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Real‑time coronary artery stenosis 
detection based on modern neural 
networks
Viacheslav V. Danilov1,3*, Kirill Yu. Klyshnikov2, Olga M. Gerget1, Anton G. Kutikhin2, 
Vladimir I. Ganyukov2, Alejandro F. Frangi3 & Evgeny A. Ovcharenko2 

Invasive coronary angiography remains the gold standard for diagnosing coronary artery disease, 
which may be complicated by both, patient‑specific anatomy and image quality. Deep learning 
techniques aimed at detecting coronary artery stenoses may facilitate the diagnosis. However, 
previous studies have failed to achieve superior accuracy and performance for real‑time labeling. 
Our study is aimed at confirming the feasibility of real‑time coronary artery stenosis detection using 
deep learning methods. To reach this goal we trained and tested eight promising detectors based 
on different neural network architectures (MobileNet, ResNet‑50, ResNet‑101, Inception ResNet, 
NASNet) using clinical angiography data of 100 patients. Three neural networks have demonstrated 
superior results. The network based on Faster‑RCNN Inception ResNet V2 is the most accurate and it 
achieved the mean Average Precision of 0.95, F1‑score 0.96 and the slowest prediction rate of 3 fps on 
the validation subset. The relatively lightweight SSD MobileNet V2 network proved itself as the fastest 
one with a low mAP of 0.83, F1‑score of 0.80 and a mean prediction rate of 38 fps. The model based on 
RFCN ResNet‑101 V2 has demonstrated an optimal accuracy‑to‑speed ratio. Its mAP makes up 0.94, 
F1‑score 0.96 while the prediction speed is 10 fps. The resultant performance‑accuracy balance of the 
modern neural networks has confirmed the feasibility of real‑time coronary artery stenosis detection 
supporting the decision‑making process of the Heart Team interpreting coronary angiography 
findings.

Coronary artery disease (CAD) is the leading cause of death  worldwide1, a�ecting over 120 million  people2. 
�e main cause of CAD is atherosclerotic plaque  accumulation3 in the epicardial arteries leading to a mismatch 
between myocardial oxygen supply and myocardial oxygen demand and commonly resulting in ischemia. Chest 
pain is the most likely symptom that occurs during physical and/or emotional stress, relieved promptly with rest 
or by taking nitroglycerin. �is process can be modi�ed by lifestyle adjustments, pharmacological therapies, and 
invasive interventions designed to achieve disease stabilization or  regression4. Despite novel imaging modalities 
(e.g. coronary CT angiography) have been developed, invasive coronary angiography is the preferred diagnostic 
tool to assess the extent and severity of complex coronary artery disease according to the 2019 guidelines of the 
European Society of  Cardiology5,6. Multivessel coronary artery disease a�ecting two or more coronary arteries 
requires interpretive expertise on the assessment of multiple parameters (the number of a�ected major coro-
nary arteries, the location of lesions, the severity of stenosis, the length of the stenotic segment, tortuosity, etc.) 
during an intervention. �e process of interpreting complex coronary vasculature, image noise, low contrast 
vessels, and non-uniform illumination is time-consuming7, thereby posing certain challenges to the operator. 
Real-time automatic CAD detection and labeling may overcome the abovementioned di�culties by supporting 
the decision-making process.

A number of approaches for automatic or semi-automatic assessment of coronary artery diseases have been 
proposed by di�erent research groups. �ese approaches follow the general scheme: (1) coronary artery tree 
extraction, (2) calculation of geometric dimensioning, and (3) analysis of the stenotic segment. �e key stage that 
determines the speed and accuracy of such algorithms is based on the coronary artery tree extraction using the 
centerline  extraction8,9; the graph-based  method10–12; superpixel  mapping13,14; and machine/deep  learning15–17. 
�e last, being a powerful tool for computer vision and image classi�cation, has shown great promise in CAD 
detection due to their performance, tuning �exibility, and optimization. �e ultimate purpose that CNN develop-
ers and users are trying to meet is to strike an optimal balance between accuracy and speed, the so-called speed/
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accuracy trade-o�18. While some CNNs with high performance and optimal accuracy suitable for real-time 
segmentation can be used on mobile devices and low-end PCs, others with low performance are highly e�cient 
for object detection (precision, recall, F1-score, mAP). Depending upon the task complexity and scope, this 
balance may vary and be achieved using the proper CNN architecture. �e speed/accuracy trade-o� for CAD 
detection should be adjusted to both, elective and urgent diagnosis. On the one hand, neural networks used 
for determining the severity of atherosclerotic lesions should possess superior detection rate as their decision-
making ability will specify the selection of treatment strategies, including life-saving procedures. �is situation 
is typical for stable patients undergoing elective coronary angiography. �erefore, heavy-weight CNNs requir-
ing time to process angiographic data accurately can be applied. On the other, CNNs should ensure the highest 
performance of real-time image processing for urgent patients who do not have time for prolonged preoperative 
management and should undergo percutaneous coronary intervention (PCI) immediately following the diag-
nostic catheterization (ad-hoc PCI)19,20.

Albeit several CNN-based approaches focused on achieving optimal accuracy for CAD detection with the 
Dice Similarity Coe�cient of more than 0.7512,13 and/or the Sensitivity metric of more than 0.7021 have been 
proposed, their speed remains disregarded. Image processing time is an important indicator for the applied use 
of these methods that can reach 1.1–11.87  s10, 20  s10,13, and over 60  s9. However, this time is unacceptable for 
real-time CAD detection with the processing rate of 7.5–15 fps instead of the required 0.13–0.07 s per  frame22,23. 
Slow data processing does not allow providing real-time support for the operator during the procedure and may 
be performed a�er diagnosis and data collection. Some researchers try to improve the performance of these 
algorithms by segmenting only large vessels of the coronary  bed18. �is approach allows achieving the inference 
time of 0.04 frames per second, but it does not take into account stenotic lesions in small branches. Another 
approach using convolutional neural networks to speed up the algorithm includes the extraction of individual 
regions of interest with stenotic sites without the entire coronary artery tree. A similar principle has been reported 
by Cong et al.19 describing the Inception V3 neural network and Hong et al.20 describing the M-net (improved 
version of U-net).

Our study presents a detailed analysis of available neural network architectures and their potential in terms of 
accuracy and performance to detect single-vessel disease. �is approach is aimed at selecting the most e�cient 
CNN architecture and further exploring the ways of its modi�cation and optimization to ensure superior real-
time classi�cation potential for detecting multivessel coronary artery stenosis.

To summarize, our main contributions are as follows:

• A comparative analysis of the speed/accuracy trade-o� for detecting single stenoses of the coronary arteries 
of speci�c state-of-the-art CNN architectures (N = 8).

• �e use of RFCN ResNet-101 V2 as is without any modi�cation allows achieving promising real-time per-
formance (10 fps) without a big loss in accuracy.

• �e bene�ts of CNNs reported in our study may be leveraged for the development of so�ware aimed at 
optimizing and facilitating invasive angiography.

Source data
Initial angiographic imaging series of one hundred patients who underwent coronary angiography using Coro-
scop (Siemens) and Innova (GE Healthcare) at the Research Institute for Complex Problems of Cardiovascular 
Diseases (Kemerovo, Russia) were retrospectively enrolled in the study (Table 1). All patients had angiographi-
cally and/or functionally con�rmed one-vessel coronary artery disease (≥70% diameter stenosis (by QCA (quan-
titative coronary analysis) or 50–69% with FFR (fractional �ow reserve) ≤0.80 or stress echocardiography evi-
dence of regional ischemia). Signi�cant coronary stenosis for the purpose of our study was de�ned according to 
2017 US appropriate use criteria for coronary revascularization in patients with stable ischemic heart  disease21. 

Table 1.  Clinical and demographic data of the study population.

Parameter Value

Total number of patients 100

Mean age ± SD, years 60.3 ± 13.8

Men, n (%) 68 (68%)

Women, n (%) 32 (32%)

Body mass index (kg/m2) 21.6 ± 5.1

Diagnosis CAD

Class I NYHA 5 (5%)

Class II NYHA 84 (84%)

Class III NYHA 11 (11%)

Comorbidities

Arterial hypertension 53 (53%)

Diabetes mellitus 14 (14%)

Chronic heart failure, classes 1–2 36 (36%)

Coronary artery stenosis > 70% (n, %) 100 (100%)
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�e study design was approved by the Local Ethics Committee of the Research Institute for Complex Issues 
of Cardiovascular Diseases (approval letter No. 112 issued on May 11, 2018). All participants provided writ-
ten informed consent to participate in the study. Coronary angiography was performed by the single operator 
according to the indications and recommendations stated in the 2018 ESC/EACTS Guidelines on myocardial 
revascularization. �e presence or absence of coronary stenosis was con�rmed by the same operator using 
angiography imaging series according to the 2018 ESC/EACTS Guidelines on myocardial revascularization.

Angiographic images of the radiopaque overlaid coronary arteries with stenotic segments were selected and 
converted into separate images. An interventional cardiologist rejected non-informative images and selected 
only those containing contrast passage through a stenotic vessel. A total of 8325 grayscale images (100 patients) 
of 512 × 512 to 1000 × 1000 pixels were included for further study. Of them, 6660 (80%), 833 (10%), and 832 
(10%) images were used for training, validation, and testing respectively. In order to correctly estimate model 
performance, we did not randomly shu�e all 8325 images and then form data subsets. We �rst randomly choose 
patient series for the training, validation, and testing subsets in an 80:10:10 ratio, and then form those subsets. 
Such data split allows us to know that the validation and testing are done on the independent subsets of images 
and avoid bias in performance metrics. Since the training process is quite time-consuming, we excluded the 
usage of cross-validation for the models. Data were labeled using the LabelBox, a free version of SaaS (So�ware 
as a Service). It allows joint data labeling and subsequent validation by several specialists. Typical data labeling 
of the source images is shown in Fig. 1.

To analyse the source dataset, we estimated the size of the stenotic region computing the area of the bounding 
box. Similarly to the Common Objects in Context (COCO) dataset, we divided objects by their area into three 
types: small (area <  322), medium  (322 ≤ area ≤  962), and large (area >  962). 2509 small objects (30%), 5704 medium 
objects (69%), and 113 large objects (1%) were obtained in the input data. Since our data were unbalanced, we 
suppose that image analysis may be poorer on larger objects than on small and medium ones.

Figures 2 and 3 show the distributions of the absolute and relative stenotic areas. To generate the distribution 
of the absolute area, we estimated the absolute values of the bounding box stenotic areas in pixels. To generate 
the distribution of the relative area, we estimated the value of the area of the bounding box relative to the area of 

Figure 1.  Data labelling of the source images with the callouts of the detected stenotic lesions.

Figure 2.  Distribution of the absolute stenotic area in the input dataset.
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the entire image in percentages. �e dashed lines represent the mean values and standard deviations of the area. 
Based on the input data, the absolute stenotic area was 1942 ± 1699 pixels (Fig. 2). Since the size of the images 
from the input dataset varied within a certain range of values, we calculated the relative stenotic area. We selected 
images with normalized X and Y coordinates in the range of values [0; 1]. As a result, the relative stenotic area 
was 0.34 ± 0.27% (Fig. 3). As seen, the stenotic area is quite small compared to the area of the whole image that 
may confuse some detectors typically applied to detect objects in an unconstrained environment.

To determine the location of stenosis accurately, we evaluated the distribution of the stenosis coordinates 
along the vessel in the input images. We estimated the normalized coordinates of the center point of the bounding 
box around the stenotic lesion. Based on this assessment, a distribution map of the coordinates of the stenosis 
centers was generated and is shown in Fig. 4. Each hexagon on this map re�ects a number of the stenosis centers 
of the bounding box around the stenotic lesion. Distributing the coordinates highlights two centres with relative 
coordinates (0.50; 0.20) and (0.27; 0.27) along the stenotic segment. �e coordinates of the stenosis centers are 
evenly distributed without explicit outliers. �e latter should have a positive e�ect on training regressors based 
on neural networks that predict the coordinates of the bounding boxes.

Figure 3.  Distribution of the relative stenotic area in the input dataset.

Figure 4.  Distribution mapping of the stenosis density over the dataset (a) and an example of an angiography 
image with the labeled stenotic area (b).
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Methods
Models description. We applied machine learning algorithms to detect coronary artery stenosis on the 
coronary angiography imaging series (see “Source Data” section). We examined eight models with various 
architectures, network complexity, and a number of weights:  SSD22, Faster-RCNN23, and  RFCN24 object detec-
tors from the Tensor�ow Detection Model  Zoo25 based on  MobileNet26,27,  ResNet28,29, Inception  ResNet30 and 
 NASNet31,32. �e lightweight SSD MobileNet V1 and SSD MobileNet V2 enable real-time data processing. While 
Faster-RCNN Inception ResNet V2 and Faster-RCNN NASNet, with over 50 million weights, were the most 
complex models selected for the study. Table 2 shows a brief description of the models. Characteristics of neural 
networks, including mAP, are reported based on their training on the COCO dataset.

Model training. When training neural network models, their base con�guration is similar to that used to 
train on the COCO 2017 dataset. For the unambiguous comparison of the selected models, the total number of 
training steps was set to 100 equal to 100′000 iterations of learning. Regarding the loss functions, the weighted 
Smooth L1 loss (see equation 3  in33) was the localization loss, and the Weighted Focal Loss was the classi�cation 
 loss34. �e SSD-based models were trained using the cosine decay with the warm-up and exponential decay. 
When using these techniques, the learning rate gradually decreased depending on the learning step. It is also 
worth noting a distinctive feature of the SSD MobileNet V2 neural network, which is the use of the Hard Exam-
ple Mining  technique22,35. It allows getting additional samples of the negative class and then learns from them. 
Using additional samples o�en improves the accuracy of the stenosis location.

To train the abovementioned networks, we used models pre-trained on the COCO 2017 dataset. Using Ama-
zon SageMaker, we tuned given models and found their best versions through a series of training jobs run on the 
collected dataset. Having performed hyperparameter tuning based on Bayesian optimization strategy, a set of 
hyperparameter values for the best performing models was found, as measured by a validation mAP. Since the 
network architectures signi�cantly vary and include many parameters, we summarize the main characteristics 
of the training in Table 3. To train models, we used P2 (Nvidia Tesla K80 12 Gb, 1.87 TFLOPS) and P3 instances 
(Nvidia Tesla V100 16 Gb, 7.8 TFLOPS) from Amazon Web Services. We also divided the models into 4 groups 
according to their complexity for further comparison.

Serial changes in accuracy were obtained on the validation set during the training process. Two evaluation 
metrics were used to compare the performance of the selected neural networks. Precision, Recall, and F1-score 
were used to compare the classi�ers and the mAP metric was used to judge object  localization36. For mAP a 
prede�ned threshold value for Intersection over Union equal to 0.5 was used.

Table 2.  Brief characteristics of the use.

Model Inference time, ms mAP@ [0.5:0.95] Weights, mln Model size, Mb

SSD MobileNet V1 56 32 4.2 44

SSD MobileNet V2 31 22 6.1 19

SSD ResNet-50 V1 76 35 25.6 127

Faster-RCNN ResNet-50 V1 89 30 25.6 114

RFCN ResNet-101 V2 92 30 44.7 199

Faster-RCNN ResNet-101 V2 106 32 44.7 190

Faster-RCNN Inception ResNet V2 620 37 55.9 241

Faster-RCNN NASNet 540 – 88.9 416

Table 3.  Model training settings.

Model Input size Augmentation Batch size Type of LR LR

SSD MobileNet V1 640 × 640 × 3
Random horizontal �ip. Ran-
dom crop image

4 Cosine decay with warm up 0.04

SSD MobileNet V2 300 × 300 × 3
Random horizontal �ip. SSD 
random crop

4 Exponential decay 0.004

SSD ResNet-50 V1 640 × 640 × 3
Random horizontal �ip. Ran-
dom crop image

2 Cosine decay with warm up 0.04

Faster-RCNN ResNet-50 V1 600 × 600 × 3 Random horizontal �ip 2 Constant LR 0.0003

RFCN ResNet-101 V2 600 × 600 × 3 Random horizontal �ip 1 Constant LR 0.0003

Faster-RCNN ResNet-101 V2 600 × 600 × 3 Random horizontal �ip 1 Constant LR 0.0003

Faster-RCNN Inception ResNet 
V2

600 × 600 × 3 Random horizontal �ip 1 Constant LR 0.0003

Faster-RCNN NASNet 1200 × 1200 × 3 Random horizontal �ip 1 Constant LR 0.0003
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Figure 5 shows smooth changes in the mAP on the validation set during the training process. All models 
converge to a speci�c value of the asymptotic accuracy. SSD ResNet-50 V1 could achieve higher quality with 
longer training, but this would require more steps.

Results
Comparative assessment. Table 4 presents the results of the comparative study of the neural networks. In 
addition to the absolute values of the metrics, the relative values are also reported. �e metrics of SSD MobileNet 
V1 were used as a benchmark to compare with other models. Color scale formatting re�ects the distribution of 
models by their accuracy, training and inference times, and a number of weights, where deep blue shows the best 
value, and white—the worst. Figures 6, 7 and 8 show three basic metrics, the inference time, mAP, F1-score for 
the prediction of the stenotic lesion bounding box on an image.

�e inference time was estimated using the P3 instance (Nvidia Tesla V100 16 Gb, 7.8 TFLOPS) of Amazon 
Web Services. We concluded that the inference time directly depended on the complexity of the model and the 
total number of its weights. �us, Faster-RCNN Inception ResNet v2 and Faster-RCNN NASNet were the slow-
est in predictions. �eir mean processing times per one image were 363 and 880 ms, respectively. While testing 
the lightweight models based on the MobileNet backbone, we found that MobileNet V2 with a larger number of 
weights (6.1 mln) demonstrated superior inference time than Mobile Net V1 (4.2 mln). In general, MobileNet 
V2 had the most superior inference time than other models. �us, it may be used for predicting the location of 
stenosis in real-time.

In terms of the mAP metric and F1-score, Faster-RCNN Inception ResNet V2 was the most accurate model. 
�e mean Average Precision of this model on the validation set was 0.95, F1-score 0.96 with the inference time 
of 363 ms/image (≈ 3 frames per second). �e fastest and relatively lightweight SSD MobileNet V2 had the mean 
Average Precision of 0.83, F1-score 0.80 with an inference time of 26 ms/image (≈ 38 frames per second). Based 
on the obtained results, we concluded that RFCN ResNet-101 V2 is an optimal one to solve the set tasks. �e mAP 
of this model is 0.94, F1-score 0.96 and the inference time is 99 ms/image (≈ 10 frames per second). In terms of 
both classi�cation (F1 score) and localization (mAP) metrics, Faster-RCNN ResNet-101 V2, RFCN ResNet-101 
V2, and Faster-RCNN Inception ResNet V2 remain the most e�ective models for the task of stenosis detection. 
Additional performance metrics, such as precision and recall, are re�ected in Online Appendices F and G.

Model testing. �e capabilities of the selected neural networks are presented using the data of three patients 
with the referenced labeling (Fig. 9a–c). Detailed visualization for predictions is presented in Online Appendices 
H–J. �e models with the best values of the loss function and mAP were used for testing. 

Table 5 reports the best steps with the model optimal weights. Such localization metrics as Intersection over 
Union (IoU) and Dice Similarity Coe�cient (DSC) were also computed and shown.

Almost all models may accurately detect the location of stenosis. However, we faced several false positives 
while testing the Faster-RCNN NASNet model. In all three cases, this model detected the location of false stenotic 
segments with a probability of more than 90% in the right coronary artery (Fig. 9d) and the anterior descending 
artery (Fig. 9e, f) besides the reference stenotic region. SSD MobileNet V1 and SSD ResNet-50 V1 models failed 
to detect the location of stenosis in patient 1. SSD MobileNet V2 model demonstrated one of the best results 
in predicting the location of stenosis (Fig. 10). Despite the DSC metric of 0.65 in patient 3, it had the highest 
DSC metric in patients 1 and 2 (0.93 and 0.98, respectively). Additionally, the detectors based on the ResNet 
architecture, Faster-RCNN ResNet-50 V1 and Faster-RCNN ResNet-101 V2, should be noted. �e average DSC 
metric on the test data was 0.85 and 0.84, respectively.

Discussion
�e ultimate goal of our study is to develop a novel stenosis detection algorithm for patients with multivessel 
CAD, as they represent the most di�cult group for diagnosis and interpretation. We believe that automatic 
detection and grading of multivessel CAD may facilitate the operator work by minimizing the risk of misinter-
pretation and accelerate the decision-making regarding the proper treatment strategy. To date, the accuracy and 
certainty of interpreting coronary angiograms fully rely on the operator who needs to identify the location of the 
stenosis and describe individual coronary vasculature, including the diameter of the a�ected vessels, the length 
of the stenotic segments, the presence of any lateral branches, any shunts, tortuosity, etc.37. We have successfully 
tested our algorithm for detecting single-vessel CAD to assess its potential for the key task. Real-time detection 
of multivessel disease and its automatic grading is a more complex and multicomponent task. According to the 
obtained results, we concluded that the current version of our algorithm fully corresponds to the following key 
criteria—su�cient processing speed and detection accuracy.

Image processing speed. From the technical point of view, the speed of the algorithm for real-time detect-
ing coronary artery stenosis and grading its severity is one of the key parameters empowering accurate CAD 
diagnosis and treatment. Coronary angiography is an invasive procedure that is associated with radiologic expo-
sure, obviating repeated contrast injections, and limiting interventional cardiologists in their manipulations. In 
this respect, the ability to perform real-time detection of the stenotic lesions and their simultaneous grading 
in the cath-lab signi�cantly increases the diagnostic e�ciency (e.g. if the algorithm is su�ciently accurate, the 
operator may refuse additional contrast injection and proceed with stenting). Algorithms that generate predic-
tions slowly (inference time of 600–800 s per angiography projection) are limited in use. �ey should be used 
separately, a�er coronary angiography, and may serve for o�-line research descriptive tasks. Since the prolonged 
door-to-balloon time signi�cantly a�ects the patient’s  outcome38 and is directly associated with  mortality39, the 
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minimization of time spend on diagnosis will facilitate the decision-making process, especially for severe cases 
(e.g. myocardial infarction).

Figure 5.  Dynamics of the mAP metric over the training process.
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�e existing research teams mainly focus on the accuracy of the algorithms rather than their speed. Most of 
them do not �t for routine medical image processing. Some of the recently reported image processing algorithms 
are generally perceived as slow with a high “cost” of frame analysis: Fang et al. reported the inference time vary-
ing from 1.1 to 11.87  s10; M’Hiri et al.—20  s13; and Wan et al.—63.3 s. to build the skeleton of the artery and 
70.9 s. for the subsequent processing  cycle9. Other studies have demonstrated a faster data analysis, spending 
almost 1.8 s per  artery17, and 32 ± 21 s per each stenotic  segment20. However, these algorithms use computed 
tomography imaging series, which are commonly obtained during routine preoperative management but not 
urgently. �erefore, they are spending much more time on the descriptive analysis, empowering the decision-
making process. Yang et al. have recently reported the use of convolutional neural networks for segmenting 

Table 4.  Comparative study of the selected models.

Model Weights, 

mln

Training time, 

hours

Inference time,

ms

F1-score mAP@0.5

Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel.

SSD 

MobileNet V1
4.2 1.0× 16 1.0× 43 1.0× 0.72 1.0× 0.69 1.00×

SSD 

MobileNet V2
6.1 1.4× 20 1.3× 26 0.6× 0.80 1.10× 0.83 1.20×

SSD 

ResNet-50 V1
25.6 6.0× 47 3.0× 61 1.4× 0.73 1.01× 0.76 1.09×

Faster-RCNN 

ResNet-50 V1
25.6 6.0× 28 1.8× 98 2.3× 0.88 1.21× 0.92 1.33×

RFCN 

ResNet-101 V2
44.7 10.5× 55 3.6× 99 2.3× 0.96 1.32× 0.94 1.36×

Faster-RCNN 

ResNet-101 V2
44.7 10.5× 55 3.5× 118 2.7× 0.96 1.32× 0.94 1.35×

Faster-RCNN 

Inception ResNet V2
55.9 13.2× 93 6.0× 363 8.4× 0.94 1.30× 0.95 1.38×

Faster-RCNN 

NASNet
88.9 21.0× 147 9.5× 880 20.4× 0.82 1.13× × 1.22×

Figure 6.  �e inference time of the selected neural network models.
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major coronary  arteries18. �e algorithm spends 60 ms per angiogram, but it does not predict stenotic lesions 
of other small vessels.

�ere are no strict requirements for the processing speed of the angiography imaging series. It depends mainly 
on individual application settings. �us, algorithms developed to support diagnostic angiography, performed 
with the aim of subsequent emergent blood �ow restoration, should correspond to the following requirements: 
input video frame rate of 7.5–15 frames per  second40,41, the duration of the procedure less than 25 min, and 
individual preferences of the  operator36. We concluded that neural network architectures with an inference time 
of less than 66 ms are suitable for this task (Table 4. SSD MobileNet V1, SSD MobileNet V2, and SSD ResNet-50 
V1), as they process at least 15 frames per second. However, their performance was assessed on a relatively simple 
case requiring detecting the location of stenosis without calculating its quantitative parameters. �us, we expect 
that a detailed analysis of multivessel CAD may require a much longer time. Neural network models with the 
inference time of 98–118 ms per frame (Table 4. Faster-RCNN ResNet-50 V1, RFCN ResNet-101 V2, and Faster-
RCNN ResNet-101 V2) may be assigned to the “grey zone”, processing 8–10 frames per second. �eir resultant 
performance is insu�cient, but they can be used in the cath-lab with the detection lag. �e heavyweight models 
with the inference time of over 360 ms per frame (Table 4. Faster-RCNN Inception ResNet V2 and Faster-RCNN 
NASNet), do not fully correspond to the needs of the real-time angiography analysis, as they will fail to provide 
adequate productivity in complex cases.

CNN performance correlates with the complexity of their architectures. �e number of weights is the foremost 
parameter responsible for the inference time. An increase in the number of weights has resulted in improved 
inference time (Table 4). �erefore, a number of CNN developers (e.g. GoogLeNet, ResNet, MobileNetV2) aim 
at minimizing the number of weights and size of neural networks for real-time applications, compacting them, 
and reducing the requirements for hardware  performance45,46. Di�erent approaches to these modi�cations have 
been reported, including neural network compression accelerating the inference time: tensor decomposition, 

Figure 7.  �e mAP metric of the selected neural network models.

Figure 8.  �e F1 score of the selected neural network models.
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 quantization47,  pruning48, teacher-student  approaches49, speci�c layer pruning and  fusions50, using many fewer 
proposals than is usual for Faster R-CNN18, Low-rank  decomposition51.

Accuracy. Detection accuracy is another important parameter indicative to the quality of the algorithm, par-
ticularly for borderline cases, when the treatment strategy is not clearly de�ned and false positives may mislead 
the Heart Team to choose a more invasive treatment  option38. �erefore, it seems necessary to discuss these two 
cases separately—false positives and false negatives in the detection of stenosis. A false positive is an error in 
data reporting when an algorithm detects incorrectly the presence of stenosis. It may result in choosing coronary 
artery bypass gra�ing (CABG) rather than PCI since the operator relies on the misinterpreted data regarding 
the multiple stenotic lesions that increase individual SYNTAX  Score38,42. �us, we should take seriously false 
positives produced by the Faster-RCNN NASNet network, that misinterpreted the clinical states of three control 
patients (Fig. 9d–f). Alternatively, a false negative is an error in data reporting when an algorithm reports the 

Figure 9.  Example of the false positive predictions obtained using Faster-RCNN NASNet neural network for 
three test patients with the referenced labelling.

Table 5.  Best steps with optimal model weights.

Model Best step

SSD MobileNet V1 24

SSD MobileNet V2 99

SSD ResNet-50 V1 100

Faster-RCNN ResNet-50 V1 84

RFCN ResNet-101 V2 97

Faster-RCNN ResNet-101 V2 94

Faster-RCNN Inception ResNet V2 83

Faster-RCNN NASNet 95
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absence of the existing stenosis. However, false negatives are less serious than false positives, as they can be lev-
eled out during stenting by repeated contrast injection that will visualize the missed stenosis. �is type of error 
was encountered for the two selected neural networks, the lightweight SSD MobileNet V1 and SSD ResNet-50 
V1. Both these models showed the worst mAP of 0.69 and 0.76; F1-score of 0.72 and 0.73, respectively. Since 
these neural networks have demonstrated the worst mAP and F1-score, they are considered to be unpromising 
candidates for further optimization. Other models with an mAP of 0.94–0.95 and F1-score > 0.9 (Table 4) have 
room for further acceleration to detect multivessel CAD.

Resultant values of the classi�cation and localization metric parameters are generally consistent with the 
recently published studies. Fang et al. reported an F1-score of 0.81–0.8910. Similar results were shown by Wan 
et al.9 and Zheik et al.17 equal to 0.83–0.94 and 0.75–0.88, respectively. While Yang at el. demonstrated the range of 
F1-score from 0.64 to 0.9424. Faster-RCNN InceptionResNet-v2 has been reported as the most accurate (F1-score 
up to 0.94) in a similar study focusing on exploring the performance of CNN architectures for detecting large 
 arteries24. In our study, F1-score ranged from 0.72 to 0.96. �e direct comparison of mAP values with those 
obtained in other studies is complicated by the di�erent underlying performance metrics, as the Dice coe�cient 
was reported. �erefore, we computed the Dice Similarity Coe�cient that varied from 0.64 to 0.93 on the valida-
tion set and found that our data are in line with the previously reported studies: the Sensitivity metric varying 
from 0.59 to 0.72  in19, the Dice Similarity Coe�cient of 0.75  in13 and 0.74 to 0.79  in12.

We found that RFCN ResNet-101 V2 neural network provides the best speed/accuracy trade-o�. In addition, 
the task for real-time CAD detection may be progressed through its modi�cation and hardware  upgrade18,47–51. 
�is balance may be achieved for other high-speed CNNs (SSD MobileNet V2) by improving their accuracy. Both, 
the accuracy and the number of errors, may potentially be improved using traditional approaches, including an 
increase of the training set size and its heterogeneity in addition to the use of more scalable and e�cient neural 
network architectures (e.g. E�cientDet or CenterNet  detectors43,44).

Conclusion
�e imbalance between accuracy and computer performance has been previously limited to the introduction 
of an automatic CAD detection algorithm in clinical practice. We have demonstrated that the development of 
hardware performance and appearance of the recent neural network architectures may signi�cantly reduce the 
labor-intensive process during conventional invasive coronary angiography. We trained eight promising detectors 
based on di�erent neural network architectures (MobileNet, ResNet-50, ResNet-101, Inception ResNet, NAS-
Net) to detect the location of stenotic lesions using angiography imaging series and assessed their performance. 
Out of them, three neural networks have demonstrated superior results. Faster-RCNN Inception ResNet V2 is 
the most accurate to detect single-vessel disease. It demonstrates the mean Average Precision of 0.954, and the 
prediction rate of 363 ms per image (≈ 3 frames per second) on the validation set. �e relatively lightweight SSD 
MobileNet V2 model is the fastest with an mAP of 0.830 and a mean prediction rate of 26 ms per image (≈ 38 
frames per second). RFCN ResNet-101 V2 has demonstrated an optimal accuracy-to-speed ratio. Its mAP is 
0.94, and the prediction speed is 99 ms per image (≈ 10 frames per second). �e resultant performance-accuracy 
balance using the described neural networks has con�rmed the feasibility of real-time CAD tracking supporting 
the decision-making process of the Heart Team. Real-time automatic labeling has opened new horizons for the 
diagnosis and treatment of complex coronary artery disease.

Figure 10.  Example of the best prediction compared to reference labeling: data of patient 2 processed with SSD 
MobileNet V2 network.
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