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1. Introduction 

Concurrency control is one of the main issues in the studies of real-time database systems. 

On the one hand, it is related closely to active real-time database and real-time application. 

Concurrency control algorithm seriously affect the performance of the system in real-time, 

may cause unpredictable consequences. On the other hand, updating data in active real-time 

database may trigger a new transaction and to further increase the difficulty of the 

concurrency control. How ensures both the consistency of the database and the finish of the 

transactions before deadline; it is an important problem to the concurrency control research 

in the active real-time database systems. In the most literature, the existing research more 

focuses on the transactions deadline and lack of attention the data temporal constraint. This 

is mainly due to the real-time data is obtained dynamically by sensors in real-time database, 

and the transactions of real-time databases read the sensor data only, do not write the sensor 

data. But the real-time data may miss deadline and become invalid before transaction which 

reads it committed, most concurrency control algorithms are regardless of the sensor data 

deadline and its invalid effect to systems. This chapter will further discuss the concurrency 

control method that transactions access real-time sensor data.  

Optimism concurrency control method is widely used in real-time database due to no dead-

lock and no-block characteristics, but delay conflicts detection brings with great restart 

overhead. A dynamic adjustment serialization order method is proposed to reduce 

unnecessary affairs restart number [Haritsa, Lindstrom], according to [Lindstrom, Wang] a 

method is proposed by control the reading and writing data to reduce the transaction restart 

number. In [Brad] discussed about the relation between real-time data and the derived data 

validity, and [Kuo] proposed the concept of real-time data similarity. According to [Brad, 

Xiong] proposed the concept of data-deadline, and the transaction scheduling strategy by 

using mandatory waiting method. The [Liu] also discuss on data deadline and transaction 

scheduling. A real-time transaction scheduling method is proposed based on the 

combination of [Kuo, Son] improving real-time data similarity mechanism in [Xiong]. But 

[Xiong, Son] only take account of single transaction scheduling the real data problems, not 

consider the concurrency control problem that the transactions did not arrive at deadline 

and its accessed data expired, which will increase the number of transactions restart.  
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The chapter is organized as follows. Section 2 reviews concurrency control protocols 
proposed in real-time database systems (RTDBSs) and describes our choice of concurrency 
control algorithms for accessing temporal data. Section 3 analyzes the validity of active real-
time system model and the effects real-time data to the concurrent control. The relevant 
definition and the effective examination mechanism of transaction reading data were given 
in Section 4. In Section 5 based on Data temporal characteristics, concurrency control 
algorithm RTCC-DD (Real-time Concurrency Control Algorithm Based on Data-deadline) is 
put forward, and proved that the RTCC-DD was the correctness in theory. Section 6 carries 
on the analysis comparison between our proposed method and the existed method through 
experiment. Finally, Section 7 gives summary and conclusions of this chapter and future 
directions for the work.  

2. Concurrency control in Real-Time Database Systems 

A Real-Time Database Systems (RTDBS) processes transactions with timing constraints such 
as deadlines [Ramamritham]. Its primary performance criterion is timeliness, not average 
response time or throughput. The scheduling of transactions is driven by priority order. 
Given these challenges, considerable research has recently been devoted to designing 
concurrency control methods for RTDBSs and to evaluating their performance (e. g. [Kuo, 
Fishwick, Haritsa]). Most of these methods are based on one of the two basic concurrency 
control mechanisms: locking [Lam] or optimistic concurrency control (OCC) [Kung].  

In real-time systems transactions are scheduled according to their priorities. Therefore, high 
priority transactions are executed before lower priority transactions. This is true only if a 
high priority transaction has some database operation ready for execution. If no operation 
from a higher priority transaction is ready for execution, then an operation from a lower 
priority transaction is allowed to execute its database operation. Therefore, the operation of 
the higher priority transaction may conflict with the already executed operation of the lower 
priority transaction. In traditional methods a higher priority transaction must wait for the 
release of the resource. This is the priority inversion problem presented earlier. Therefore, 
data conflicts in concurrency control should also be based on transaction priorities or 
criticalness or both. Hence, numerous traditional concurrency control methods have been 
extended to the real-time database systems. In the following sections recent and related 
work in this area is presented.  

2.1 Locking-based algorithms 

In classical two-phase locking protocol, transactions set read locks on objects that they read, 
and these locks are later upgraded to write locks for the data objects that are updated. If a 
lock requested is denied, the requesting transaction is blocked until the lock is released. 
Read locks Call be shared. while write locks are exclusive.  

For real-time database Systems, two-phase locking needs to be augmented with a priority 
based conflict resolution scheme to ensure that higher priority transactions are not delayed 
by lower priority transactions. In High Priority scheme, all data conflicts are resolved in 
favour of the transaction with the higher priority. When a transaction requests a lock on an 
object held by other transactions in a conflicting lock mode, if the requester's priority is 
higher than that of all the lock holders, the holders are restarted and the requester is granted 

www.intechopen.com



 
Real-Time Concurrency Control Protocol Based on Accessing Temporal Data 

 

175 

the lock; if the requester's priority is lower, it waits for the lock holders to release the lock. In 
addition, a new read lock requester can join a group of read lock holders only if its priority 
is higher than that of all waiting write lock operations. This protocol is referred to as 2PL-
HP. It is important to note that 2PL-HP loses some of the basic 2PL algorithm's blocking 
factor due to the partially restart-based nature of the High Priority scheme.  

Note that High Priority scheme is similar to Wound-Wait scheme, which is added to two-

phase locking for deadlock prevention. The only difference is that High Priority scheme uses 

priority order decided by transaction timing constraints for conflict resolution decisions, 

while Wound-Wait employs timestamp order usually decided by transaction arrival time. It 

is obvious that High Priority serves as a deadlock prevention mechanism, if the priority 

assignment mechanism assigns unique priority value to a transaction and does not 

dynamically change the relative priority ordering of concurrent transactions. Also, note that 

2PL-HP is free from priority inversion problem, because a higher priority transaction never 

waits for a lower priority transaction, but restarts it.  

In 2PL-WP (2PL Wait Promote) [Huang] the analysis of concurrency control method is 

enhanced from [Lindstrom]. The mechanism presented uses shared and exclusive locks. 

Shared locks permit multiple concurrent readers. A new definition is made – the priority of 

a data object, which is defined to be the highest priority of all the transactions holding a lock 

on the data object. If the data object is not locked, its priority is undefined.  

A transaction can join in the read group of an object only if its priority is higher than the 

maximum priority of all transactions in the write group of an object. Thus, conflicts arise 

from incompatibility of locking modes as usual. Particular care is given to conflicts that lead 

to priority inversions. A priority inversion occurs when a transaction of high priority 

requests and blocks for an object which has lesser priority. This means that all the lock 

holders have lesser priority than the requesting transaction. This same method is also called 

2PL-PI (2PL Priority Inheritance) [Stankovic].  

Sometimes High Priority may be too strict policy. If the lock holding transaction Th can 

finish in the time that the lock requesting transaction Th can afford to wait, that is within the 

slack time of Tr, and let Th proceed to execution and Tr B wait for the completion of Th. This 

policy is called 2PL-CR (2PL Conditional Restart) or 2PL-CPI (2PL Conditional Priority 

Inheritance) [Lam, Menasce].  

In Priority Ceiling Protocol [Sha] the aim is to minimize the duration of blocking to at most 
one elementary lower priority task and prevent the formation of deadlocks. A real-time 
database can often be decomposed into sets of database objects that can be modelled as 
atomic data sets. For example, two radar stations track an aircraft representing the local 
view in data objects O1 and O2. These objects might include e. g. the current location, 
velocity, etc. Each of these objects forms an atomic data set, because the consistency 
constraints can be checked and validated locally. The notion of atomic data sets is especially 
useful for tracking multiple targets.  

A simple locking method for elementary transactions is the two-phase locking method; a 
transaction cannot release any lock on any atomic data set unless it has obtained all the locks 
on that atomic data set. Once it has released its locks it cannot obtain new locks on the same 
atomic data set, however, it can obtain new locks on different data sets. The theory of 
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modular concurrency control permits an elementary transaction to hold locks across atomic 
data sets. This increases the duration of locking and decreases preemptibility. In this study 
transactions do not hold locks across atomic data sets.  

Priority Ceiling Protocol minimizes the duration of blocking to at most one elementary 
lower priority task and prevents the formation of deadlocks. The idea is that when a new 
higher priority transaction preempts a running transaction its priority must exceed the 
priorities of all preempted transactions, taking the priority inheritance protocol into 
consideration. If this condition cannot be met, the new transaction is suspended and the 
blocking transaction inherits the priority of the highest transaction it blocks.  

The priority ceiling of a data object is the priority of the highest priority transaction that may 
lock this object [Sha, Rajkumar, Son]. A new transaction can preempt a lock-holding 
transaction only if its priority is higher than the priority ceilings of all the data objects locked 
by the lock-holding transaction. If this condition is not satisfied, the new transaction will 
wait and the lock-holding transaction inherits the priority of the highest transaction that it 
blocks. The lock-holder continues its execution, and when it releases the locks, its original 
priority is resumed. All blocked transactions are alerted, and the one with the highest 
priority will start its execution.  

The fact that the priority of the new lock-requesting transaction must be higher than the 
priority ceiling of all the data objects that it accesses, prevents the formation of a potential 
deadlock. The fact that the lock-requesting transaction is blocked only at most the execution 
time of one lower priority transaction guarantees, the formation of blocking chains is not 
possible [Sha, Rajkumar, Son].  

The Priority Ceiling Protocol is further worked out in [Sha, Rajkumar, Son], where the 
Read/Write Priority Ceiling Protocol is introduced. It contains two basic ideas. The first idea 
is the notion of priority inheritance. The second idea is a total priority ordering of active 
transactions. A transaction is said to be active if it has started but not completed its 
execution. Thus, a transaction can execute or wait caused by preemption in the middle of its 
execution. Total priority ordering requires that each active transaction execute at a higher 
priority level than the active lower priority transaction, taking priority inheritance and 
read/write semantics into consideration.  

A protocol called Real-Time Locking (RTL) that uses locking and dynamic adjustment of 
serialization order for priority conflict resolution was proposed. The basic idea of 
serialization order adjustment is to delay the decision of final serialization order among 
transactions, and to adjust the temporary serialization order dynamically in favour of 
transactions with high priority. Thus, this scheme can avoid blocking and aborts resulting 
from a mismatch between serialization order and priority order of transactions. In order to 
implement the dynamic adjustment of serialization order, in RTL, the execution of a 
transaction is phase-wise as in OCC. In the first phase called read phase, a transaction reads 
from database and writes to its local workspace as in OCC. However, unlike OCC where 
conflicts are resolved only in the validation phase, RTL resolves conflicts in the read phase 
using transaction priority. In the write phase of RTL, the final serialization order is 
determined, and updates are made permanent to the database. The use of the phase-
dependent control and local workspace for transactions also provides potential for a high 
degree of concurrency.  
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2.2 Optimistic Concurrency Control-based algorithms 

Optimistic Concurrency Control (OCC), is based on the assumption that conflict is rare, and 

that it is more efficient to allow transactions to proceed without delays to ensure 

serializability. When a transaction wishes to commit, a check is performed to determine 

whether a conflict has occurred. There are three phases to an optimistic concurrency control 

method: 

• Read phase: The transaction reads the values of all data items it needs from the 
database and stores them in local variables. In some methods updates are applied to a 
local copy of the data and announced to the database system by an operation named 
pre-write.  

• Validation phase: The validation phase ensures that all the committed transactions have 
executed in a serializable fashion. For a read-only transaction, this consists of checking 
that the data values read are still the current values for the corresponding data items. 
For a transaction that has updates, the validation consists of determining whether the 
current transaction leaves the database in a consistent state, with serializability 
maintained.  

• Write phase: This follows the successful validation phase for update transactions. 
During the write phase, all changes made by the transaction are permanently stored 
into the database.  

In optimistic concurrency control, transactions are allowed to execute unhindered until they 

reach their commit point, at which time they are validated. Thus, the execution of a 

transaction consists of three phases: read, validation, and write. The key component among 

these is the validation phase where a transaction’s destiny is decided. Validation comes in 

several flavours, but it can carry out basically in either of two ways: backward validation 

and forward validation. While in backward scheme, the validation process is done against 

committed transactions, in forward validation, validating of a transaction is carried out 

against currently running transactions.  

As explained above, in RTDBSs, data conflicts should be resolved in favor of higher priority 

transactions. In backward validation, however, there is no way to take transaction priority 

into account in serialization process, since it is carried out against already committed 

transactions. Thus backward scheme is not applicable to real-time database systems. 

Forward validation provides flexibility for conflict resolution such that either the validating 

transaction or the conflicting active transactions may be chosen to restart, so it is preferable 

for real-time database systems. In addition, forward scheme generally detects and resolves 

data conflicts earlier than backward validation, and hence it wastes less resources and time.  

All the optimistic algorithms used in the previous studies of real-time concurrency control 

in [Haritsa] are based on the forward validation. The broadcast mechanism in the algorithm, 

OPT-BC used in [Haritsa] is an implementation variant of the forward validation. We refer 

to the optimistic algorithm using forward validation as OCC-FV.  

A point to note is that unlike 2PL-HP, OCC-FV does not use any transaction priority 
information in resolving data conflicts. Thus, under OCC-FV, a transaction with a higher 
priority may need to restart due to a committing transaction with a lower priority. Several 
methods to incorporate priority information into OCC-FV were proposed and studied in 
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[Lindstrom] using priority-driven wait or abort mechanism. However, more work is needed 
to ensure if these methods have any significant impact on improving OCC-FV performance, 
because the effect of increased waiting time or increased number of aborts in these methods 
may overshadow the performance gain due to the preferential treatment of transactions.  

In the OPT-SACRIFICE [Haritsa] method, when a transaction reaches its validation stage, it 

checks for conflicts with other concurrently running transactions. If conflicts are detected 

and at least one of the conflicting transactions has a higher priority, then the validating 

transaction is restarted, i. e. sacrificed in favour of the higher priority transaction. Although 

this method prefers high priority transactions, it has two potential problems. First, if a 

higher priority transaction causes a lower priority transaction to be restarted, but fails in 

meeting its deadline, the restart was useless. This degrades the performance. Second, if 

priority fluctuations are allowed, there may be the mutual restarts problem between a pair 

of transactions. These two drawbacks are analogous to those in the 2PL-HP method [Lee].  

When a transaction reaches its validation stage, it checks if any of the concurrently running 

other transactions have a higher priority. In the OPT-WAIT [Lee] case the validating 

transaction is made to wait, giving the higher priority transactions a chance to make their 

deadlines first. While a transaction is waiting, it is possible that it will be restarted due to the 

commit of one of the higher priority transactions. Note that the waiting transaction does not 

necessarily have to be restarted. Under the broadcast commit scheme a validating 

transaction is said to conflict with another transaction, if the intersection of the write set of 

the validating transaction and the read set of the conflicting transaction is not empty. This 

result does not imply that the intersection of the write set of the conflicting transaction and 

the read set of the validating transaction is not empty either [Lee].  

The WAIT-50 method is an extension of the OPT-WAIT - it contains the priority wait 

mechanism from OPT-WAIT method and a wait control mechanism. This mechanism 

monitors transaction conflict states and dynamically decides when and for how long a low 

priority transaction should be made to wait for the higher priority transactions. In WAIT-50, 

a simple 50 percent rule is used - a validating transaction is made to wait while half or more 

of its conflict set is composed of transactions with higher priority. The aim of the wait 

control mechanism is to detect when the beneficial effects of waiting are outweighed by its 

drawbacks [Lee].  

We can view OPT-BC, OPT-WAIT and WAIT-50 as being special cases of a general WAITX 

method, where X is the cut-off percentage of the conflict set composed of higher priority 

transactions. For these methods X takes the values infinite, 0 and 50 respectively.  

In [Lee and Son] a lock based WAIT-50 concurrency control method, OCCL-PW, is 

presented. The physical implementation of this method uses locks. If the priority of the 

validating transaction is not highest among the conflicting transactions, the validating 

transaction waits if at least 50% of the conflicting transactions have higher priority.  

The OCC-TI method resolves conflicts using the timestamp intervals of the transactions. 

Every transaction must be executed within a specific time slot. When an access conflict 

occurs, it is resolved using the read and write sets of the transaction together with the 

allocated time slot. Time slots are adjusted when a transaction commits.  
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In this method, every transaction in the read phase is assigned a timestamp interval (TI). 

This timestamp interval is used to record a temporary serialization order during the 

execution of the transaction. At the start of the execution, the timestamp interval of the 

transaction is initialized as [0, ∞], i. e., the entire range of timestamp space. Whenever the 

serialization order of the transaction is changed by its data operation or the validation of 

other transactions, its timestamp interval is adjusted to represent the dependencies.  

OCC-DA is based on the Forward Validation scheme. The number of transaction restarts is 

reduced by using dynamic adjustment of the serialization order. This is supported with the 

use of a dynamic timestamp assignment scheme. Conflict checking is performed at the 

validation phase of a transaction. No adjustment of the timestamps is necessary in case of 

data conflicts in the read phase. In OCC-DA the serialization order of committed 

transactions may be different from their commit order.  

A new optimistic concurrency control method, called OCC-DATI (Optimistic Concurrency 

Control with Dynamic Adjustment of Serialization Order using Timestamp Intervals), is 

proposed to reduce the number of transaction restarts in [Lindstrom], which uses 

information about the criticality of the transactions in the conflict resolution. The main idea 

behind this method is to offer better chances for critical transactions to complete according 

to their deadlines. This is achieved restarting transaction with lower criticality if the critical 

transaction should be restarted because of a data conflict. The proposed method is 

demonstrated to produce the correct results and the feasibility of the proposed method in 

practice is tested.  

3. System model and real-time data 

3.1 System model  

Active real-time database consists of a set of objects and ECA (Event-Condition-Action) rule. 

Each object represents a real world entity; the status of entity is usually monitored by 

sensors. The entire data object is divided into two categories in database: 

1. temporal objects and non-temporal objects 

The temporal object is possible to be invalid for expired temporal validity; it can be divided 

into the absolute validity and the relative validity. Non-temporal object have not temporal 

validity. Temporal object absolute validity expresses as (value (Xi) , avi (Xi) ) , value (Xi) 

describes the current status of data object X, avi(Xi)＝[avib(Xi), avie(Xi)], avib(Xi)≤avie(Xi) is 

the absolute validity of value (Xi), Xi shows the ith versions of data objects X, avib(Xi) 

denotes the beginning of the absolute validity of Xi , avie(Xi) denotes the end of the absolute 

validity of Xi , after avie(Xi), value (Xi) is effective no longer.  

Temporal object relative validity denotes rvi(R), R is relatively consistent set, each element is 

the version temporal data objects. When t>0, R is correct status, if and only if 

- Xi∈R, value(Xi)is logical consistent, satisfying all the integrity constraints 
- R is temporal consistent:  
i. Xi∈R, value(Xi) is absolute consistent, avib(Xi) ≤ t ≤ avie(Xi).  
ii. R is relatively consistent, Xi, Yj∈R, |avib(Xi)-avib(Yj)| ≤ rvi(R).  
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2. the basic objects and derived objects 

The basic objects update the database by the sensor and reflect specific entity in the real 
environment. Derived objects are composed by the new derived data from basic object and 
others. In Active real-time database, it can trigger transactions according to ECA rules when 
basic object is updated by sensor. Triggered transactions may update the status from the 
basic derived objects. In this chapter, the basic object take need scheduling strategy, until 
transactions need call, it was called by sensor. Transactions T call temporal data X at time t, 
absolute validity for the start time is t.  

Active real-time database system had sensor transaction, which are used to update basic 
objects, only writing transaction; triggered updating transaction, which are updated and 
triggered transaction by the basic objects, and used to update derived object; user 
transaction, which have user transactions of the deadline. When transaction satisfies only 
the following conditions in system, it commits successfully: 

1. Transaction is consistent logically.  
2. Transaction satisfies the deadline.  
3. The data that transaction read is temporal consistent, and the data still effective when 

the transaction read it commits.  

3.2 Real-time data  

In [Kuo, Mok], relative sensor transaction and trigger who used to update the derived object 
are discuss in detail, this chapter studies only concurrency control related users transaction, 
similar with [Liu, Son]. User transactions T have the following attributes: 

- a(T) : Arrival time of transaction T; 

- s(T) : Start time of transaction T; 

- d(T) : Deadline of transaction; 

- tdd (T) : Data-deadline of transaction T at time t; 

- L(T) : The number of data objects which transaction T access; 

- to
tL (T) : The number of temporal data objects that transaction T will access after time t; 

- nto
tL (T) : The number of non-temporal data objects that transaction T will access after 

time t; 
- tL (T) : The number of data objects which transaction T will access after time 

t; to nto
t t tL (T) L (T) L (T)= + ;  

- tE (T) : Estimated execution time of transaction T at time t; 

- tC (T) : Estimated finished time of transaction T at time t; 

- t tC (T) t E (T)= + ;  

- to
tRS (T) : Temporal data object sets which transaction T access at time t ; 

- tP (T) : The transaction priority at time t.  

In active real-time database, temporal data have lots of features; this section give only 
related properties which presented algorithm in this chapter. First of all, according to [Son] 
this article introduces the concept of the data-deadline.  
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Definition1. Data-deadline of transaction T is the minimum data time validity which 

transaction T access to the temporal data objects at time t, denote it as tdd (T) ,  

to
t

t e
X RS (T)

dd (T) min avi (X)
∈

=  

The temporal relationship between temporal data and transaction is presented by data-
deadline. The data-deadline increased the difficulty of transaction scheduling and 
concurrent control, because no achieving deadline to the transactions may restart or abort 
due to the data deadline. Example 1 shows that the data-deadline of transactions influences 
the concurrent control.  

Example 1. Transaction T1: w1(x)r1(y); T2:w2(y)r2(z). 

The deadline of transaction T1 is t7, and its estimated time of completion is t6. The deadline 

of transaction T2 is t8; and its estimated time of completion is t6. The validity of temporal 

data z is [t4, t6].  

As shown in Fig. 1, transaction T2 enter into validation phase at time t5, according to 

literature [Lindstrom, Wang], WS(Tv)∩RS(Ta)={y}≠Ø, transactions execution sequence is 

T1→T2, T2 will delay to submit. If transaction T1 submits after t6, transaction T2 will die for 

the temporal data z exceed deadline.  

 

Fig. 1. Execution of Transactions 

Do not consider real-time of data, we will succeed scheduling T1, T2 , according to the 

traditional optimistic method[Lindstrom]; But it increases the real-time nature of data, 

transaction T2 will die because it can't satisfy data-deadline. Example1 shows the temporal 

characteristics of the data influence the concurrency control, while the existing concurrency 

control method is no consideration to the conflict which access temporal data.  

In addition to data-deadline, there is another important characteristic is the stability of the 

data. Real-time data has different rate of change, some change frequently and others not. 

If |avie (X) －avib (X) | < k , we denoted temporal data as changeful, otherwise stable. 

According to the different time limit of transactions, the value k dynamic changes along 

with the transaction access to temporal data, it will be discussed in detail in the next 

section.  
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4. Related definition and validation mechanism 

As another temporal limit of transaction, data-deadline, if it is less than transaction-

deadline, we must consider it; otherwise transactions may read inconsistent temporal data 

when transactions commit. In order to ensure temporal consistency and the data which 

transaction read to be effective, we must inspect and estimate the execution time.  

Definition2. Transaction-deadline is d(T) , estimated time of completion is tC (T) , so delay 

time is t tsd (T) d(T) C (T)= − . Because validation transaction has been completed all 

operation reading and writing, delay time is t tsd (T) d(T) C (T)= − .  

Definition3. If to
tL (T) φ= , we denoted tsdt(T) as temporal delay time of transaction T.  

( ) ( ), ( ) ( )
( )

( ) ( ), ( ) ( )

t t

t

t t t

d T C T dd T d T
tsd T

dd T C T dd T d T

− ≥
= 

− <
       

     
 

Definition4. At time t, the starting time of transaction T is s(T) , the deadline of transaction 

T is d(T) ; we denoted tTFD (T) t s(T) d(T) s(T)= − − as the completeness of transaction T.  

Definition5. Suppose the conflict transaction set of validation transaction Tv is CTS(T), 

validation factor of Tv shows the ratio between the completeness of Tv and the 

completeness of CTS(T), denoted t v t v tVF (T ) TFD (T ) TFD (T)= , T CTS(T)∈ . If t vVF (T ) 1> at 

time t , it shows validation transaction is easier to complete t than conflict transaction.  

Definition6. Minimum running time of transaction was described from the current time t to 

the required execution time of transaction.  

If the deadline which transaction read temporal data objects is less than minimum running 

time, transaction can't commit in validity, so the validity is impossibility. Before transaction 

read data, we use a validation mechanism to check the validity of the data. It is used to 

prevent transaction from reading invalid data, or the data which has not validity.  

Before transaction executing, we declare that transaction access temporal data set to
s(T)RS (T) in 

advance, the number of temporal data is to
s(T)L (T) . After transaction executing, we access 

temporal data successively and check the validity of data dynamically in the process. 

If tdd (T) d(T)> , and to
tL (T) φ= , data-deadline would be longer than transaction-deadline, 

and transaction can’t access other temporal data, so it can’t affect the scheduling and 

concurrency control. If tdd (T) d(T)> , but to
tL (T) φ≠ , transaction will access other temporal 

data, so we must check whether satisfy tdd (T) d(T)> or not, when access all the temporal 

data. CHECKING Algorithm was described as follows.  

CHECKING Algorithm (): 

INPUT: to 1 2 m
s(T)RS (T) {X ,X ...X }=  

OUTPUT:  k, to
tL (T)  

{ k = ∞ ; to
s(T)N L (T)= ; i=1; 

While ( to
tRS (T) ≠ ∅ ) 

{T accesses Xi from RS(T) ; 
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to 1 2 m i
tRS (T) {X ,X ...X } {X }= − ; 

if(| avie (Xi) －avib (Xi) |<k)  

then if t tdd (T) C (T)<  

then Abort(T); 

else 
i

j j
e b

j 1

k k |avi (X ) avi (X )|
=

= − ;} 

to
tL (T) N 1= − ; 

i=i+1; 
} 

Before transaction access each temporal data, we call CHECKING Algorithm to ensure the 
effectiveness of temporal data. At the same time, through dynamically adjusting value k, we 
make the variable data consistency.  

Lemma1. CHECKING Algorithm can ensure the consistency of variable temporal data.  

If | avie (X) －avib (X) | < k , we denoted temporal data as changeful, otherwise stable. 

Value k denoted the length of absolute validity; it changed dynamically along with the 

transaction access to temporal data, and the smaller the k value is shows the more unstable 

temporal data is. If temporal data which transaction access the next is more changeful than 

the current, | avie (Xi) －avib (Xi) |<k , we restart to check whether the data can submit 

before the deadline, if it can satisfy the temporal consistency, value k will be changed the 

absolute valid length of temporal data. So CHECKING Algorithm check the consistency of 

each of variable data to ensure transaction to submit correctly.  

Theorem1. CHECKING Algorithm can ensure the consistency of transaction scheduling 
temporal data.  

Prove. Induce the number of temporal data n(T) which transaction T need access, When 
n(T)=1, proposition was established obviously, otherwise transaction will abort. Supposed 
n(T)=m, proposition was established. When n(T)=m+1, it can be divided into two cases: 

1. When | avie (Xi) －avib (Xi) | ≥ k , it must satisfy the consistency of temporal data. 

Supposed that transaction T access temporal data Xi at time t, according to the need of 

the scheduling strategy, avib (Xi) = t, so i
e tavi (X ) dd (T)≥ . Supposed n(T)=m, 

proposition was established, t tdd (T) C (T)≥ , so i
e tavi (X ) C (T)≥ . So before transactions 

complete, all the data can satisfy the time limit proposition was established.  

2. When| avie (Xi) －avib (Xi) |<k , the length of the absolute valid which transaction read 

the next temporal data is less than k. Showing the accessing data is changeful, and 

compute the value tdd (T) , on the basis of Lemma1, it satisfies temporal consistency of 

data. Proposition was established. Sum up(1), (2), the proposition is established.  

5. Real-Time concurrency control protocol based on accessing temporal data 
(RTCC-DD) 

The concurrency control mechanism in the database must guarantee the consistency of the 
database; serializability is one correctness standard of concurrency control in the database. 
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Methods discussed in this chapter are based on the optimistic concurrency control strategy, 
when the transactions reading stage we use CHECKING Algorithm to guarantee access 
temporal data consistency. When transactions come into the verify stage, we make the 
reading and writing adjustment detection, at this stage the changes of the transactions of the 
database is readable and effective, conflict transactions can read the private cache of 
transactions to get the change. The transactions submit if all conflicts transactions are 
serializable. Specific adjustment rules are as follows.  

Rule1 At time t, when Lt(T)=0, assigned serial number for the transaction T ser(T) and enter 
the validation phase, the scope of ser (T) is 1, 2 . . .. to n. The number of the first transaction 
access the validation phase is 1, transactions access later cumulative.  

Rule2 At time t, avie(Xi)<Ct(T) and the value of the ith version of X is similar with the next 
version, then adjust the X temporal period to the next version, that temporal object is  (value 
(Xi) , avi (Xi) ) , avi(Xi)＝[avib(Xi), avie(Xi＋1)].  

Rule3 At time t, VFt(T)<1 and tsdt(Tv) > tsdt(Ti), i vT CTS(T )∈ adjust the serialization order 

of transactions, ser(Ti)=ser(Tv), ser(Tv)=ser(Tv)+1. If RS(Tv)∩WS(Ti)≠Ø, Tv read the data of 

Ti from private cache.  

Rule4 At time t, submit transaction T, if only iT CTS(T)∀ ∈ , iser(T) ser(T )< .  

Rule1 ensures transactions enter into validation phase and distribute serial number after 
complete to access data. Rule2 ensures to extend the validity of temporal data valid 
interval if next version data similar with the current version, and reduces unnecessary 
transaction to restart. Rule3 ensures to run conflict transaction when the conflict of 

transaction is more nearer completion than validation transaction, and validation 
transaction can delay after the conflict transaction committed, and adjust the executive 
order, when verification transaction is conflict with other transaction, allow validation 

transaction to read data which conflict transaction update. Rule4 ensures that the 
submitted transactions are serializability.  

To ensure the effectiveness of the temporal data, RTCC-DD method adopts the checking 
algorithm to check the access data set before transactions executing. And then, using an 
optimistic approach, adjust the rules of the transaction validation phase. When verify 
transaction and other transaction are conflict, to judge by the factor of authentication, 
priority to scheduling the transaction which will be finished; taking consider the state that 
verify the transaction when the delay time dynamic adjustment of transaction execution in 
order to ensure the transactions of temporal data scheduling to satisfy the temporal 
consistency. While it ensured the limit of the data and transaction, minimizing the 
unnecessary transaction restarts. RTCC-DD concurrency control methods are described 
below: 

if Tv conflicts with Ti, i vT CTS(T )∈  

if RS(Tv)∩WS(Ti)≠Ø then  

if t v t v t i(VF (T ) 1) (tsd (T ) tsd (T ))< ∧ >   

then adjusts the execute order to Ti, Tv 
else the execute order is Tv, Ti; 

else if RS(Ti)∩WS(Tv)≠Ø then 
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 if t v t i t v(VF (T ) 1) (tsd (T ) tsd (T ))≥ ∧ >  

then adjusts the excute order to Tv, Ti 
else the execute order is Ti, Tv; 

else if WS(Ti)∩WS(Tv)≠Ø then 

 if t v t v t i(VF (T ) 1) (tsd (T ) tsd (T ))< ∧ >  

 then adjusts the execute order to Ti, Tv 

else the execute order is Tv, Ti; 
endif 

endif 

RTCC-DD method dynamically adjusts the data by checking the value of k, for each variable 

temporal data are calculated to ensure that the scheduling of variable data; For the next 

version of similar state cannot meet the time limit to extend the data deadline for its validity; 

at the same time we using the optimistic concurrency control method, this method won’t 

produce priority inversion and congestion; And it is the first time to solve the problem 

about temporal data of concurrency control. Improved the problem of which is discussed in 

the literature about the transaction scheduling problems of access to temporal data.  

Example 2. The transaction and implementation in example 2 is the same with example 1, 

transaction T1: w1(x)r1(y); T2: w2(y) r2(z). The period of validity of T1 is t7, the period of 

validity of temporal data z is [t4, t6].  

At time t5 when T2 access to validation phase, there is WS(Tv)∩RS(Ta)={y}≠Ø, according to 

the RTCC-DD,  

t v

84 2
VF (T ) 1

7 4 7
= = > , 

5t 1 7 6tsd (T ) t t= − , 
5t 2 6 6tsd (T ) t t= − ,  

thus satisfying the conditions t v t i t v(VF (T ) 1) (tsd (T ) tsd (T ))≥ ∧ > , Adjust the order of 

transaction execution to T2, T1. After the submit of T2, T1 can also meet the constraint of the 

period of validity, scheduling T2, T1 successfully, so use method RTCC-DD, can avoid 

transaction unnecessary restarts.  

Serializability is one standard of correctness of concurrency control in the database. RTCC-

DD can guarantee the concurrency control of temporal data, at the same time satisfy the 

serializability. We discuss the superiority and accuracy problems of RTCC-DD method as 

below.  

Lemma2 The traditional optimistic concurrency control methods can use RTCC-DD to 

schedule.  

Because the time constraint of access to transaction will influence the scheduling and 

concurrency control, The traditional optimistic concurrency control methods only consider 

the case of the transaction deadline, not discuss the deadline for data on the effect to 

transaction concurrency control. In order to solve the problem, RTCC-DD take the optimistic 

method; if the scheduling data is not temporal constrain, RTCC-DD will degenerate to the 

traditional optimistic concurrency control methods, so the traditional optimistic concurrency 

control methods can use RTCC-DD to scheduling.  
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Theorem 2 RTCC-DD can guarantee the serializability of the transactions scheduling 

Proof, according to the rule 1, if tL (T) 0= , assigned serial number for the transaction T 

ser(T), guarantee only when the transaction access into the validation phase we assigned 

serial number, and the serial number is only, according to rule 3 we dynamic adjust the 

conflict transaction, and guarantee the least serial number first submit. According to the rule 

4, only when all the conflict transactions serialize after this transaction, submit this 

transaction, so submitting the transactions is constrain by serializability number, ensure the 

serializability.  

6. Experiment 

A set of experiments have been carried out in order to examine the feasibility of the 

algorithms in practice. The RTCC-DD method and the OCC-DA, OCC-DATI method are 

implemented using C++ and compiled with gcc. All tests were performed on a Dell 

OptiPlex GX270 PC with 2GB of RAM. The database is composed of pages with a number of 

records and the records meet uniform distribution; the main performance criteria are the 

transaction miss percentage.  

parameter value 

 

Database size 

Transaction execute time 

CPU computation time 

Disk access time 

Page hit rate 

Operation number per transaction 

Restart overhead 

Mean transaction arrive time 

 

 

400 

100ms 

10ms 

20ms 

80% 

5~50 

10 

10~200ms 

 

Table 1. Simulation Parameter 

The traditional optimistic concurrency control methods (OCC-DA, OCC-DATI) and the 

RTCC-DD method are compared in the experiment. The experiment results are shown in 

Fig. 2. In Fig. 2a, the average temporal data number of transactions accesses changing from 0 

to 25, the performance of RTCC-DD is better than OCC-DA and OCC-DATI. The reason is 

that transactions scheduling considers the deadline of data in RTCC-DD method. If the 

submitted time exceeds the deadline, the transaction will be restarted. And the methods of 

OCC-DA and OCC-DATI do not consider the constraint of temporal data. When transaction 

accesses a little temporal data, the difference of the performance are small, but as shown in 

Fig. 2b, if there are a lots of temporal data, RTCC-DD method is obvious better than the 

traditional concurrency control methods. With increasing the temporal data numbers in 

system, the influence of the time constrain will increase. The more transactions will miss its 

deadlines because of not satisfy the data deadline.  
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a 

 
b 

a. Little Number of Temporal Data b. Much Number of Temporal Data 

Fig. 2. Transactions Miss Percentage  

7. Conclusion 

The concurrency control method is one of the key problems in the database systems. The 
optimistic methods are widely used in database system because it is not exists deadlock and 
block. Unnecessary transactions restarting and nearing completing transactions missing its 
deadline are the key factor effecting optimistic concurrency control method performances. 
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Most of the research about the optimism concurrency control method are focus on how 
reduces unnecessary transactions restarts and the transactions near to completed missing its 
deadline. The most research is based on dynamic adjustment serialization method. When 
the transactions access temporal data with time limit, the traditional concurrency control 
method cannot schedule effectively because it is not consider data-deadline. This chapter 
improved the validation phase rules and proposed an optimistic concurrency control 
method based on temporal data (RTCC-DD), which considered the influence between 
temporal data time limit and the transaction deadline. Theoretical analysis and experimental 
results demonstrate that the RTCC-DD method can outperform the previous ones for 
reducing effectively unnecessary restart number of transactions and more suitable for real-
time database system.  
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