected onto them from the liquid neurons using
a perceptron-like local learning rule (Auer et al., 2001). The final learned
state of the readout neurons enables them to take particular weighted sums
of the current outputs xM(t) of the liquid neurons and generate a response
f M(xM(t)) that approximates the target value y(t).

As a first test of these neural implementations of LSMs, we evaluated
the separation property SP of computer models for neural microcircuits on
spike train inputs. A large set of pairs of Poisson spike trains u(·) and v(·)

was randomly generated and injected (in separate trials) as input to the
recurrent neural circuit. The resulting trajectories xM

u (·) and xM
v (·) of liquid

states of the recurrent circuit were recorded for each of these time-varying
inputs u(·) and v(·). The average distance ‖xM

u (t) − xM
v (t)‖ between these

liquid states was plotted in Figure 2 as a function of the time t after the

5 For conceptual purposes, we separate the “liquid” and “readout” elements in this
article, although dual liquid-readout functions can also be implemented.
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Figure 2: Average distance of liquid states for two different input spike trains
u and v (given as input to the neural circuit in separate trials, each time with an
independently chosen random initial state of the neural circuit; see appendix B)
plotted as a function of time t . The state distance increases with the distance
d(u, v) between the two input spike trains u and v. Plotted on the y-axis is the
average value of ‖xM

u (t) − xM
v (t)‖, where ‖.‖ denotes the Euclidean norm, and

xM
u (t), xM

v (t) denote the liquid states at time t for input spike trains u and v. The
plotted results for the values 0.1, 0.2, 0.4 of the input difference d′ represent the
average over 200 randomly generated pairs u and v of spike trains such that
|d′ − d(u, v)| < 0.01. Parameters of the liquid: 1 column, degree of connectivity
λ = 2 (see appendix B for details).

onset of the input, for various fixed values of the distance d(u, v)6 between
the two spike train inputs u and v. These curves show that the distance
between these liquids states is well above the noise level, that is, above the
average liquid state differences caused by the same spike train applied with
two different randomly chosen initial conditions of the circuit (indicated
by the solid curve). Furthermore, these curves show that the difference in
liquid states is after the first 30 ms roughly proportional to the distance
between the corresponding input spike trains. Note in particular the ab-
sence of chaotic effects for these generic neural microcircuit models with
biologically realistic intermediate connection lengths.

6 In order to define the distance d(u, v) between two spike trains u and v, we replaced
each spike by a gaussian exp(−(t/τ)2) for τ = 5 ms (to be precise, u and v are convolved
with the gaussian kernel exp(−(t/τ)2)) and defined d(u, v) as the distance of the resulting
two continuous functions in the L2-norm (divided by the maximal lengths 0.5 sec of the
spike trains u and v).
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6 Exploring the Computational Power of Models for Neural
Microcircuit

As a first test of its computational power, this simple generic circuit was ap-
plied to a previously considered classification task (Hopfield & Brody, 2001),
where spoken words were represented by noise-corrupted spatiotemporal
spike patterns over a rather long time interval (40-channel spike patterns
over 0.5 sec). This classification task had been solved in Hopfield and Brody
(2001) by a network of neurons designed for this task (relying on unknown
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mechanisms that could provide smooth decays of firing activity over longer
time periods and apparently requiring substantially larger networks of I&F
neurons if fully implemented with I&F neurons). The architecture of that
network, which had been customized for this task, limited its classification
power to spike trains consisting of a single spike per channel.

We found that the same, but also a more general, version of this spa-
tiotemporal pattern recognition task that allowed several spikes per input
channel can be solved by a generic recurrent circuit as described in the
previous section. Furthermore, the output of this network was available at
any time and was usually correct as soon as the liquid state of the neu-
ral circuit had absorbed enough information about the input (the initial
value of the correctness just reflects the initial guess of the readout). For-
mally, we defined the correctness of the neural readout at time s by the term
1 − |target output y(s) − readout activity p(s)|, where the target output y(s)
consisted in this case of the constant values 1 or 0, depending on the input
pattern. Plotted in Figure 3 is for any time t during the presentation of the
input patterns in addition to the correctness as a function of t also the cer-
tainty of the output at time t, which is defined as the average correctness up

Figure 3: Facing page. Application of a generic recurrent network of I&F neurons,

modeled as LSM, to a more difficult version of a well-studied classification task

(Hopfield & Brody, 2001). Five randomly drawn patterns (called “zero,” “one,”

“two,” . . . ), each consisting of 40 parallel Poisson spike trains over 0.5 sec, were

chosen. Five readout modules, each consisting of 50 I&F neurons, were trained

with 20 noisy versions of each input pattern to respond selectively to noisy ver-

sions of just one of these patterns (noise was injected by randomly moving each

spike by an amount drawn independently from a gaussian distribution with

mean 0 and variance 32 ms; in addition, the initial state of the liquid neurons

was chosen randomly at the beginning of each trial). The responses of the read-

out, which had been trained to detect the pattern “zero,” is shown for a new,

previously not shown, noisy version of two of the input patterns.a The correct-

ness and certainty (= average correctness so far) are shown as functions of time

from the onset of the stimulus at the bottom. The correctness is calculated as

1 − |p(t) − y(t)|, where p(t) is the normalized firing activity in the readout pool

(normalized to the range [0 1]; 1 corresponding to an activity of 180 Hz; bin

width 20 ms) and y(t) is the target output. (Correctness starts at a level of 0 for

pattern “zero,” where this readout pool is supposed to become active, and at

a value of 1 for pattern “one,” because the readout pool starts in an inactive

state). In contrast to most circuits of spiking neurons that have been constructed

for a specific computational task, the spike trains of liquid and readout neurons

shown in this figure look rather realistic.
aThe familiar delta rule was applied or not applied to each readout neuron, depending

on whether the current firing activity in the readout pool was too high, too low, or about

right, thus requiring at most two bits of global communication. The precise version of the

learning rule was the p-delta rule discussed in Auer et al. (2001).
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to that time t. Whereas the network constructed by Hopfield and Brody
(2001) was constructed to be invariant with regard to linear time warping of
inputs (provided that only one spike arrives in each channel), the readouts
of the generic recurrent circuit that we considered could be trained to be
invariant with regard to a large class of different types of noises. The results
shown in Figure 3 are for a noise where each input spike is moved indepen-
dently by an amount drawn from a gaussian distribution with mean 0 and
SD 32 ms.

Giving a constant output for a time-varying liquid state (caused by a
time-varying input) is a serious challenge for an LSM, since it cannot rely
on attractor states, and the memoryless readout has to transform the tran-
sient and continuously changing states of the liquid into a stable output
(see section 10 and Figure 9 for details). In order to explore the limits of this
simple neural implementation of an LSM for computing on time-varying
input, we chose another classification task where all information of the in-
put is contained in its temporal evolution, more precisely in the interspike
intervals of a single input spike train. In this test, eight randomly generated
Poisson spike trains over 250 ms or, equivalently, two Poisson spike trains
over 1000 ms partitioned into four segments each (see the top of Figure 4)
were chosen as template patterns. Other spike trains over 1000 ms were
generated by choosing for each 250 ms segment one of the two templates
for this segment and by jittering each spike in the templates (more precisely,
each spike was moved by an amount drawn from a gaussian distribution
with mean 0 and a SD that we refer to as jitter; see the bottom of Figure 4). A
typical spike train generated in this way is shown in the middle of Figure 4.
Because of the noisy dislocation of spikes, it was impossible to recognize a
specific template from a single interspike interval (and there were no spa-
tial cues contained in this single channel input). Instead, a pattern formed
by several interspike intervals had to be recognized and classified retro-
spectively. Furthermore, readouts were not only trained to classify at time
t = 1000 ms (i.e., after the input spike train had entered the circuit) the tem-
plate from which the last 250 ms segment of this input spike train had been
generated, but other readouts were trained to classify simultaneously the
templates from which preceding segments of the input (which had entered
the circuit several hundred ms earlier) had been generated. Obviously, the
latter classification task is substantially more demanding, since the corre-
sponding earlier segments of the input spike train may have left a clear
trace in the current firing activity of the recurrent circuit just after they had
entered the circuit, but this trace was subsequently overwritten by the next
segments of the input spike train (which had no correlation with the choice
of the earlier segments). Altogether there were in this experiment four read-
outs f1 to f4, where fi had been trained to classify at time t = 1000 ms the ith
independently chosen 250 ms segment of the preceding input spike train.

The performance of the LSM, with a generic recurrent network of 135
I&F neurons as liquid filter (see appendix B), was evaluated after training of
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Figure 4: Evaluating the fading memory of a generic neural microcircuit: the
task. In this more challenging classification task, all spike trains are of length
1000 ms and consist of four segments of length 250 ms each. For each segment,
two templates were generated randomly (Poisson spike train with a frequency
of 20 Hz); see the upper traces. The actual input spike trains of length 1000 ms
used for training and testing were generated by choosing for each segment one
of the two associated templates and then generating a noisy version by moving
each spike by an amount drawn from a gaussian distribution with mean 0 and
an SD that we refer to as jitter (see the lower trace for a visualization of the jitter
with an SD of 4 ms). The task is to output with four different readouts at time
t = 1000 ms for each of the preceding four input segments the number of the
template from which the corresponding segment of the input was generated.
Results are summarized in Figures 5 and 6.

the readout pools on inputs from the same distribution (for jitter = 4 ms),
but with an example that the LSM had not seen before. The accuracy of the
four readouts is plotted in Figure 5A. It demonstrates the fading memory of
a generic recurrent circuit of I&F neurons, where information about inputs
that occurred several hundred ms ago can be recovered even after that input
segment was subsequently overwritten.

Since readout neurons (and neurons within the liquid circuit) were mod-
eled with a realistic time constant of just 30 ms, the question arises where this
information about earlier inputs had been stored for several hundred ms.
As a control, we repeated the same experiment with a liquid circuit where
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Figure 5: Evaluating the fading memory of a generic neural microcircuit: re-
sults. Four readout modules f1 to f4, each consisting of a single perceptron,
were trained for their task by linear regression. The readout module fi was
trained to output 1 at time t = 1000 ms if the ith segment of the previously pre-
sented input spike train had been constructed from the corresponding template
1, and to output 0 at time t = 1000 ms otherwise. Correctness (percentage of
correct classification on an independent set of 500 inputs not used for training)
is calculated as average over 50 trials. In each trial, new Poisson spike trains
were drawn as templates, a new randomly connected circuit was constructed (1
column, λ = 2; see appendix B), and the readout modules f1 to f4 were trained
with 1000 training examples generated by the distribution described in Figure 4.
(A) Average correctness of the four readouts for novel test inputs drawn from the
same distribution. (B) Firing activity in the liquid circuit (time interval [0.5 sec,
0.8 sec]) for a typical input spike train. (C) Results of a control experiment where
all dynamic synapses in the liquid circuit had been replaced by static synapses
(the mean values of the synaptic strengths were uniformly rescaled so that the
average liquid activity is approximately the same as for dynamic synapses). The
liquid state of this circuit contained substantially less information about earlier
input segments. (D) Firing activity in the liquid circuit with static synapses used
for the classification results reported in C. The circuit response to each of the
four input spikes that entered the circuit during the observed time interval [0.5
sec, 0.8 sec] is quite stereotypical without dynamic synapses (except for the sec-
ond input spike that arrives just 20 ms after the first one). In contrast, the firing
response of the liquid circuit with dynamic synapses, B, is different for each
of the four input spikes, showing that dynamic synapses endow these circuits
with the capability to process new input differently depending on the context
set by preceding input, even if that preceding input occurred several hundred
ms before.
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the dynamic synapses had been replaced by static synapses (with synaptic
weights that achieved about the same level of firing activity as the circuit
with dynamic synapses). Figure 5C shows that this results in a significant
loss in performance for the classification of all except for the last input seg-
ment. A possible explanation is provided by the raster plots of firing activity
in the liquid circuit with (see Figure 5B) and without dynamic synapses (see
Figure 5D), shown here with high temporal resolution. In the circuit with
dynamic synapses, the recurrent activity differs for each of the four spikes
that entered the circuit during the time period shown, demonstrating that
each new spike is processed by the circuit in an individual manner that
depends on the context defined by preceding input spikes. In contrast, the
firing response is very stereotypical for the same four input spikes in the
circuit without dynamic synapses, except for the response to the second
spike that arrives within 20 ms of the first one (see the period between 500
and 600 ms in Figure 5D). This indicates that the short-term dynamics of
synapses may play an essential role in the integration of information for
real-time processing in neural microcircuits.

Figure 6 examines another aspect of neural microcircuits that appears
to be important for their separation property: the statistical distribution of
connection lengths within the recurrent circuit. Six types of liquid circuits,
each consisting of 135 I&F neurons but with different values of the param-
eter λ that regulated the average number of connections and the average
spatial length of connections (see appendix B), were trained and evaluated
according to the same protocol and for the same task as in Figure 5. Shown
in Figure 6 for each of these six types of liquid circuits is the average correct-
ness of the readout f3 on novel inputs, after it had been trained to classify
the second-to-last segment of the input spike train. The performance was
fairly low for circuits without recurrent connections (λ = 0). It was also
fairly low for recurrent circuits with large values of λ, whose largely length-
independent distribution of connections homogenized the microcircuit and
facilitated chaotic behavior. Hence, for this classification task, the ideal “liq-
uid circuit” is a microcircuit that has in addition to local connections to
neighboring neurons also a few long-range connections, thereby interpolat-
ing between the customarily considered extremes of strictly total connec-
tivity (like in a cellular automaton), on one hand, and the locality-ignoring
global connectivity of a Hopfield net, on the other hand.

The performance results of neural implementations of LSMs reported in
this section should not be viewed as absolute data on the computational
power of recurrent neural circuits. Rather, the general theory suggests that
their computational power increases with any improvement in their separa-
tion or approximation property. Since the approximation property AP was
already close to optimal for these networks (increasing the number of neu-
rons in the readout module did not increase the performance significantly;
not shown), the primary limitation in performance lay in the separation
property SP. Intuitively, it is clear that the liquid circuit needs to be suf-
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Figure 6: Average correctness depends on the parameter λ that controls the
distribution of random connections within the liquid circuit. Plotted is the av-
erage correctness (at time t = 1000 ms, calculated as average over 50 trials as
in Figure 5; same number of training and test examples) of the readout mod-
ule f3 (which is trained to classify retroactively the second-to-last segment of
the preceding spike train) as a function of λ. The poor performance for λ = 0
(no recurrent connections within the circuit) shows that recurrent connections
are essential for achieving a satisfactory separation property in neural microcir-
cuits. Values of λ that are too large also decrease the performance because they
support a chaotic response.

ficiently complex to hold the details required for the particular task but
should reduce information that is not relevant to the task (e.g., spike time
jitter). SP can be engineered in many ways, such as incorporating neuron
diversity, implementing specific synaptic architectures, altering microcir-
cuit connectivity, or simply recruiting more columns. The last option is of
particular interest because it is not available in most computational models.
It is explored in the next section.

7 Adding Computational Power

An interesting structural difference between neural systems and our cur-
rent generation of artificial computing machinery is that the computational
power of neural systems can apparently be enlarged by recruiting more
circuitry (without the need to rewire old or new circuits). We explored the
consequences of recruiting additional columns for neural implementations
of LSMs (see Figure 7B), and compared it with the option of adding further
connections to the primary one-column-liquid that we used so far (135 I&F
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neurons with λ = 2; see Figure 7A). Figure 7C demonstrates that the recruit-
ment of additional columns increases the separation property of the liquid
circuit in a desirable manner, where the distance between subsequent liquid
states (always recorded at time t = 1000 ms in this experiment) is propor-
tional to the distance between the spike train inputs that had previously en-
tered the liquid circuit (spike train distance is measured in the same way as
for Figure 2). In contrast, the addition of more connections to a single column
(λ = 8; see appendix B) also increases the separation between subsequent
liquid states, but in a quasi-chaotic manner where small input distances
cause about the same distances between subsequent liquid states as small
input differences. In particular, the subsequent liquid state distance is about
equally large for two jittered versions of the input spike train state (yielding
typically a value of d(u, v) around 0.1) as for significantly different input
spike trains that require different outputs of the readouts. Thus, improving
SP by altering the intrinsic microcircuitry of a single column increases sen-
sitivity for the task but also increases sensitivity to noise. The performance
of these different types of liquid circuits for the same classification task as
in Figure 6 is consistent with this analysis of their characteristic separation
property. Shown in Figure 7D is their performance for various values of
the spike time jitter in the input spike trains. The optimization of SP for a
specific distribution of inputs and a specific group of readout modules is
likely to arrive at a specific balance between the intrinsic complexity of the
microcircuitry and the number of repeating columns.

8 Parallel Computing in Real-Time on Novel Inputs

Since the liquid of the LSM does not have to be trained for a particular task,
it supports parallel computing in real time. This was demonstrated by a
test in which multiple spike trains were injected into the liquid, and mul-
tiple readout neurons were trained to perform different tasks in parallel.
We added six readout modules to a liquid consisting of two columns with
different values of λ.7 Each of the six readout modules was trained indepen-
dently for a completely different on-line task that required an output value
at any time t. We focused here on tasks that require diverse and rapidly
changing analog output responses y(t). Figure 8 shows that after training,
each of these six tasks can be performed in real time with high accuracy. The
performance shown is for a novel input that was not drawn from the same
distribution as the training examples and differs in several aspects from the
training examples (thereby demonstrating the possibility of extrageneral-

7 In order to combine high sensitivity with good generalization performance, we chose
here a liquid consisting of two columns as before, one with λ = 2, the other with λ = 8,
and the interval [14.0 14.5] for the uniform distribution of the nonspecific background
current Ib.
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Figure 7: Separation property and performance of liquid circuits with larger
numbers of connections or neurons. Schematic drawings of LSMs consisting of
(A) one column and (B) four columns. Each column consists of 3 × 3 × 15 = 135
I&F neurons. (C) Separation property depends on the structure of the liquid.
Average state distance (at time t = 100 ms) calculated as described in Figure 2.
A column with high internal connectivity (high λ) achieves higher separation
as a single column with lower connectivity, but tends to chaotic behavior where
it becomes equally sensitive to small and large input differences d(u, v). On
the other hand, the characteristic curve for a liquid consisting of four columns
with small λ is lower for values of d(u, v) lying in the range of jittered versions
u and v of the same spike train pattern (d(u, v) ≤ 0.1 for jitter ≤ 8 ms) and
higher for values of d(u, v) in the range typical for spike trains u and v from
different classes (mean: 0.22). (D) Evaluation of the same three types of liquid
circuits for noise-robust classification. Plotted is the average performance for
the same task as in Figure 6, but for various values of the jitter in input spike
times. Several columns (not interconnected) with low internal connectivity yield
a better-performing implementation of an LSM for this computational task, as
predicted by the analysis of their separation property.
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ization in neural microcircuits, due to their inherent bias, that goes beyond
the usual definition of generalization in statistical learning theory).

9 Readout-Assigned Equivalent States of a Dynamical System

Real-time computation on novel inputs implies that the readout must be able
to generate an invariant or appropriately scaled response for any input even
though the liquid state may never repeat. Indeed, Figure 3 already showed
that the dynamics of readout pools can become quite independent from the
dynamics of the liquid even though the liquid neurons are the only source
of input. To examine the underlying mechanism for this relatively inde-
pendent readout response, we reexamined the readout pool from Figure 3.
Whereas the firing activity within the liquid circuit was highly dynamic,
the firing activity in the readout pool was almost constant after training (see
Figures 9B–9D). The stability of the readout response does not simply come
about because the readout samples only a few “unusual” liquid neurons as
shown by the distribution of synaptic weights onto a sample readout neuron
(see Figure 9E). Since the synaptic weights do not change after learning, this
indicates that the readout neurons have learned to define a notion of equiv-
alence for dynamic states of the liquid. Indeed, equivalence classes are an
inevitable consequence of collapsing the high-dimensional space of liquid
states into a single dimension, but what is surprising is that the equivalence
classes are meaningful in terms of the task, allowing invariant and appro-
priately scaled readout responses and therefore real-time computation on
novel inputs. Furthermore, although the input rate may contain salient in-
formation that is constant for a particular readout element, it may not be for
another (see, for example, Figure 8), indicating that equivalence classes and
dynamic stability exist purely from the perspective of the readout elements.

10 Discussion

We introduce the LSM, a new paradigm for real-time computing on time-
varying input streams. In contrast to most other computational models, it
does not require the construction of a circuit or program for a specific com-
putational task. Rather, it relies on principles of high-dimensional dynam-
ical systems and learning theory that allow it to adapt unspecific evolved
or found recurrent circuitry for a given computational task. Since only the
readouts, not the recurrent circuit itself, have to be adapted for specific com-
putational tasks, the same recurrent circuit can support completely different
real-time computations in parallel. The underlying abstract computational
model of an LSM emphasizes the importance of perturbations in dynam-
ical systems for real-time computing, since even without stable states or
attractors, the separation property and the approximation property may
endow a dynamical system with virtually unlimited computational power
on time-varying inputs.
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In particular, we have demonstrated the computational universality of
generic recurrent circuits of I&F neurons (even with quite arbitrary connec-
tion structure) if viewed as special cases of LSMs. Apparently, this is the first
stable and generally applicable method for using generic recurrent networks
of I&F neurons to carry out a wide family of complex real-time computa-
tions on spike trains as inputs. Hence, this approach provides a platform
for exploring the computational role of specific aspects of biological neu-
ral microcircuits. The computer simulations reported in this article provide
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possible explanations not only for the computational role of the highly recur-
rent connectivity structure of neural circuits, but also for their characteristic
distribution of connection lengths, which places their connectivity struc-
ture between the extremes of strictly local connectivity (cellular automata or

Figure 8: Facing page. Multitasking in real time. Four input spike trains of length 2
sec (shown at the top) are injected into a liquid module consisting of two columns
(randomly constructed with the same parameters; see appendix B), which is con-
nected to multiple readout modules. Each readout module is trained to extract
information for a different real-time computing task. The target functions are
plotted as a dashed line and population response of the corresponding readout
module as a solid line. The tasks assigned to the six readout modules were the
following: Represent the sum of rates: at time t, output the sum of firing rates
of all four input spike trains within the last 30 ms. Represent the integral of the
sum of rates: at time t, output the total activity in all four inputs integrated over
the last 200 ms. Pattern detection: output a high value if a specific spatiotemporal
spike pattern appears. Represent a switch in spatial distribution of rates: output a
high value if a specific input pattern occurs where the rate of input spike trains
1 and 2 goes up and simultaneously the rate of input spike trains 3 and 4 goes
down; otherwise remain low. Represent the firing correlation: at time t, output
the number of spike coincidences (normalized into the range [0 1]) during the
last 75 ms for inputs 1 and 3 and separately for inputs 1 and 2. Target readout
values are plotted as dashed lines, actual outputs of the readout modules as
solid lines, all in the same timescale as the four spike trains shown at the top
that enter the liquid circuit during this 2 sec time interval.

Results shown are for a novel input that was not drawn from the same dis-
tribution as the training examples; 150 training examples were drawn randomly
from the following distribution. Each input spike train was an independently
drawn Possion spike train with a time-varying rate of r(t) = A+B sin(2π ft+α).
The parameters A, B, and f were drawn randomly from the following intervals
(the phase was fixed at (α = 0 deg): A [0 Hz, 30 Hz] and [70 Hz, 100 Hz], B
[0Hz, 30 Hz] and [70 Hz, 100 Hz], f [0.5 Hz, 1 Hz] and [3 Hz, 5 Hz]. On this
background activity, four different patterns had been superimposed (always in
the same order during training): rate switch to inputs 1 and 3, a burst pattern,
rate switch to inputs 1 and 2, and a spatiotemporal spike pattern.

The results shown are for a test input that could not be generated by the

same distribution as the training examples because its base level (A = 50 Hz),

as well as the amplitude (B = 50 Hz), frequency ( f = 2 Hz) and phase (α = 180

deg) of the underlying time-varying firing rate of the Poisson input spike trains,

were chosen to lie in the middle of the gaps between the two intervals used for

these parameters during training. Furthermore, the spatiotemporal patterns (a

burst pattern, rate switch to inputs 1 and 3, and rate switch to inputs 1 and 2),

which were superimposed to achieve more input variation within the observed

2 sec, never occurred in this order and at these time points for any training input.

Hence, the accurate performance for this novel input demonstrates substantial

generalization capabilities of the readouts after training.
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coupled map lattices) and uniform global connectivity (Hopfield nets) that
are usually addressed in theoretical studies. Furthermore, our computer
simulations suggest an important computational role of dynamic synapses
for real-time computing on time-varying inputs. Finally, we reveal a most
unexpected and remarkable principle: readout elements can establish their
own equivalence relationships on high-dimensional transient states of a
dynamical system, making it possible to generate stable and appropriately
scaled output responses even if the internal state never converges to an
attractor state.

In contrast to virtually all computational models from computer science
or artificial neural networks, this computational model is enhanced rather
than hampered by the presence of diverse computational units. Hence, it
may also provide insight into the computational role of the complexity and
diversity of neurons and synapses (see, e.g., Gupta et al., 2000).

While there are many plausible models for spatial aspects of neural com-
putation, a biologically realistic framework for modeling temporal aspects
of neural computation has been missing. In contrast to models inspired by
computer science, the LSM does not try to reduce these temporal aspects
to transitions between stable states or limit cycles, and it does not require
delay lines or buffers. Instead, it proposes that the trajectory of internal
states of a recurrent neural circuit provides a raw, unbiased, and universal
source of temporally integrated information, from which specific readout
elements can extract specific information about past inputs for their indi-
vidual task. Hence, the notorious trial-to-trial stimulus response variations
in single and populations of neurons observed experimentally may reflect
an accumulation of information from previous inputs in the trajectory of in-
ternal states rather than noise (see also Arieli, Sterkin, Grinvald, & Aertsen,
1996). This would imply that averaging over trials or binning peels out most
of the information processed by recurrent microcircuits and leaves mostly
topographic information.

This approach also offers new ideas for models of the computational
organization of cognition. It suggests that it may not be necessary to scat-
ter all information about sensory input by recoding it through feedforward
processing as output vector of an ensemble of feature detectors with fixed
receptive fields (thereby creating the “binding problem”). It proposes that
at the same time, more global information about preceding inputs can be
preserved in the trajectories of very high-dimensional dynamical systems,
from which multiple readout modules extract and combine the information
needed for their specific tasks. This approach is nevertheless compatible
with experimental data that confirm the existence of special maps of feature
detectors. These could reflect specific readouts, but also specialized compo-
nents of a liquid circuit, that have been optimized genetically and through
development to enhance the separation property of a neural microcircuit for
a particular input distribution. The new conceptual framework presented
in this article suggests complementing the experimental investigation of
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Figure 9: Readout assigned equivalent states of a dynamical system. An LSM
(liquid circuit as in Figure 3) was trained for the classification task as described
in Figure 3. Results shown are for a novel test input (drawn from the same
distribution as the training examples). (A) The test input consists of 40 Poisson
spike trains, each with a constant rate of 5 Hz. (B) Raster plot of the 135 liquid
neurons in response to this input. Note the large variety of liquid states that arise
during this time period. (C) Population rate of the liquid (bin size 20 ms). Note
that this population rate changes quite a bit over time. (D) Readout response
(solid line) and target response (dashed line). The target response had a constant
value of 1 for this input. The output of the trained readout module is also almost
constant for this test example (except for the beginning), although its input, the
liquid states of the recurrent circuit, varied quit a bit during this time period.
(E) Weight distribution of a single readout neuron.
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neural coding by a systematic investigation of the trajectories of internal
states of neural microcircuits or systems, which are compared on one hand
with inputs to the circuit and on the other hand with responses of different
readout projections.

The liquid computing framework suggests that recurrent neural micro-
circuits, rather than individual neurons, might be viewed as basic compu-
tational units of cortical computation and therefore may give rise to a new
generation of cortical models that link LSM “columns” to form cortical areas
where neighboring columns read out different aspects of another column
and each of the stereotypic columns serves both liquid and readout func-
tions. In fact, the classification of neurons into liquid and readout neurons is
primarily made for conceptual reasons. Another conceptual simplification
was made by restricting plasticity to synapses onto readout neurons. How-
ever, synapses in the liquid circuit are also likely to be plastic, for example,
to support the extraction of independent components of information about
preceding time-varying inputs for a particular distribution of natural stim-
uli and thereby enhance the separation property of neural microcircuits.
This plasticity within the liquid would be input driven and less task spe-
cific and might be most prominent during development of an organism.
In addition, the information processing capabilities of hierarchies or other
structured networks of LSMs remain to be explored, which may provide a
basis for modeling larger cortical areas.

Apart from biological modeling, the computational model discussed in
this article may also be of interest for some areas of computer science. In
computer applications where real-time processing of complex input streams
is required, such as in robotics, there is no need to work with complicated
heterogeneous recurrent networks of I&F neurons as in biological modeling.
Instead, one can use simple devices such as tapped delay lines for storing
information about past inputs. Furthermore, one can use any one of a large
selection of powerful tools for static pattern recognition (such as feedfor-
ward neural networks, support vector machines, or decision trees) to extract
from the current content of such tapped delay line information about a pre-
ceding input time series, in order to predict that time series, classify that
time series, or propose actions based on that time series. This works fine
except that one has to deal with the problems caused by local minima in the
error functions of such highly nonlinear pattern recognition devices, which
may result in slow learning and suboptimal generalization. In general, the
escape from such local minima requires further training examples or time-
consuming off-line computations, such as repetition of backpropagation for
many different initial weights or the solution of a quadratic optimization
problem in the case of support vector machines. Hence, these approaches
tend to be incompatible with real-time requirements, where a classification
or prediction of the past input time series is needed instantly. Furthermore,
these standard approaches provide no support for multitasking, since one
has to run for each individual classification or prediction task a separate
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copy of the time-consuming pattern recognition algorithm. In contrast, the
alternative computational paradigm discussed in this article suggests re-
placing the tapped delay line by a nonlinear on-line projection of the input
time series into a high-dimensional space, in combination with linear read-
outs from that high-dimensional intermediate space. The nonlinear on-line
preprocessing could even be implemented by inexpensive (even partially
faulty) analog circuitry, since the details of this on-line preprocessing do
not matter as long as the separation property is satisfied for all relevant
inputs. If this task-independent on-line preprocessing maps input streams
into a sufficiently high-dimensional space, all subsequent linear pattern
recognition devices, such as perceptrons, receive essentially the same clas-
sification and regression capability for the time-varying inputs to the system
as nonlinear classifiers without preprocessing. The training of such linear
readouts has an important advantage compared with training nonlinear
readouts. While the error minimization for a nonlinear readout is likely to
get stuck in local minima, the sum of squared errors for a linear readout has
just a single local minimum, which is automatically the global minimum
of this error function. Furthermore, the weights of linear readouts can be
adapted in an on-line manner by very simple local learning rules so that
the weight vector moves toward this global minimum. Related mathemat-
ical facts are exploited by support vector machines in machine learning
(Vapnik, 1998), although the boosting of the expressive power of linear
readouts is implemented there in a different fashion that is not suitable for
real-time computing.

Finally, the new approach to real-time neural computation presented
in this article may provide new ideas for neuromorphic engineering and
analog VLSI. Besides implementing recurrent circuits of spiking neurons in
silicon, one could examine a wide variety of other materials and circuits that
may enable inexpensive implementation of liquid modules with suitable
separation properties, to which a variety of simple adaptive readout devices
may be attached to execute multiple tasks.

Appendix A: Mathematical Theory

We say that a class CB of filters has the point-wise separation property with
regard to input functions from Un if for any two functions u(·), v(·) ∈ Un with
u(s) = v(s) for some s ≤ 0 there exists some filter B ∈ CB that separates u(·)

and v(·), that is, (Bu)(0) = (Bv)(0). Note that it is not required that there exists
a filter B ∈ CB with (Bu)(0) = (Bv)(0) for any two functions u(·), v(·) ∈ Un

with u(s) = v(s) for some s ≤ 0. Simple examples for classes CB of filters
that have this property are the class of all delay filters u(·) �→ ut0(·) (for
t0 ∈ R), the class of all linear filters with impulse responses of the form
h(t) = e−at with a > 0, and the class of filters defined by standard models
for dynamic synapses (see Maass & Sontag, 2000). A liquid filter LM of an
LSM M is said to be composed of filters from CB if there are finitely many
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filters B1, . . . , Bm in CB, to which we refer as basis filters in this context, so
that (LMu)(t) = 〈(B1u)(t), . . . , (Bmu)(t)〉 for all t ∈ R and all input functions
u(·) in Un. In other words, the output of LM for a particular input u is
simply the vector of outputs given by these finitely many basis filters for this
input u.

A class CF of functions has the approximation property if for any m ∈

N, any compact (i.e., closed and bounded) set X ⊆ Rm, any continuous
function h: X → R, and any given ρ > 0, there exists some f in CF so that
|h(x) − f (x)| ≤ ρ for all x ∈ X. The definition for the case of functions with
multidimensional output is analogous.

Theorem 1. Consider a space Un of input functions where U = {u: R →

[−B, B]: |u(t) − u(s)| ≤ B′ · |t − s| for all t, s ∈ R} for some B, B′ > 0 (thus, U
is a class of uniformly bounded and Lipschitz-continuous functions). Assume that
CB is some arbitrary class of time-invariant filters with fading memory that has
the point-wise separation property. Furthermore, assume that CF is some arbitrary
class of functions that satisfies the approximation property. Then any given time-
invariant filter F that has fading memory can be approximated by LSMs with liquid
filters LM composed from basis filters in CB and readout maps f M chosen from CF.
More precisely, for every ε > 0, there exist m ∈ N, B1, . . . , Bm ∈ CB and f M ∈ CF
so that the output y(·) of the LSM M with liquid filter LM composed of B1, . . . , Bm,
that is, (LMu)(t) = 〈(B1u)(t), . . . , (Bmu)(t)〉, and readout map f M satisfies for all
u(·) ∈ Un and all t ∈ R‖(Fu)(t) − y(t)‖ ≤ ε.

The proof of this theorem follows from the Stone-Weierstrass approxi-
mation theorem, like the proof of theorem 1 in Boyd and Chua (1985). One
can easily show that the inverse of theorem 1 also holds: if the functions in
CF are continuous, then any filter F that can be approximated by the LSMs
considered in theorem 1 is time invariant and has fading memory. In com-
bination with theorem 1, this provides a complete characterization of the
computational power of LSMs.

In order to extend theorem 1 to the case where the inputs are finite or
infinite spike trains rather than continuous functions of time, one needs to
consider an appropriate notion of fading memory for filters on spike trains.
The traditional definition, given in note 4, is not suitable for the following
reason. If u(·) and v(·) are functions with values in {0, 1} that represent spike
trains and if δ ≤ 1, then the condition ‖u(t)−v(t)‖ < δ is too strong. It would
require that u(t) = v(t). Hence, we define for the case where the domain U
consists of spike trains (i.e., 0−1 valued functions) that a filter F: Un → (RR)k

has fading memory on spike trains if for every u = 〈u1, . . . , un〉 ∈ Un and
every ε > 0 there exist δ > 0 and m ∈ N so that ‖(Fv)(0) − (Fu)(0)‖ < ε

for all v = 〈v1, . . . , vn〉 ∈ Un with the property that for i = 1, . . . , n the last
m spikes in vi (before time 0) each have a distance of at most δ from the
corresponding ones among the last m spikes in ui. Intuitively, this says that
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a filter has fading memory on spike trains if the most significant bits of the
filter output can already be determined from the approximate times of the
last few spikes in the input spike train. For this notion of fading memory
on spike trains, one can prove:

Theorem 2. Consider the space Un of input functions where U is the class of
spike trains with some minimal distance � between successive spikes (e.g., � = 1
ms). Assume that CB is some arbitrary class of time-invariant filters with fading
memory on spike trains that has the point-wise separation property. Furthermore,
assume that CF is some arbitrary class of functions that satisfies the approximation
property. Then any given time-invariant filter F that has fading memory on spike
trains can be approximated by LSMs with liquid filters LM composed from basis
filters in CB and readout maps f M chosen from CF.

The proof for theorem 2 is obtained by showing that for all filters F,
fading memory on spike trains is equivalent to continuity with regard to
a suitable metric on spike trains that turns the domain of spike trains into
a compact metric space. Hence, one can also apply the Stone-Weierstrass
approximation theorem to this case of computations on spike trains.

Appendix B: Details of the Computer Simulation

We used a randomly connected circuit consisting of 135 I&F neurons, 20% of
which were randomly chosen to be inhibitory, as a single “column” of neu-
ral circuitry (Tsodyks, Uziel, & Markram, 2000). Neuron parameters were
membrane time constant 30 ms, absolute refractory period 3 ms (excitatory
neurons), 2 ms (inhibitory neurons), threshold 15 mV (for a resting mem-
brane potential assumed to be 0), reset voltage 13.5 mV, constant nonspecific
background current Ib = 13.5 nA, and input resistance 1 M�.

Regarding connectivity structure, the probability of a synaptic connec-
tion from neuron a to neuron b (as well as that of a synaptic connection from

neuron b to neuron a) was defined as C · e−(D(a,b)/λ)2
, where λ is a parameter

that controls both the average number of connections and the average dis-
tance between neurons that are synaptically connected. We assumed that
the 135 neurons were located on the integer points of a 15 × 3 × 3 column
in space, where D(a, b) is the Euclidean distance between neurons a and
b. Depending on whether a and b were excitatory (E) or inhibitory (I), the
value of C was 0.3 (EE), 0.2 (EI), 0.4 (IE), 0.1 (II).

In the case of a synaptic connection from a to b, we modeled the synap-
tic dynamics according to the model proposed in Markram, Wang, and
Tsodyks (1998), with the synaptic parameters U (use), D (time constant for
depression), and F (time constant for facilitation) randomly chosen from
gaussian distributions that were based on empirically found data for such
connections. Depending on whether a, b were excitatory (E) or inhibitory
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(I), the mean values of these three parameters (with D, F expressed in sec-
ond, s) were chosen to be .5, 1.1, .05 (EE), .05, .125, 1.2 (EI), .25, .7, .02 (IE),
.32, .144, and .06 (II). The SD of each parameter was chosen to be 50% of
its mean (with negative values replaced by values chosen from an appro-
priate uniform distribution). The mean of the scaling parameter A (in nA)
was chosen to be 30 (EE), 60 (EI), −19 (IE), and −19 (II). In the case of in-
put synapses, the parameter A had a value of 18 nA if projecting onto an
excitatory neuron and 9.0 nA if projecting onto an inhibitory neuron. The
SD of the A parameter was chosen to be 100% of its mean and was drawn
from a gamma distribution. The postsynaptic current was modeled as an
exponential decay exp(−t/τs) with τs = 3 ms (τs = 6 ms) for excitatory (in-
hibitory) synapses. The transmission delays between liquid neurons were
chosen uniformly to be 1.5 ms (EE), and 0.8 for the other connections. For
each simulation, the initial conditions of each leaky I&F neuron, that is, the
membrane voltage at time t = 0, were drawn randomly (uniform distribu-
tion) from the interval [13.5 mV, 15.0 mV]. Together with the spike time jitter
in the input, these randomly drawn initial conditions served as implemen-
tation of noise in our simulations (in order to test the noise robustness of
our approach).

Readout elements used in the simulations of Figures 3, 8, and 9 were made
of 51 I&F neurons (unconnected). A variation of the perceptron learning rule
(the delta rule; see Hertz, Krogh, & Palmer, 1991) was applied to scale the
synapses of these readout neurons: the p-delta rule discussed in Auer et
al. (2001). The p-delta rule is a generalization of the delta rule that trains a
population of perceptrons to adopt a given population response (in terms
of the number of perceptrons that are above threshold), requiring very little
overhead communication. This rule, which formally requires adjusting the
weights and the threshold of perceptrons, was applied in such a manner
that the background current of an I&F neuron is adjusted instead of the
threshold of a perceptron (while the firing threshold was kept constant at
15 mV). In Figures 8 and 9, the readout neurons are not fully modeled as
I&F neurons, but just as perceptrons (with a low-pass filter in front that trans-
forms synaptic currents into postsynaptic potentials, time constant 30 ms),
in order to save computation time. In this case, the “membrane potential”
of each perceptron is checked every 20 ms, and it is said to “fire” at this time
point if this “membrane potential” is currently above the 15 mV threshold.
No refractory effects are modeled and no reset after firing. The percentage
of readout neurons that fire during a 20 ms time bin is interpreted as the
current output of this readout module (assuming values in [0 , 1] ).

In the simulations for Figures 5, 6, and 7, we used just single percep-
trons as readout elements. The weights of such a single perceptron have
been trained using standard linear regression: the target value for the linear
regression problem was +1(−1) if the perceptron output 1(0) for the given
input. The output of the perceptron after learning was 1(0) if the weighted
sum of inputs was ≥ 0(< 0).
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