
Real-Time Consensus-Based Scene Reconstruction

using Commodity Graphics Hardware

Ruigang Yang, Greg Welch, Gary Bishop

Department of Computer Science

University of North Carolina at Chapel Hill

Abstract

We present a novel use of commodity graphics hardware

that effectively combines a plane-sweeping algorithm with

view synthesis for real-time, on-line 3D scene acquisition

and view synthesis. Using real-time imagery from a few

calibrated cameras, our method can generate new images

from nearby viewpoints, estimate a dense depth map from

the current viewpoint, or create a textured triangular mesh.

We can do each of these without any prior geometric infor-

mation or requiring any user interaction, in real time and on

line. The heart of our method is to use programmable Pixel

Shader technology to square intensity differences between

reference image pixels, and then to choose final colors (or

depths) that correspond to the minimum difference, i.e. the

most consistent color.

In this paper we describe the method, place it in the con-

text of related work in computer graphics and computer vi-

sion, and present some results.

1 Introduction

This work is motivated by our long standing interest in

tele-collabration, in particular 3D tele-immersion. We want

to display high-fidelity 3D views of a remote environment

in real time to create the illusion of actually looking through

a large window into a collaborator’s room.

One can think of the possible real-time approaches as

covering a spectrum, with geometric or polygonal ap-

proaches at one end, and Light-Field Rendering [19, 8]

at the other. For real scenes, geometric approaches offer

tremendous challenges in terms of creating, representing,

and transmitting a model. Even for static regions of a scene,

it would be impractical for an individual to model manu-

ally every piece of paper, pen and pencil, and pile of junk

on a typical desk. As such, researchers pursuing geometric

methods have explored automated approaches, for example

using computer vision techniques. Typically one constructs

Figure 1. Example setup for 15 frame-per-

second online reconstruction using five cam-
eras (also see Figure 8 in color plate).

a 3D geometric model of the scene, and then renders the

model from any desired view. However robust recovery of

3D geometry from 2D images remains an open computer vi-

sion problem. Many algorithms exist, yet they are relatively

specialized or fragile, and too computationally expensive

for real-time applications.

Rather than striving to understand or reproduce a geo-

metric model of a scene, Light-Field Rendering uses a col-

lection of 2D image samples to reconstruct a function that

completely characterizes the flow of light through unob-

structed space [19]. With the function in hand, view synthe-

sis becomes a simple table lookup. Photo-realistic results

can be rendered at interactive rates on inexpensive personal

computers. However collecting, transmitting, and process-

ing such dense samples from a real environment, in real

time, is impractical.

We present a novel use of commodity graphics hardware

that effectively combines a plane-sweeping algorithm with

view synthesis for real-time, online 3D scene acquisition

and view synthesis. Using real-time imagery from a few

calibrated cameras, our method can generate new images

from nearby viewpoints, estimate a dense depth map from

the current viewpoint, or create a textured triangular mesh.

We can do each of these without any prior geometric infor-

mation or requiring any user interaction, and thanks to the

parallelization and tremendous performance of commodity

graphics hardware, we can do them interactively, in real

time and on line.

In this paper we describe the method, place it in the con-

text of related work in computer graphics and computer vi-

sion, and present some results. When describing the method

we keep open the choice of either estimating color or depth,

and perhaps corresponding geometry.

2 Related Work

Here we discuss some related work in image-based ren-

dering and real-time reconstruction/rendering systems. We

also discuss some related work in Section 3 where appro-

priate.

2.1 Vision-based Methods

Virtualized RealityTM System [23, 30]. Kanade’s Vir-

tualized Reality system uses a sea of cameras in conjunc-

tion with vision techniques to extract models of dynamic

scenes. These methods require significant off-line process-

ing, so strictly speaking, it is not a real-time system yet. Re-

cently, they are exploring to use special-purpose hardware

to speed up the computation.

Real-time Depth from Stereo. Depth from stereo tech-

niques [6] seem to be the most available option for comput-

ing depth from images because of their unobtrusive nature

and the ease of data acquisition. However, these techniques

are computationally intensive and typically require special

hardware to operate in real time [13, 31, 15]. Recently, Mul-

ligan and Daniilidis proposed a new trinocular stereo algo-

rithm in software [22]. They used a number of techniques

to accelerate the computation, such as motion prediction

and assembly level instruction optimization. However, the

stereo matching part is still the bottleneck in their method

(1-2 frames/second).

2.2 Image-based Methods

Image-based Visual Hull. Matusik et. al. presented an

efficient method for real-time rendering of a dynamic scene

[21]. They used an image-based method to compute and

shade visual hulls [18] from silhouette images. A visual

hull is constructed by using the visible silhouette informa-

tion from a series of reference images to determine a con-

servative shell that progressively encloses the actual object.

Unlike previously published methods, they constructed the

visual hulls in the reference image space and used an effi-

cient pixel traversing scheme to reduce the computational

complexity to O(n2), where n2 is the number of pixels in a

reference image. Their system uses a few cameras (four in

their demonstration) to cover a very wide field of view and

is very effective in capturing the dynamic motion of objects.

However, their method, like any other silhouette-based ap-

proach, cannot handle concave objects, which makes close-

up views of concave objects less satisfactory.

Hardware-assisted Visual Hull. Based on the same vi-

sual hull principle, Lok proposed a novel technique that

leverages the tremendous capability of modern graphics

hardware [20]. The 3D volume is discretized into a num-

ber of parallel planes, the segmented reference images are

projected onto these planes using projective textures. Then,

he makes clever use of the stencil buffer to rapidly deter-

mine which volume samples lie within the visual hull. His

system benefits from the rapid advances in graphics hard-

ware and the main CPU is librated for other high-level tasks.

However, this approach suffers from a major limitation – the

computational complexity of his algorithm is O(n3). Thus

it is difficult to judge if his approach will prove to be faster

than a software-based method with O(n2) complexity.

Generalized Lumigraph with Real-time Depth. Schir-

macher et. al. introduced a system for reconstructing ar-

bitrary views from multiple source images on the fly[26].

The basis of their work is the two-plane parameterized Lu-

migraph with per-pixel depth information. The depth in-

formation is computed on the fly using a depth-from-stereo

algorithm in software. With a dense depth map, they can

model both concave and convex objects. Their current sys-

tem is primarily limited by the quality and the speed of the

stereo algorithm (1-2 frames/second).

3 Our Method

We believe that our method combines the advantages of

previously published real-time methods in Section 2, while

avoiding some of their limitations as follows.

• We achieve real-time performance without using any

special-purpose hardware.

• We can deal with arbitrary objects, both concave and

convex.

• We do not use silhouette information, so there is no

need for image segmentation, which is not always pos-

sible in a real environment.

• We use graphics hardware to accelerate the computa-

tion without increasing the symbolic complexity; our

method is O(n3) while the lower bound of depth-from-

stereo algorithms is also O(n3).
• Our proposed method is more versatile. A number

of systems listed here, such as the Virtualized-Reality

system and the generalized lumigraph system, could

benefit from our method since we can rapidly compute

a geometric model using the graphics hardware.

Figure 2. A

configuration
where there

are five input
cameras, the red
dot represents

the new view
point. Spaces
are discretized

into a number of
parallel planes.

Figure 3. Depth plane images from step 0, 14,

43, 49, from left to right; The scene, which
contains a teapot and a background plane, is
discretized into 50 planes.

3.1 Overview

We want to synthesize new views given calibrated input

images. We can discretize the 3D space into parallel planes.

For each plane Di, we project the calibrated input images

onto it, as shown in Figure 2. If there is indeed a surface

on Di, the projected images on that spot should be the same

color if two assumptions are satisfied: (A) the surface is

visible, i.e. there is no occluder between the surface and the

images; and (B) the surface is diffuse, so the reflected light

does not depend on the 3D position of the input images.

If we choose to accept that two above assumptions are

satisfied, the color consistency on plane Di is a measure if

there is a surface on Di. If we know the surface position,

then we can trivially render it from any new view point.

So here is our proposed method to render new views

from calibrated input images. For a desired new view Cn

(the red dot in Figure 2), we discretize the 3D space into

planes parallel to the image plane of Cn. Then we step

through the planes. For each plane Di, we project the in-

put images on these planes, and render the textured plane

on the image plane of Cn to get a image (Ii) of Di. While

it is easy to conceptually think of these as two separate op-

erations, we can combine them into a single homography

(planar-to-planar) transformation. In Figure 3, we show a

number of images from different depth planes. Note that

each of these images contains the projections from all input

images, and the area corresponding to the intersection of

objects and the depth plane remains sharp. For each pixel

location (u,v) in Ii, we compute the mean and variance of

the projected colors. The final color of (u,v) is the color

with minimum variance in {Ii}, or the color most consis-

tent among all camera views.

The concept of sweeping a plane through a discretized

space is not new, it has been used in a number of computer

vision algorithms [4, 27, 16, 29] for scene reconstruction.

However, we have developed a means to combine scene re-

construction and view synthesis into a single step. We do

so using the programmable Pixel Shader technology typi-

cally available on modern graphics hardware. The use of

graphics hardware for real-time online acquisition, recon-

struction, and rendering is central to this paper.

3.2 Relationship with other Techniques

Stereo Techniques. From a computer vision perspec-

tive, our method is implicitly computing a depth map from

the new viewpoint Cn (readers who are unfamiliar with

computer vision terms are referred to Faugeras’ textbook

[7]). If we only use two reference cameras and make Cn

the same as one of them, say the first one, we can consider

our method as combining depth-from-stereo and 3D image

warping in a single step. The projection of the view ray

P (u, v) into the second camera is the epipolar line (its pro-

jection in the first camera reduces to a single point). If we

clip the ray P (u, v) by the near and the far plane, then its

projection defines the disparity search range in the second

camera’s image. Thus stepping along P (u, v) is equivalent

to stepping along the epipolar line on the second camera,

and computing the color variance is similar to computing

the Sum-of-Squared-Difference (SSD) over a 1 × 1 win-

dow in the second camera. Typically, the SSD score over a

single pixel support window does not provide sufficient dis-

ambiguating power, so it is essential for our method to use

several cameras. As such our method can be considered in

effect a multi-baseline stereo algorithm [25] operating with

a 1 × 1 support window, with the goal being the best color

estimate rather than depth.

Conceptually, our method distributes the correlation sup-

port among input cameras. In binocular stereo, the support

is distributed around the neighborhood of the pixel of inter-

est within a image. And in multi-baseline stereo, the sup-

port is distributed both among cameras and within images.

There are certain tradeoffs among these choices. While a

big support area in the input images is more economical, it

does make a strong assumption about surface smoothness

and favors frontal-parallel surfaces. On the other hand, a

small support size requires more cameras to provide reli-

able estimates.

Light Field Rendering. Isaksen et. al. introduced the

idea of dynamically re-parameterizing the light field func-

tion that allows the user to select a single depth value for

all the view rays[12]. We extend this dynamic parameteri-

zation to the extreme–we allow each ray to have an implicit

depth value that our method automatically estimates on the

fly.

Space Carving. Our consensus function using inter-

camera variance is similar to the photo-consistency check

first proposed by Seitz et. al. [27, 16]. However, they used it

to create a volumetric model of a static scene, while we ap-

ply it directly for view synthesis. We believe our approach

brings a number of advantages. First, the photo-consistency

check is ambiguous in textureless (uniformly colored) re-

gions, which usually leads to errors in the volumetric model.

But such situations are generally fine for view synthesis,

since using any color in the textureless region (in fact they

are all the same) will create the correct image. Secondly,

since we know the new view point and the desired output

image resolution at the time of synthesis, we could use the

method in [3] to select the minimum number of depth steps

needed. Thus, we do the minimum amount of work to gen-

erate a image. For a low resolution image, we could use

fewer depth steps. This ”lazy evaluation” is best suited for

real-time applications. We also reduce the quantization ar-

tifacts since the space is implicitly quantized according to

the output resolution.

3.3 Hardware Acceleration

While it is straightforward to use texture mapping func-

tionalities in graphics hardware to project the input im-

ages on to the depth planes, our hardware acceleration

scheme does not stop there. Modern graphic cards, such

as the NVIDIAs GeForce series [24], provide a program-

able means for per-pixel fragment coloring through the use

of Register Combiner [14]. We exploit this programmabil-

ity, together with the texture mapping functions, to carry out

the entire computation on the graphics board.

3.3.1 Real-time View Synthesis

In our hardware-accelerated renderer, we step through the

depth planes from near to far. At each step (i), there are two

stages of operations, scoring and selection. In the scoring

stage, we set up the transformation according to the new

view point. We then project the reference images onto the

depth plane Di. The textured Di is rendered into the image

plane (the frame buffer).

We would like to program the Pixel Shader to compute

the RGB mean and a luminance “variance” per pixel. Com-

puting the true variance requires two variables per pixel.

Since the current hardware is limited to four channels and

not five, we opt to compute the RGB mean and a single-

variable approximation to the variance. The latter is ap-

proximated by the sum-of-squared-difference (SSD), that is

SSD =
∑

i

(Yi − Ybase)
2 (1)

where Yi is the luminance from an input image and Ybase is

the luminance from a base reference image selected as the

input image that is closest to the new viewpoint. This allows

us to compute the SSD score sequentially, an image pair at a

time. In this stage, the frame buffer acts as an accumulation

buffer to keep the mean color (in the RGB channel) and the

SSD score (in the alpha channel) for Di. In Figure 4, we

show the SSD score images (the alpha channel of the frame

buffer) at different depth steps. The corresponding color

channels are shown in Figure 3.

In the next selection stage, we need to select the mean

color with the smallest SSD score. The content of the frame

buffer is copied to a temporary texture (Texwork), while

another texture (Texframe) holds the mean color and min-

imum SSD score from the previous depth step. These two

textures are rendered again into the frame buffer through

orthogonal projection. We reconfigure the Pixel Shader

to compare the alpha values on a per pixel basis, the out-

put color is selected from the one with the minimum alpha

(SSD) value. Finally the updated frame buffer’s content is

copied to Texframe for use in the next depth step. The

complete pseudo code for our hardware-accelerated render

is provided here. Details about the settings of the Pixel

Shader are in Appendix A. Note that once the input images

are transferred to the texture memory, all the computations

are performed on the graphics board. There is no expensive

copy between the host memory and the graphics broad, and

the host CPU is essentially idle except for executing a few

OpenGL commands.

createTex(workingTexture);
createTex(frameBufferTexture);
for (i = 0; i< steps; i++) {

// the scoring stage;
setupPerspectiveProjection();
glEnable(GL_BLEND);
glBlendFunc(GL_ONE, GL_ONE);
setupPixelShaderForSDD();
for (j = 0; j< inputImageNumber; j++)
projectImage(j, baseReferenceImage);

// the selection stage;
if (i == 0) {
copyFrameToTexture(frameBufferTexture);
continue;
} else
copyFrameToTexture(workingTexture);

setupPixelShaderForMinMax();
setupOrthogonalProjection();

Figure 4. SSD scores (encoded in the alpha

channel) for different depth planes in the first
scoring stage. We use the same setup as in
Figure 3. From left to right, the corresponding

depth steps are 0, 14, 43, 49.

renderTex(workingTexture,
frameBufferTexture);

copyFrameToTexture(frameBufferTexture);
}

3.3.2 Real Time Depth

As explained in Section 3.2, our technique is implicitly com-

puting a depth map from a desired view point, we just

choose to keep the best color estimate for the purpose of

view synthesis. If we choose to trade color estimation for

depth estimation, we can use almost the same method above

(Section 3.3.1) to compute a depth map in real-time, and lib-

erate the CPU for other high level tasks. The only change

necessary is to configure the graphics hardware to keep the

depth information instead of the color information. The

color information can then be obtained by re-projecting the

reconstructed 3D points into input images. From an imple-

mentation standpoint, we can encode the depth information

in the RGB portion of the texture image.

It should be noted that it is not robust to estimate the

depth information based on the variance of a single pixel,

especially for real images in which there is camera noise,

errors in the calibration, or surfaces which are not perfectly

diffuse. That is why most stereo algorithms use an area-

based approach to aggregate support spatially by summing

over a window in the disparity (image) space. The latest of-

ficial OpenGL Specification (Version 1.3) [1] has an Imag-

ing Subset that supports convolution functions. By convolv-

ing the frame buffer with a blurring filter, we can sum up the

SSD scores from neighboring pixels to make the depth esti-

mate more robust. This can be done after the scoring stage,

during the first copy from the frame buffer to the texture

memory(copyFrameToTexture()).

glEnable(GL_CONVOLUTION_2D);
copyFrameToTexture(workingTexture)
glDisable(GL_CONVOLUTION_2D);

If the convolution function is implemented in hardware,

there will be little performance penalty since the convolu-

tion is already a part of the pixel transfer pipeline. Unfor-

tunately, hardware-accelerated convolutions are only avail-

able on expensive graphics workstations such as SGI’s

Oynx21, but these expensive workstations do not have a pro-

gramable pixel shader . Given the tremendous advances in

commodity graphics hardware in recent years, we are op-

timistic that new hardware that supports both the complete

function set of OpenGL 1.3 and programmable shaders will

soon emerge. When this becomes true, our algorithm pro-

vides a practical and inexpensive way for real-time stereo

vision, which to date has only been achieved by using either

special hardware [13, 31, 15], or highly optimized software

at a very limited resolution.

Real-time Depth Postprocessing Without hardware

support for convolution functions, the depth map computed

from real data with 1-pixel kernels can be quite noisy. How-

ever, we can filter out the majority of outliers in software

(the CPU is otherwise idle). This postprocessing involves

three steps: (I) the depth data with their SSD scores are read

back into the main memory; (II) SSD Test: Any point with

a SSD score larger than a threshold (Tssd) is rejected; (III)

Correlation Test: If a point passes the SSD test, it will be

projected into input images. For each pair between the base

reference images and the others, we compute a normalized

correlation score over a small window. If the average of

the correlation scores is smaller than a threshold (Tnc), that

depth point will be rejected.

When dealing with real data, we observed that not many

points will survive after the postprocessing. However, the

survived points contain very few outliers. In fact, we can

use the filtered depth map to create a textured mesh model

using Delaunay triangulation.

Although this optional postprocessing falls back to the

difficult problem of reconstructing a 3D model, it does have

a few advantages:

• It decouples the modeling and the rendering loop. The

textured geometric model can be rendered at a faster

rate, using the same graphics hardware.

• The model can be used with traditional compute graph-

ics objects, or as input to other image-based rendering

methods, such as [5, 2, 8], to provide more compelling

results.

• We have observed that view extrapolation deteriorates

rapidly, which seems to concur with the report by

Szeliski [28]. The textured model extends the effec-

tive view volume, even allowing oblique views from

the reference images.

• It is more efficient for stereo viewing. Furthermore, a

geometric representation that is consistent between left

1There are ways for performing convolution using PC hardware. One

could use multiple textures, one for each of the neighboring pixels; or ren-

der the scene in multiple passes and perturb the texture coordinate in each

pass. However these tricks significantly decrease the speed.

and right-eye views makes stereo fusion easier for the

human visual system.

3.4 Tradeoffs Using the Graphics Hardware

There are certain tradeoffs we have to make when using

the graphics hardware. The lack of hardware accelerated

convolution functions is one of them. Another common

complaint about current graphics hardware is the limited

arithmetic resolution. Our method, however, is less affected

by this limitation. Computing the SSD scores is the central

task of our method. SSD scores are always non-negative,

so they are not affected by the unsigned nature of the frame

buffer. (The computation of SSD is actually performed in

signed floating point on the latest graphics card, such as the

GeForce4 from NVIDIA.) A large SSD score means there

is a small likelihood that the color/depth estimate is correct.

So it does not matter if a very large SSD score is clamped,

it is not going to affect the estimate anyway.

A major limitation of our hardware acceleration scheme

is the inability to handle occlusions. In software, we could

use the method introduced in the Space Carving algorithm

[16] to mark off pixels in the input images, however, there

is no such “feedback” channel in the graphics hardware. To

address this problem in practice, we use a small baseline

between cameras, a design adopted by many multi-baseline

stereo algorithms. However, this limits the effective view

volume, especially for direct view synthesis. Our prelim-

inary experiments indicate that a large support size (more

filtering) could successfully address this problem in prac-

tice.

The bottleneck in our hardware acceleration scheme is

the fill rate. This limitation is also reported by Lok in his

hardware-accelerated visual hull computation [20]. More

detailed analysis can be found there.

4 System Implementation and Results

We have implemented a distributed system using four

PCs and five calibrated 1394 digital cameras (SONY DFW-

V500). Camera exposure is synchronized by use of an

external trigger. Three PCs are used to capture the video

streams and correct for lens distortions. The corrected im-

ages are then compressed and sent over a 100Mb/s network

to the rendering PC with a graphics accelerator. We have

tested our algorithm on two NVIDIA cards, a Quadro2 Pro

and GeForce3. Performance comparisons are presented in

Table 1. On average, the GeForce3 is about 75 percent faster

than Quadro2 Pro for our application.

We discussed in Section 3.3.2 how the support size plays

an important role in the quality of reconstruction. Our ex-

periments show that even a small support size (3×3 or 5×5)

can improve the results substantially (Figure 5). Note that

1282 2562 5122

20 16, 40 31, 55 82, 156

50 31, 85 70, 130 211, 365

100 62, 140 133, 235 406, 720

Table 1. Rendering time per frame in millisec-

onds (number of depth planes vs output reso-
lutions). The first number in each cell is from
GeForce3; the second from Quadro2 Pro. All

numbers are measured with five 320×240 in-
put images.

Figure 5. Impact of support size on the depth
and color reconstruction; Left: 1×1 support

(real-time results); Right: 5×5 support (also
in color plate).

Figure 6. An live view directly captured from
the screen.

Figure 7. A dynamic mesh model of the man-
nequin is evaluated and rendered with a static

3D background.

these test results are not based on software simulation; they

are obtained using OpenGL functions on real hardware.

These results further demonstrate the viability and potential

of our method.

Figure 6 shows a live image computed online in real

time. More lives images can be found in the color plate.

Figure 7 shows a textured, mesh model (foreground man-

nequin) created in real time from postprocessing the raw

depth map. The mesh model is rendered with a static 3D

background model.

5 Conclusions

As stated in the introduction, this work is motivated by

our long standing interest in 3D tele-immersion. An inverse

or image-based approach to view-dependent rendering or

scene reconstruction has appeal to us for this particular ap-

plication for several reasons. For one, the finite and likely

limited inter-site bandwidth motivates us to consider meth-

ods that “pull” only the necessary scene samples from a re-

mote to a local site, rather than attempting to compute and

“push” geometry from a remote to a local site. In addition

we would like to be able to leverage existing video compres-

sion schemes, so would like our view/scene reconstruction

to be as robust to sample artifacts (resulting from compres-

sion for example) as possible. We are working with sys-

tems and networking collaborators to explore new encoding

schemes aimed specifically at this sort of reconstruction.

We look forward to wider implementation of the

OpenGL extensions that facilitate hardware accelerated

convolution filters on commodity hardware. In any case

we intend to explore higher-order or larger-support convolu-

tion using hardware as in [9]. We are considering extending

our method to allow for likelihood-based global constraints.

For example we would like to allow for the likelihood of a

surface along one ray to affect the likelihoods of individ-

ual samples along other rays, to support transparencies, etc.

We are also thinking about formulating the reconstruction

more in 3D, perhaps leveraging work in 3D convolution us-

ing graphics hardware [10].

Like other recent work that makes use of increasingly

powerful graphics hardware for unusual purposes [17, 11]

we hope that our method inspires further thinking and addi-

tional new methods.

6 Acknowledgement

This material is based upon work supported by the Na-

tional Science Foundation under Grant No. 0121657, “Elec-

tronic Books for the Tele-Immersion Age”. We made use of

equipment provided by DOE under contract B519834, and

personal computers donated by the Intel corporation.

We also acknowledge the support of our close collabora-

tors at UNC-CH (www.cs.unc.edu/˜stc/office/index.html),

in particular we thank Herman Towles for his continuous

leadership and gracious support. We thank John Thomas

and Jim Mahaney for their engineering assistance, and Scott

Larsen and Deepak Bandyopadhyay for their help in shoot-

ing video.

References

[1] OpenGL Specification 1.3, August 2001.

http://www.opengl.org/developers/
documentation/version13/glspec13.
pdf; accessed January 8, 2002.

[2] Chris Buehler, Michael Bosse, Leonard McMillan,

Steven Gortler, and Michael Cohen. Unstructured Lu-

migraph Rendering. In Proceedings of SIGGRAPH

2001, Los Angeles, August 2001.

[3] Jin-Xiang Chai, Xin Tong, Shing-Chow Chan, and

Heung-Yeung Shum. Plenoptic Sampling. In Proceed-

ings of SIGGRAPH 2000, page 307318, New Orleans,

August 2000.

[4] R. T. Collins. A Space-Sweep Approach to True

Multi-image Matching. In Proceedings of Conference

on Computer Vision and Pattern Recognition, pages

358–363, June 1996.

[5] P. Debevec, C. Taylor, and J. Malik. Modeling and

Rendering Architecture from Photographs. In Pro-

ceedings of SIGGRAPH 1996, Annual Conference Se-

ries, pages 11–20, New Orleans, Louisiana, August

1996. ACM SIGGRAPH, Addison Wesley.

[6] U. Dhond and J. Aggrawal. Structure from stereo: a

review. IEEE Transactions on Systems, Man, and Cy-

bernetics, 19(6):14891510, 1989.

[7] O. Faugeras. Three-Dimensional Computer Vision: A

Geometric Viewpoint. MIT Press, 1993.

[8] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Co-

hen. The Lumigraph. In Proceedings of SIGGRAPH

1996, pages 43–54, New Orleans, August 1996.

[9] Markus Hadwiger, Thomas Theul, Helwig Hauser,

and Eduard Grller. Hardware-Accelerated Hiqh-

Quality Filtering on PC Graphics Hardware. In Pro-

ceedings of Vision, Modeling, and Visualization 2001,

Stuttgart, Germany, November 2001.

[10] Matthias Hopf and Thomas Ertl. Accelerating 3D

Convolution using Graphics Hardware. In Proceed-

ings of IEEE Visualization 99, San Francisco, USA,

October 1999.

[11] Kenneth E. Hoff III, Andrew Zaferakis, Ming Lin,

and Dinesh Manocha. Fast and Simple 2D Geomet-

ric Proximity Queries Using Graphics Hardware. In

Proceedings of ACM Symposium on Interactive 3D

Graphics, March 2001.

[12] Aaron Isaksen, Leonard McMillan, and Steven J.

Gortler. Dynamically Reparameterized Light Fields.

In Proceedings of SIGGRAPH 2000, pages 297–306,

August 2000.

[13] T. Kanade, A. Yoshida, K. Oda, H. Kano, and

M. Tanaka. A Stereo Engine for Video-rate Dense

Depth Mapping and Its New Applications. In Pro-

ceedings of Conference on Computer Vision and Pat-

tern Recognition, pages 196–202, June 1996.

[14] Mark J. Kilgard. A Practical and Robust Bump-

mapping Technique for Today’s GPUs. In Game

Developers Conference 2000, San Jose, California,

March 2000.

[15] K. Konolige. Small Vision Systems: Hardware and

Implementation. In Proceedings of the 8th Interna-

tional Symposium in Robotic Research, page 203212.

Springer-Verlag, 1998.

[16] K. Kutulakos and S. Seitz. A Theory of Shape by

Space Carving. Technical Report TR692, Computer

Science Dept., U. Rochester, 1998.

[17] Scott Larsen and David McAllister. Fast Matrix Mul-

tiplies using Graphics Hardware. In Proceedings

of ACM Supercomputing 2001, Denver, CO, USA,

November 2001.

[18] A. Laurentini. The Visual Hull Concept for Sil-

houette Based Image Understanding. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence,

16(2):150–162, February 1994.

[19] M. Levoy and P. Hanrahan. Light Field Rendering. In

Proceedings of SIGGRAPH 1996, pages 31–42, New

Orleans, August 1996.

[20] B. Lok. Online Model Reconstruction for Interac-

tive Virtual Environments. In Proceedings 2001 Sym-

posium on Interactive 3D Graphics, pages 69–72,

Chapel Hill, North Carolina, March 2001.

[21] W. Matusik, C. Buehler, R. Raskar, S. Gortler, and

L. McMillan. Image-Based Visual Hulls. In Proceed-

ings of SIGGRAPH 2000, pages 369–374, New Or-

leans, August 2000.

[22] J. Mulligan, V. Isler, and K. Daniilidis. Trinocular

stereo: A new algorithm and its evaluation. to appear

in International Journal of Computer Vision, Special

Issue on Multi-baseline Stereo, 2002.

[23] P. Narayanan, P. Rander, and T. Kanade. Constructing

Virtual Worlds using Dense Stereo. In Proceedings of

International Conference on Computer Vision, pages

3–10, June 1998.

[24] Nvidia. http://www.nvidia.com.

[25] M. Okutomi and T. Kanade. A Multi-baseline Stereo.

IEEE Transactions on Pattern Analysis and Machine

Intelligence, 15(4):353–363, April 1993.

[26] Hartmut Schirmacher, Li Ming, and Hans-Peter Sei-

del. On-the-Fly Processing of Generalized Lumi-

graphs. EUROGRAPHICS 2001, 20(3), 2001.

[27] S. M. Seitz and C. R. Dyer. Photorealistic Scene Re-

construction by Voxel Coloring. In Proceedings of

CVPR 1998, pages 1067–1073, 1997.

[28] R. Szeliski. Prediction Error as a Quality Metric for

Motion and Stereo. In Proceedings of International

Conference on Computer Vision, pages 781–788, Sept

1999.

[29] R. Szeliski and P. Golland. Stereo Matching with

Transparency and Matting. In Proceedings of Inter-

national Conference on Computer Vision, pages 517–

524, Sept 1998.

[30] Sundar Vedulay, Simon Baker, Peter Randeryz, Robert

Collinsy, and Takeo Kanadey. Three Dimensional

Scene Flow. In Proceedings of International Confer-

ence on Computer Vision, pages 722–729, Sept 1999.

[31] John Woodfill and Brian Von Herzen. Real-time stereo

vision on the PARTS reconfigurable computer. In

Kenneth L. Pocek and Jeffrey Arnold, editors, IEEE

Symposium on FPGAs for Custom Computing Ma-

chines, pages 201–210, Los Alamitos, CA, 1997.

IEEE Computer Society Press.

A Pixel Shader Pseudo Code

The following code is written roughly following the syn-

tax of nvparser, a generalized compiler for NVIDIA ex-

tensions. Documentation about nvparser can be found

on NVIDIA’s web site at http://www.nvidia.com.

A.1 Code to compute the squared difference

This piece of code assumes that there are m input im-

ages. The alpha channel of the input images contains a

gray scale copy of the image, and the base reference im-

age is stored in tex0. The squared difference is computed

on the gray scale images. The scales in the code are nec-

essary because the unsigned char values are converted to

floating point values between [0, 1] within Pixel Shader. If

no scale is applied, the output squared value (in unsigned

char) will be floor((a − b)2/256), where a and b are the in-

put values (in unsigned char). In our implementation, we

use a combined scale factor of 32, effectively computing

floor((a − b)2/32).

const1 = {1/m, 1/m, 1/m, 1};
// the base reference image
// will be added
// m-1 times more than
// the other images;
const0 = {1/((m)(m-1)), 1/((m)(m-1)),

1/((m)(m-1)), 1};

// **** combiner stage 0;
{

rgb {
spare0 = tex1*const1

+ tex0*const0;
}
alpha {

spare0 = tex1 - tex0;
scale_by_four ();

}
}
// **** combiner stage 1
{

alpha{
spare0 = spare0*spare0;
scale_by_four ();

}
}
// **** final output
{

out.rgb = spare0.rgb;
out.alpha = spare0;

}

A.2 Code to do the minimum alpha test

This piece of code assumes that the mean colors are

stored in the RGB channel while the SSD scores are stored

in the alpha channel.

// **** combiner stage 0;
{

alpha {
// spare0 = tex1 - tex0 + 0.5

spare0 = tex1 - half_bias(tex0);
}

}
// **** combiner stage 1
{

rgb{
// select the color with
// the smaller alpha;
// spare0 =
// (spare0.alpha < 0.5) ?
// (tex1) : (tex0);

spare0 = mux();
}
alpha{
// select the smaller
// alpha value

spare0 = mux();
}

}
// **** final output
{ out = spare0; }

Real-Time Consensus-Based Scene Reconstruction
using Commodity Graphics Hardware

Figure 8. Example setup for 15 frame-per-second online reconstruction using five cameras.

Figure 9. Impact of support size on the depth and color reconstruction; For each pair, the one on

the left uses a 1×1 support window (real-time results) while the one on the right uses a 5×5 support
window.

Figure 10. Red-blue stereo images from a live sequence. Use red-blue eyeglasses for stereo viewing.

