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Abstract. This paper describes a real-time stereo vision system that is required to support high-level object based

tasks in a tele-operated environment. Stereo vision is computationally expensive, due to having to find corresponding

pixels. Correlation is a fast, standard way to solve the correspondence problem. This paper analyses the behaviour

of correlation based stereo to find ways to improve its quality while maintaining its real-time suitability. Three

methods are suggested. Two of them aim to improve the disparity image especially at depth discontinuities, while

one targets the identification of possible errors in general. Results are given on real stereo images with ground truth.

A comparison with five standard correlation methods is provided. All proposed algorithms are described in detail

and performance issues and optimisation are discussed. Finally, performance results of individual parts of the stereo

algorithm are shown, including rectification, filtering and correlation using all proposed methods. The implemented

system shows that errors of simple stereo correlation, especially in object border regions, can be reduced in real-time

using non-specialised computer hardware.
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1. Introduction

1.1. Real Time Stereo Vision

Stereo vision systems determine depth (i.e. distance to

real world objects) from two or more images which

are taken at the same time from slightly different view-

points. The most important and time consuming task for

a stereo vision system is the registration of both images,

i.e. the identification of corresponding pixels. Two pix-

els are corresponding when they represent the same

point in the real world. Area-based stereo attempts to

determine the correspondence for every pixel, which

results in a dense depth map. Correlation is the basic

method used to find corresponding pixels. Several real

time systems have been developed using correlation-

based stereo (Konolige, 1997; Matthies et al., 1995;

Volpe et al., 1996). However, correlation assumes that

the depth is equal for all pixels of a correlation window.

This assumption is violated at depth discontinuities.

The result is that object borders are blurred and small

details or objects are removed, depending on the size of

the correlation window. Small correlation windows re-

duce the problem, but increases the influence of noise,

which leads to a decrease of correct matches (Kanade

and Okutomi, 1994).

1.2. Objectives and Constraints

This research is concerned with the development of a

real-time stereo vision system for a tele-operated mo-

bile robot. The system must be suitable for the de-

tection, recognition and tracking of objects and their

relative positions, to support high-level object based

tasks in the local environment of a tele-operated mo-

bile robot. Furthermore, non-specialised cameras and

computer hardware should be employed, because the

robot will be used in harsh environments and might be

damaged or even destroyed.



230 Hirschmüller, Innocent and Garibaldi

Considering these requirements, it has been aimed

for a system that is fast (i.e. 5–10 frames/s) but also

accurate enough to discriminate objects in the local

working environment (i.e. up to several meters) so that

they can reliably be detected and recognised.

Correlation-based stereo vision fulfils all given re-

quirements. However, it has in general problems at

depth discontinuities. It is assumed that the location

of object borders (i.e. depth discontinuities) is impor-

tant to retrieve proper object shapes for segmentation

and recognition purposes. This paper is concerned with

the aspect of improving correlation-based stereo, by

reducing errors especially near object borders while

maintaining its real-time suitability.

As a general rule, it is assumed that it is better

to invalidate uncertain matches in order to reduce

errors as long as correct matches are not rejected

radically.

1.3. Existing Methods

The outcome of correlation is influenced by several pa-

rameters. Firstly, the correlation measure determines

how the similarity between two areas is determined.

Most common is the use of Cross Correlation or

the Sum of Absolute or Squared Differences. Zabih

and Woodfill introduced the non-parametric Rank

and Census measures (Zabih and Woodfill, 1994).

These measures rely on the numerical ordering of in-

tensities and not on their values. This makes them

less affected by noise and outliers. Results show

slight improvements over standard correlation meth-

ods. Section 4 uses these five methods as a base for

comparison.

Another correlation parameter is the shape of areas,

which are correlated. Usually, rectangular windows are

used for the sake of computational performance. The

size of the correlation window determines the amount

of pixels used for correlation. The effect of noise is re-

duced by increasing the number of pixels and thus the

size of the correlation window. However, bigger cor-

relation windows are more likely to cover areas where

depth varies. A change in depth results in a change of

disparity so that only parts of the windows correspond

to each other. This leads to errors at object bound-

aries. Kanade and Okutomi address this problem by

changing the size and shape of rectangular correlation

windows, according to local disparity characteristics

(Kanade and Okutomi, 1994). This adaptive correlation

window approach shows a decrease in errors at object

boundaries. However, the algorithm is too slow for real

time usage on non-specialised hardware according to

results reported by Boykov et al. (1998).

There are computationally efficient multiple window

methods, which can be seen as simplifications of the

adaptive window approach. A common configuration is

the use of 9 rectangular correlation windows that have

the same size, but different positions for the point of

interest (i.e. in every corner, in the middle of every side

and in the middle, as usual). Fusiello et al. and Little re-

port for example about this configuration (Little, 1992;

Fusiello et al., 1997). Correlation is done with all 9 win-

dows for every pixel and every disparity, but only the

result of the best window is used. This method offers

an improved behaviour at depth discontinuities com-

pared to standard correlation and is suitable for real

time (comparisons are shown in Section 4).

Boykov et al. (1998) presented a variable window

approach, which gives good results at depth disconti-

nuities. The method chooses an arbitrarily shaped win-

dow that varies for every pixel. The algorithm seems to

be suitable for a real time implementation. However,

the method suffers from a systematic error as identified

by its authors. It increases the size of objects in some

cases by including nearby low texture areas.

Energy optimisation methods like the Maximum

Likelihood stereo algorithm (MLMHV) from Cox

et al. (1996) perform generally much better (Szeliski

and Zabih, 1999). However, the method suffers con-

siderably from horizontal streaking, resulting from a

one dimensional optimisation individually along each

scan-line rather than a much more time consuming

two dimensional optimisation. Dynamic programming

has been used to improve the speed. Nevertheless,

the algorithm seems to be too slow for a real time

implementation.

The cooperative stereo algorithm from Zitnick and

Kanade demonstrates that the amount of errors can be

reduced dramatically, if execution time is not crucial

(Zitnick and Kanade, 1999, 2000). The method results

in up to 98% correct matches on the stereo images

from the University of Tsukuba. However, the itera-

tive method is far too slow for any current real time

application.

This overview can only cover a few methods out of

a vast amount published in the stereo vision literature.

Nevertheless, several important methods were shown,

which address the weak behaviour of stereo correlation

at object borders by using different approaches.
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1.4. A New Proposal

Simple correlation exhibits a systematic error, i.e. blur-

ring of object borders. However, the assumed location

of a computed depth discontinuity is still near (i.e.

within the size of the correlation window) to the lo-

cation of the real depth discontinuity, as long as the

object is bigger than the size of the correlation win-

dow. Objects, which are in their width or height smaller

than the correlation window, might just vanish. Further-

more, correlation has proven to be fast enough for a real

time implementation and has a regular structure with

fixed execution time, which is independent of the scene

contents.

This paper proposes three novel improvements to

tackle specific problems of correlation.

1. A multiple window approach that decreases errors

at object borders.

2. A correlation function error filter that invalidates

uncertain matches and reduces general errors.

3. A border correction method that improves object

borders in a post-processing step further.

All these improvements are still suitable for real time

applications and can reduce errors by 50% on the used

test images.

Section 2 analyses the problems of correlation.

Sections 3.1, 3.2 and 3.3 show attempts to tackle typi-

cal correlation problems. Section 3.4 gives an overview

of the whole algorithm. All methods were analysed

for their quality and compared to standard correlation

methods, using real stereo images with ground truth

(Section 4). Finally, Section 5 discusses an optimised

implementation of the whole algorithm and gives de-

tailed results on its performance.

2. Problems of Stereo Correlation

2.1. General Behaviour

Correlation works by using a usually fixed, rectangular

window around the pixel of interest in the first im-

age. The window is correlated with a second window,

which is moved over all possible positions in the sec-

ond image. The possible positions are defined by the

minimal allowed distance between the camera and an

object, which gives the maximum disparity. The posi-

tion where correlation has the highest value determines

the pixel in the second image that corresponds to the

Figure 1. Correlation at object border.

pixel of interest. Bigger correlation windows increase

the reliability by averaging over a bigger area, thus re-

ducing the effect of noise.

However, if the correlation window overlaps a depth

discontinuity, then a part of the window will affect the

result arbitrarily. Figure 1 shows a situation where the

left part of the window contains the background, which

is different in both windows. Consequently, this part

of the window introduces an error in the calculation.

Furthermore, it should be noted that the left part of the

correlation window in the left image is at least partly

occluded in the right image. The size of the occluded

part depends on the disparity difference and the size of

the correlation window.

The use of a smaller correlation window reduces the

problem, because a smaller window does not overlap

the depth discontinuity to the same extent. Generally,

the choice of the correlation window size is a trade

off between increasing reliability in areas with con-

stant depth and decreasing errors in areas where depth

changes.

2.2. Behaviour at Depth Discontinuities

Whether the introduced error at a depth discontinuity

can be neglected or not depends on the similarity be-

tween the object and the occluded and visible part of

the background, which is covered by the correlation

window. Figure 2 shows a situation where the pixel of

interest is just outside the object.

The correct corresponding position for the correla-

tion window R would be L . It is necessary to split the

correlation window into two halves to understand why

sometimes the correlation of R with L̃ gives a higher

response than R with L . This results effectively in an

extension of the object at its left border. Let c(a, b)

be the correlation value of the area a and b, where a
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Figure 2. Typical decision conflict at object border.

low value corresponds to a high similarity. The values

c(R1, L1) and c(R2, L̃2) should be very low, because

the corresponding regions are correctly matched. The

choice between the position L and L̃ depends on the

amount of similarity of R2 and L2 and the similarity

of R1 and L̃1. The areas L2 and L̃1 are occluded in the

right image. If c(R2, L2) is higher than c(R1, L̃1), then

the wrong position L̃ will be chosen. The area R1 is

bigger in this example and has a higher effect in the

correlation process. However, a small amount of large

errors can have a higher effect than a large amount of

small errors, depending on the correlation measure. Im-

age noise will affect the choice, but it depends mostly

on the similarity between the occluded background,

visible background and object.

Usually, the background continues similarly and L1

would be similar to L̃1, and L2 dissimilar to L̃2. This

leads to the presumption that objects usually appear

bigger. However, shadows or changing texture near

object borders can inverse the situation, so that the

object would become smaller. The same scenario can

be drawn for right borders and leads to fuzzy, blurred

object borders.

The situation is slightly different for top or bottom

borders of objects, because there is no occluded area

in the standard case of rectified images. In this case,

epipolar lines correspond to image rows and the object

and background shift horizontally against each other.

Whether a match is correct depends on similarities be-

tween the horizontally shifted background areas and

horizontally shifted object areas as well as the influ-

ence of noise. The blurring effect is expected to be less

severe than at left and right object borders, because the

similarity between the background areas is usually high

as well as the similarity of object areas. Furthermore,

there is no occluded area as found at left or right object

borders. Consequently, there is no inherent asymme-

try as with vertical object borders. Thus, the matching

process is only influenced by image noise.

A single depth discontinuity that crosses the correla-

tion window is only a special case. Generally the depth

could change for every pixel in the window. However,

it is assumed that the depth varies usually smoothly at

most places within real images, except at object bor-

ders (Marr and Poggio, 1979). Thus, the case above is

an important special case. Slanted surfaces were not

especially considered here. However, the theory could

be adapted to incorporate several small depth disconti-

nuities within a correlation window as well.

2.3. Experimental Confirmation

The predicted behaviour of correlation at object borders

can be verified using the stereo image set with ground

truth from the University of Tsukuba (see Fig. 3). The

disparity image has been calculated by filtering both

source images with the Laplacian of Gaussian (LoG)

with a standard deviation of 1.0. The Sum of Absolute

Differences (SAD) with a window size of 9 × 9 pixels

has been used for correlation. The left/right consistency

check (Fua, 1993) identified inconsistencies and inval-

idated the corresponding disparity values. Only valid

values have been compared to the ground truth and only

values whose disparity differed by more than one have

been considered as errors (Szeliski and Zabih, 1999).

Each error that appears near a depth discontinuity in

the ground truth (i.e. within the size of a correlation

window) is considered as a border error. Table 1 shows

a summary of results.

Border errors are further categorised according to

the kind of border (i.e. left, right, top or bottom) and

if the error identified the background wrongly as ob-

ject (i.e. increased the size of the object) or identified

the object wrongly as background. Table 2 shows the

categorised border errors. The third column describes

the maximum percentage of error that would be possi-

ble in one category on the Tsukuba images (i.e. in the

worst possible case in which all disparities are wrong).

This provides the base to compare different categories

with each other as it measures the amount of borders

of a certain kind in the images. The last column gives

the fraction of the error (i.e. the sum of the first two

columns) and the maximal possible error in the con-

sidered category.

The fraction shows that the amount of errors at the

left and right object borders is indeed higher than the

amount of errors at top and bottom borders. Further-

more, most errors identify the background near objects

wrongly as object so that objects appear horizontally
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Figure 3. The left image and the ground truth from the University of Tsukuba.

extended. This confirms the prediction of the theoreti-

cal analysis. However, this test has only been performed

on one stereo image pair. More data would be needed

to establish statistically valid results.

The third biggest category are errors which identify

the right part of an object wrongly as background. Cer-

tain places in the Tsukuba images can be identified,

which are prone to this kind of error, like the right side

of the upper tin. The background at the right side of

the upper tin is a white poster in the left image, while

the right image shows a gap between the tin and the

poster, which is filled by darker background. The oc-

cluded background intensity level is more similar to

the tin than to the visible background (i.e. the white

Table 1. Results of SAD correlation

on Tsukuba images.

Correct values 82.97%

Invalid values 11.03%

Errors at borders 4.53%

Other errors 1.47%

Table 2. Errors at borders, using SAD on Tsukuba images.

Wrong Wrong Maximum Fraction

Border object (%) background (%) error (%) (see text)

Left 1.67 0.19 8.35 0.22

Right 1.73 0.40 8.51 0.25

Top 0.14 0.04 3.61 0.05

Bottom 0.19 0.17 3.31 0.11

poster). According to the theory, this should lead to an

object border, which is moved inside the object (i.e.

to the left). Figure 10 in Section 4 confirms that the

right side of the tin appears to be wrongly shifted to

the left.

3. Proposals of Improvements

3.1. Multiple Supporting Windows

Correlation windows that overlap a depth discontinu-

ity introduce an error into the correlation calculation.

The error can be reduced by only taking those parts

of a correlation window into consideration that do not

introduce errors. However, this has to be done system-

atically and comparably, as described below.

Figure 4(b) shows a configuration with one small

window in the middle (C0), surrounded by four partly

overlapping windows (C1i ). The correlation value C

can be computed by adding the values of the two best

surrounding correlation windows C1i1
and C1i2

to the

middle one. This approach can also be seen as using a

small window C0 and supporting the correlation deci-

sion by four nearby windows.

C = C0 + C1i1
+ C1i2

(1)

Another configuration using 9 supporting windows

is shown in Fig. 4(c). The correlation value in this case

is calculated by adding the four best surrounding cor-

relation values to the middle one.

C = C0 + C1i1
+ C1i2

+ C1i3
+ C1i4

(2)



234 Hirschmüller, Innocent and Garibaldi

Figure 4. Configurations with multiple windows.

The approach can be extended by adding another

ring of surrounding windows as shown in Fig. 4(d).

The correlation value for the 25 supporting windows

configuration is calculated by using the four best values

of the middle surrounding ring and the eight best values

of the outer ring.

C = C0 + C1i1
+ · · · + C1i4

+ C2k1
+ · · · + C2k8

(3)

It can be seen that it is possible for these correlation

windows to adapt to the local environment by assem-

bling a big correlation window out of smaller ones.

The blurring effect should be reduced as only the small

middle window C0 is always used and may overlap the

depth discontinuity. All other parts can adapt to avoid

an overlap with the depth discontinuity. Nevertheless, a

good correlation behaviour is still maintained because

of the big area that is covered using the best neighbour-

ing windows.

The measure for calculating the correlation value of

the individual windows can be selected as needed. The

Sum of Absolute Differences (SAD) is very fast to cal-

culate as it does not require multiplications compared

to Sum of Squared Differences (SSD) or Normalised

Cross Correlation. Furthermore, it gives good results

and was therefore chosen for other real time stereo sys-

tems (Konolige, 1997; Matthies et al., 1995).

The calculation of C seems to be computationally

costly as it needs to be done for all image pixels at all

possible disparities. However, an implementation can

make use of the same optimisations proposed for stan-

dard correlation (Faugeras et al., 1993) to compute the

individual windows, which are all the same size. The

correlation step alone involves to calculate for every

pixel at every disparity 2 absolute differences for the

SAD measure and additionally 4 additions and subtrac-

tions to calculate the final correlation value. Operations

for loading data from memory and storing results back

are not considered, as well as the overhead of the loop.

The multiple window approach requires additionally

to select the best surrounding correlation windows and

to calculate a sum. The selection of the best windows

is costly, as it requires a sorting algorithm. However,

an implementation can take advantage of the fact that

the best values do not need to be sorted themselves.

Selecting the two best values out of four as required by

the configuration with 5 windows can be implemented

with 4 comparisons and 2 additions. The configuration

using 9 windows would require 16 comparisons and 4

additions and with 25 windows, 80 comparisons and

12 additions (i.e. see Appendix A.1).

The configuration using 5 windows seems to require

the same amount of time as the correlation phase, ac-

cording to this theoretical consideration. The config-

uration using 9 or 25 windows would require several

times more processing time. Consequently, the con-

figuration using 5 windows is suitable for a real time

implementation.

Appendix A.1 shows the algorithm in detail and ex-

plains parallel implementations on modern processor

architectures.

3.2. Filtering of General Errors

The determination of a disparity value involves cor-

relating the window in the first image with windows

at all disparities d in the second image. The result-

ing correlation values C form a correlation function as

shown in Fig. 5. The disparity at which the correlation

function is lowest corresponds with the place of high-

est similarity.1 The left/right consistency check (Fua,

1993) uses the place of highest similarity in the second

image and then moves the correlation window of the

first image over all possible disparities, which gives an-

other correlation function. The disparity is considered

to be valid if the minimum of the second correlation

function corresponds to the same disparity as the mini-

mum of the first correlation function.

The left/right consistency check is a very effective

mean to identify places where correlation is contra-

dictory and thus uncertain. This is usually the case at

occlusions (Fusiello et al., 1997). An analysis of the
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Figure 5. A typical correlation function. The minima C1 is the place

of highest similarity.

correlation function can further help to identify uncer-

tainties. A nearly flat correlation function corresponds

to areas with low texture. A function with several min-

ima indicates several good places which can be caused

by repetitive texture. In these cases image noise can

easily lead to wrong decisions. Let C1 be the minimum

correlation value and C2 the second lowest correla-

tion value. C2 should not be a direct neighbour of C1,

because the best place for correlation usually lies be-

tween pixels. If C1 and C2 are direct neighbours, then

they would represent neighbouring pixel positions of

the same minimum and not the position of the lowest

and second lowest minimum. The relative difference

Cd can be calculated as:

Cd =
C2 − C1

C1

(4)

A low Cd indicates possible problems. It is assumed

that many errors will be caught by invalidating all val-

ues whose Cd is below a certain threshold for the cor-

relation function. However, the threshold needs to be

set empirically, depending on the constraints of the ap-

plication.

Moravec’s ‘Interest Operator’ offers a way of in-

validating low texture areas before correlation is per-

formed (Moravec, 1977). However, the method de-

scribed above considers the image directly through

the correlation function, which should be more accu-

rate. Secondly, problems with repetitive like texture are

treated at the same time.

An implementation of the error filter needs to select

the second best correlation value, to calculate the rela-

tive difference between the best and second best value

and to use the threshold to reject uncertain values. The

selection of the second best correlation value is as ex-

pensive as the search of the best correlation value that

has always to be done. The operation can be well imple-

mented in parallel on modern processor architectures.

3.3. Border Correction Filter

The behaviour of stereo correlation at object borders

depends on local similarities. In Section 2.2 was shown

that most errors appear at left and right object borders

and extend the size of objects. This is a systematic error

that is typical for correlation. A correction of this error

would improve the shapes of objects significantly.

After the disparity image is calculated, vertical dis-

parity gradients can be discovered by comparing hori-

zontally neighbouring disparity values. A positive dis-

parity step represents a calculated left object border,

while a negative step represents a calculated right ob-

ject border. The real position of the object border is

usually within the distance of half the size of a corre-

lation window, according to the theory in Section 2.2.

However, usually some filters are used. For example the

left/right consistency check, which invalidates many

occluded disparity values near left object borders (Fua,

1993). For the purpose of identifying disparity steps,

the lowest neighbouring value of an invalidated area

is propagated through the invalid area (Fusiello et al.,

1997).

Figure 6 shows a situation of a positive disparity step.

The dotted line marks the position of the calculated left

object border. The calculated object border is assumed

to go always vertical through the correlation window,

for simplicity of calculation. The pixel of interest in

the middle of the correlation window corresponds to

the higher disparity of the object, while all pixels to its

left have the lower disparity of the background. If the

calculated border is correct, then only the correlation

c(R2, L̃2) is correct for a correlation of R with L̃ . The

correct partner for R1 would be L1, which is shifted to

Figure 6. Situation where L̃ has been chosen. This is correct, if the

real border is at B1, but wrong if it is at B2.
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the left by a distance that corresponds to the disparity

difference between the object and the background. All

pixels between the right border of L1 and the left border

of L̃2 would be occluded.

However, the real object border is usually a few pix-

els further left or right and in general not vertical. The

direction in which the real object border is, can be iden-

tified by comparing c(R1,L1) and c(R2,L̃2). Correla-

tion windows commonly have an odd size so that they

are symmetric around its point of interest. To compare

both values properly, the size of both halves of the cor-

relation window is made equal by increasing the width

of the left half window by one pixel. If the real border

corresponds to position B1, then the value c(R2,L̃2)

should be low because it is completely correct, while

c(R1,L1) should be high because only a part of R1 does

really correspond to L1. The situation is vice versa if

the real position of the border corresponds with B2.

Finally, if the position of the real border goes through

the middle of the correlation window, both correlation

values are equally low apart from image noise.

Consequently, the values c(R1,L1) and c(R2,L̃2) are

calculated, while moving the windows in both images

simultaneously to the left and right. The position where

c(R1,L1) has the same amount as c(R2,L̃2) is searched.

However, this position is in general between pixel coor-

dinates. As an approximation, the pixel position where

the difference between c(R1,L1) and c(R2,L̃2) is low-

est is used as the position of the correct object border.

The disparity values need to be corrected accordingly.

In practise the situation can be much more complex.

The depth might vary not only once, but several times

within a small area, due to slanted objects. This might

confuse the correction algorithm as the assumption of

constant depth within half of a correlation window is

again violated. However, the case above is assumed to

occur often and thus justifies this special treatment.

The computational expense is quite low compared to

the correlation stage, because only places where object

borders are assumed need to be inspected. Typically,

processing the Tsukuba stereo image pair results in less

than 5% of the pixels, which are assumed to be object

borders. Some of these are actual border pixels and the

rest are errors. In contrast, correlation is performed at

every pixel and for all possible disparities.

The structure of the border correction algorithm is

outlined in Appendix A.2 in pseudo code. The calcu-

lated disparity image as well as both rectified source

images and the size of the used correlation window

serve as input to the algorithm.

Figure 7. Overview of a standard correlation algorithm with new

methods shown in grey (see text for description).

3.4. Summary of the Whole Algorithm

The improvements, which have been suggested in the

last sections can be included into the framework of a

standard correlation algorithm as shown in Fig. 7. The

source images are first rectified and aligned, so that

the epipolar lines correspond to image rows and the

image rows with the same number correspond to each

other. Next, the Laplacian of Gaussian is used as a

pre-filter.

Correlation can be done by using optimisation tech-

niques as suggested by Faugeras et al. (1993). The

correlation values are calculated row by row for all

disparities at all pixels and stored temporarily for the

combination step. In the combination step, the corre-

lation values of the neighbouring 5, 9 or 25 windows

are used to calculate the combined correlation value as

proposed in Section 3.1. The results are stored in two

dimensional arrays for every image row. Each array

contains the combined correlation value for all pixels

and all disparities.

The disparity of a pixel is selected by searching the

lowest correlation value for one pixel. The error filter

that was proposed in Section 3.2 additionally searches

for the second lowest value and calculates the relative

difference as a measure of uncertainty. Disparity values

whose difference are below a threshold are rejected as

uncertain.
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The left/right consistency check that was introduced

by Fua matches pixels from the right image back to the

left image and identifies many errors, which are caused

by occluded pixels near left object borders (Fua, 1993).

Sub-pixel interpolation is done to increase the depth

resolution, by using the three correlation values around

the position of the calculated disparity and fitting a

quadratic curve through them. The minimum of the

curve corresponds to the sub-pixel disparity.

Finally, the border correction method modifies the

disparity image by horizontally shifting assumed object

borders. This was proposed in Section 3.3.

The overview above shows all functions as separate

steps. However, for memory efficiency, it is useful to

interleave the steps from correlation until sub-pixel in-

terpolation, so that one image row is processed by all

steps before the next image row is considered.

4. Qualitative Assessment

4.1. Experimental Setup and Analysis

A stereo image pair from the University of Tsukuba

(Fig. 3 in Section 2.3) and an image of a slanted ob-

ject (Fig. 8) from Szeliski and Zabih (1999) have been

used for evaluation. Both are provided on Szeliski’s

web-page.2 The image of the slanted object is very

simple. However, it is expected to compensate for the

lack of slanted objects in the Tsukuba images.

All given disparity images are enhanced for visual

analysis by using the full intensity range for showing

the used disparities range (i.e. 32 disparities). Light

Figure 8. The left image and the ground truth of a slanted object from Szeliski and Zabih.

grey is used for high disparities (i.e. close objects),

whereas darker grey corresponds to smaller disparities.

Black is used in the disparity images for values that are

rejected by the algorithm as being invalid.

All disparities that are marked as invalid have been

ignored for comparison with the ground truth. Dispar-

ities that differ by only one from the ground truth are

considered to be still correct (Szeliski and Zabih, 1999).

The amount of errors at object borders is calculated as

explained in Section 2.3 and shown separately.

The difference images, which are provided next to

the disparity images show the difference of calculated

disparity and ground truth. Correct matches appear in

white as well as invalid matches, which are ignored for

comparison. All errors (i.e. disparity values that differ

by more than one from the ground truth) are shown in

black.

The range of possible disparities has been set to

32 in all cases. For every method, all combinations

of meaningful parameters were computed to find the

best possible combination for the Tsukuba images. The

horizontal and vertical window size was usually varied

between 1 and 19. The standard deviation of the LOG

filter was varied in steps of 0.4 between 0.6 and 2.6.

All together almost 20000 combinations were com-

puted for the Tsukuba image set, which took several

days using mainly non-optimised code.

4.2. Results of Standard Correlation Methods

The results of the best parameter combination (i.e.

which gives the lowest error) for some standard
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Table 3. Results of standard methods (first part), proposed methods (second part) and combinations of proposed methods (third part)

on Tsukuba images.

Correct All Border Invalid

Method Window Rank/Census LOG (σ ) (%) errors (%) errors (%) (%)

Normalised cross correlation (NCC) 9 × 19 – 0.0 82.37 8.15 7.05 9.49

Sum of absolute differences (SAD) 9 × 9 – 1.0 82.97 6.00 4.39 11.03

Sum of squared differences (SSD) 9 × 9 – 1.0 81.42 6.55 4.88 12.03

Non-parametric Rank 11 × 11 9 × 7 – 85.68 4.58 3.96 9.74

Non-parametric Census 9 × 11 9 × 7 – 84.86 4.65 3.87 10.49

SAD with mult. windows (MW-SAD) 11 × 9 – 0.0 80.88 4.91 2.92 14.21

SAD with 5 windows config. (SAD5) 7 × 9 – 0.0 85.12 4.56 3.36 10.32

SAD with 9 windows configuration 5 × 5 – 0.0 83.65 4.39 2.89 11.96

SAD with 25 windows configuration 3 × 5 – 1.0 83.36 4.89 3.36 14.67

SAD with 10% error filtering 9 × 9 – 1.0 78.96 4.14 3.61 16.89

SAD with border correction 9 × 9 – 1.0 85.63 6.10 4.04 8.26

SAD5 with 10% error filtering 7 × 9 – 0.0 80.70 3.02 2.59 16.28

SAD5 with 10% error filt. and border corr. 7 × 9 – 0.0 82.24 3.26 2.45 14.50

correlation methods can be found in the first part of

Table 3. The MW-SAD approach performs correla-

tion at every disparity with 9 windows with asym-

metrically shifted points of interest and uses the

best resulting value. Algorithms which are based

on this configuration have been proposed in the lit-

erature for improving object borders (Little, 1992;

Fusiello et al., 1997). Results are discussed in

Section 4.3.

The best parameter combinations of the Tsukuba

images have been used on the slanted object images

as well. Almost all errors occur near object borders on

Figure 9. Errors of all methods on the images from University of Tsukuba (left) and the slanted object (right). The slanted object shows only

errors at object borders due to its evenly strong texture. BC is border correction and EF is error filtering.

this simple image set. This is probably due to the evenly

strong texture and the lack of any reflections, etc. It is

interesting that the slanted nature of the object, which

appears as several small depth changes, is generally

well handled. However, the weak slant is not really a

challenge for correlation.

Figure 9 shows the errors of all methods on the

Tsukuba (left) and slanted object images (right) as a

graph. It can be seen that the amount of errors is dif-

ferent for each method for both image sets. However,

the graphs show almost the same tendency by compar-

ing the methods with each other (i.e. NCC is worse
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Figure 10. Result from SAD correlation.

Figure 11. Result from Rank correlation.

than SSD and SAD is slightly better than SSD for both

image sets).

The SAD correlation (Fig. 10) was chosen as the ba-

sis for an evaluation of the proposed improvements. It

is the fastest in computation and shows advantages over

NCC and SSD. The non-parametric Rank and Census

transform (Figs. 11 and 12) give better results because

they are more tolerant against outliers (Boykov et al.,

1998). However, Census is expensive to compute due

to the calculation of the Hamming distance and Rank

is rather seen as a filter, like LOG, that transforms the

source images before a SAD correlation is performed.

4.3. Results of Proposed Methods

All suggested improvements have been evaluated us-

ing SAD correlation. The results of the best parameter

combinations are shown in the second part of Table 3.

The error filter and the border correction was only ap-

plied to the best parameter combination of SAD. The

same parameter combinations on the slanted object im-

ages show again very similar results. This can easily be

seen in Fig. 9.

The multiple correlation window configuration

showed improvements in the number of correct

matches as well as errors compared to SAD. The per-

formance seems to be especially good at object bor-

ders. Figure 13 shows the results from the 5 win-

dows configuration. The rings of errors around ob-

jects look smaller compared to Fig. 10. This means

that there are less errors in border areas. Additionally,

the rings of errors appear more even, which means that

although the object appears wrongly bigger, its shape

is much less fuzzy. This can also be seen by comparing
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Figure 12. Result from Census correlation.

Figure 13. Result from the 5 window configuration.

the disparity images (i.e. left images) in Fig. 13 with

10.

Rank and Census (Figs. 11 and 12) produce similar

improved numerical results. However, a visual compar-

ison again unveils a slightly more fuzzy object border,

compared to the 5 windows configuration in Fig. 13.

This can be best seen by comparing the shape of the

lamp or the pile of tins.

A comparison with the MW-SAD shows that MW-

SAD performs better in the synthetic case of horizontal

or vertical object borders, but performs worse at gen-

eral border shapes (i.e. introduces steps). This can be

seen in Fig. 14. Additionally, MW-SAD is less stable

in general, which increases general errors as well as

invalid matches. It is assumed that the middle window,

which is always used in the suggested 5 window config-

uration, serves as a stabilising factor in the calculation.

The error filter that was tested for different thresholds

on the best parameter configuration of SAD exhibits

an expected characteristic. The graph in Fig. 15 shows

that many errors can be caught at the risk of filtering

correct matches out as well. However, the amount of

filtered errors compared to filtered correct matches is

quite high when the ratio between errors and correct

matches is considered. A threshold of 10% filters for

example almost 2% errors out, at the expense of loos-

ing 4% correct matches. Furthermore, filtered correct

matches are distributed all over the image, so that their

disappearance can be compensated by interpolation. In

the end the amount of lost correct matches that is ac-

ceptable depends on the application.

The threshold for error filtering is difficult to choose.

One strategy in practice without having a ground truth

could be to set the threshold so that the number of
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Figure 14. Result from MW-SAD correlation.

Figure 15. Filtered correct matches and errors at certain thresholds,

using SAD on the Tsukuba images.

invalid matches is increased by a fixed amount. Another

strategy would involve to point the cameras to a large

texture-less area and to set the threshold high enough

so that the whole texture-less area is just invalidated.

Figure 16. Result from SAD correlation with border correction.

Thus, the threshold would be just high enough so that

arbitrary matches due to image noise from the cameras,

frame grabbers, etc. are prevented.

Finally, an evaluation of the border correction shows

only a slight decrease in errors at object borders and

an unexpected increase of errors at other places. Nev-

ertheless, the number of correct matches is in this ex-

ample increased by 2.66% compared to SAD without

border correction. The situation can be explained us-

ing Fig. 16. The borders of objects are in fact improved

compared to Fig. 10 (i.e. rings of errors around objects

appear much smaller), which results in the decrease of

border errors. The increase in correct matches results

from changing many invalid values near object borders

into valid, correct values.

The increase in errors at other places is due to the fact

that the algorithm tried to correct object borders that

resulted from previous errors, leading to a randomly
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stretching or shifting of error patches. It is unfortu-

nately not possible for the border correction algorithm

to differentiate between correct but shifted and com-

pletely incorrect object borders. A reduction of general

errors would be advantageous to prevent this behaviour.

The error filter would be appropriate for this pur-

pose. A combination of these methods is discussed in

Section 4.4.

Although borders are improved, small details which

were lost during the correlation phase, like the cable

of the lamp, cannot be recovered using this method.

Finally, it can be concluded that the effect of noise gets

stronger, the further the border is moved towards the

real object border, due to the design of the calculation.

The method leads to reduced border errors, but usually

not to a complete removal. A remedy could be a more

accurate consideration of the distribution of neighbour-

ing disparities within the window.

4.4. Results of Combinations of Proposed Methods

The third part of Table 3 shows results of combi-

nations of several methods. The best parameter com-

binations established previously have been used. The

result is also shown in Fig. 17. Comparing these results

visually and in their numbers against any of the stan-

dard correlation methods clearly shows an improve-

ment for certain applications.

Not only general errors were reduced, but especially

errors in border areas of objects. However, invalid val-

ues are increased due to the error filter. Nevertheless,

it is acceptable for some applications to increase the

amount invalid values slightly in order to reduce errors.

Figure 17. Result from 5 windows configuration, 10% error filtering and border correction.

A comparison between the SAD correlation that was

chosen as a base and the combination of all proposed

methods shows on the example images that errors were

reduced by almost 50% and the number of correct

matches was maintained.

Finally, the results of the same combinations of

methods and parameters on the slanted object images

show almost no improvement. A look at the dispar-

ity difference image reveals that the border error be-

fore was almost only one pixel, which is already very

low. Other errors have not been detected. There is not

very much room for further improvements. The border

correction algorithm corrected the depth discontinuity

slightly to much, which results in an object that appears

slightly smaller than it really is.

5. Performance of the Real-Time System

5.1. Experimental Setup

All the methods described have been implemented in

optimised C and contain optional inline assembler sec-

tions to make use of MMX commands. MMX is the

Multi-Media Extension that was introduced by Intel in

the Pentium processors. It allows parallel processing

of logical and arithmetical integer operations, which

can increase the performance several times. However,

only the critical loops in the whole process were opti-

mised to save development effort. All performance tests

were accomplished on a Pentium II, 450 MHz using the

Linux (Kernel 2.4) operating system. Two BT878 based

frame grabbers were used to capture stereo images from

a self-made medium resolution stereo camera.3
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All measurements were done by grabbing, correla-

ting and painting the disparity image 600 times. The

results represent the average time.

5.2. Performance Results

The size of the source images and the disparity range

are the main factors that influence the speed of execu-

tion. However, the execution time of the border cor-

rection filter depends partly on the amount of detected

gradients in the disparity image. All gradients need to

be analysed and corrected. Table 4 lists the parameters

and shows the effective frame rate that was measured

including sub-pixel interpolation and painting the dis-

parity image on the screen.

Finally, Table 5 shows how much of the execution

time was spent in individual parts of the process and

the language that was used for implementation.

The suggested improvements, which are shown in

italic, require of course some additional computation

time and slow down the frame rate. If only the stan-

dard algorithm without all suggested improvements is

Table 4. Parameters and frame rate using all methods.

Used hardware P II, 450 MHz

Overall speed (C and MMX) 4.7 frames/s

Overall speed (optimised C) 1.6 frames/s

Size of images 320 × 240 pixel

Size of correlation window 7 × 7 pixel

Disparity range 32 pixel

Sub-pixel interpolation 1/8 pixel

Laplacian of Gaussian 1.0

Table 5. Time spend in individual parts.

Function Language Time (ms)

Rectification C, MMX 11

Laplacian of Gaussian C, MMX 25

SAD correlation C, MMX 53

Combination of 5 windows C, MMX 30

Determine disparity C, MMX 17

Error filtering C, MMX 14

Left/Right consistency check C, MMX 20

Sub-pixel interpolation C 6

Border correction C 18

Painting disparity image C, Java 11

used, then the frame rate increases from 4.7 frames/s

to 7 frames/s, by loosing a major reduction in errors,

especially at object borders.

Nevertheless, the results show clearly that all pro-

posed methods are suitable for real time usage.

6. Conclusion

It has been shown that it is possible to improve simple

correlation by understanding the source of its weak-

ness. Three methods have been proposed, which tackle

specific problems of correlation. A novel multiple win-

dow approach decreases errors at object borders and in-

creases correct matches. A general error filter uses the

correlation function to invalidate uncertain matches.

Finally, a border correction method improves object

borders further in a post-processing step. It was shown

that all improvements are suitable for real-time applica-

tions. All methods were explained in detail, including

their integration into a standard correlation algorithm.

Optimisation issues and parallel implementation was

discussed as well.

Every method shows clear improvements, but also

weaknesses. The main weakness of the multiple corre-

lation window configuration is its computational cost.

However, an optimised implementation of the config-

uration using 5 windows is possible and very effective.

The error filtering requires a threshold, which is diffi-

cult to choose in practise and reduces the number of

correct matches as well. Finally, the border correction

improves object borders, although previous general er-

rors can be slightly increased.

Nevertheless, the combination of suggested meth-

ods improves the quality of real-time correlation based

stereo significantly. In the example images the errors

have been reduced to 50%, while the number of correct

matches has been maintained. Further research in this

area could bring even better results.

The whole stereo algorithm has been implemented

and optimised, including all the proposed methods. A

detailed performance evaluation shows that all the pro-

posed methods require one third of the whole process-

ing time. The system grabs stereo images, rectifies,

filters and correlates them almost 5 times a second on

a Pentium II with 450 MHz. Current hardware can in-

crease the speed to processing at frame rate. Some fur-

ther optimisation is possible as only the critical loops

were optimised.

Furthermore, the proposed methods can be used in-

dividually or in combination. This allows a suitable
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quality and speed selection for an application. The cur-

rent system is the base for further research on a tele-

operated robot. It will be used for processing the local

working environment of the robot on a higher, object

based level.

Appendix: Algorithms in Pseudo Code

A.1. Multiple Supporting Windows Algorithm

The multiple supporting correlation window algorithm

(Section 3.1) is an additional step between the calcu-

lation of the correlation values and the selection of the

disparity value for every pixel.

The combination of five correlation values is shown

below in pseudo code. The algorithm produces the

combined correlation value for all pixels of row k at all

disparities. It expects that the correlation values have

been calculated for all pixels for the three image rows

k −wy , k and k +wy , were 2wy +1 is the height of the

correlation window. cin(i, k, d) refers to the correlation

value in the image column i , image row k and disparity

d . The results will be stored in cout(i, k, d), which uses

the same syntax.

The algorithm can make use of the fact that the or-

der of the lowest m out of n values is not important.

This results in m(n − m) comparisons between values.

Only 4 comparisons are required for the five supporting

windows configuration.

Furthermore, the SIMD architecture4 of modern

processors can be used to process data in parallel. Com-

parison and selection can make use of saturated arith-

metic to avoid jumps. The code below can be encoded

in 20 Pentium II assembler instructions (i.e. including

the transfer from memory into registers and the trans-

fer back to memory, but excluding loop overhead) and

processes 4 values in parallel. This results in only 5 as-

sembler instructions for every pixel at every disparity.

for all pixels i in row k do

for all disparities d do

c = cin(i, k, d);

c1 = cin(i − wx , k − wy, d);

c2 = cin(i + wx , k − wy, d);

c3 = cin(i − wx , k + wy, d);

c4 = cin(i + wx , k + wy, d);

cl1 = lowest value of c1, c2, c3, c4;

cl2 = second lowest value of c1, c2, c3, c4;

cout = c + cl1 + cl2

end

end

A.2. Border Correction Algorithm

Section 3.3 explained the theory behind object border

correction and gave an overview of the algorithm. This

section shows the algorithm in pseudo code.

Firstly, some definitions are required. Figure 18

shows a correlation window of the size 2wx + 2,

2wy + 1 (i.e. the width of the window is increased

by 1 as explained in Section 3.3). The area that is

covered by the left half of the the window at the po-

sition i , k in the image X is defined as A1(X, i, k)

and the right half as A2(X, i, k). L and R refer to

the left and right rectified image. D(i, k) is the cal-

culated disparity at i , k. If i is the position of a

positive disparity step, then db = D(i − 1, k) is the

disparity of the background and do = D(i, k) is the

disparity of the object. The correlation windows that

were shown in Fig. 6 in Section 3.3 can now formally be

defined.

L j = L j(i, k) = Aj(L , i − do + db, k) (5)

L̃ j = L̃ j(i, k) = Aj(L , i, k) (6)

Rj = Rj(i, k) = Aj(R, i − do, k) (7)

R̃j = R̃j(i, k) = Aj(R, i − db, k) (8)

The following pseudo code contains only the short

forms on at the left side of these definitions (e.g. L̃1),

because they are always used at the position i , k. The

algorithm that corrects all left object borders can now

be written as:

Figure 18. Definition of the areas A1 and A2 of a correlation

window.
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for k = 1 to number of rows do

i = 0;

while i <= number of columns do

if D(i, k) is invalid then

use lowest valid disparity, either to the

left or right of the invalid disparity area

as D(i, k)

end

// search positive disparity step

if D(i − 1, k) < D(i, k) then

// identify disparity of background and object

db = D(i − 1, k);

do = D(i, k);

v1 = c(R1, L1) − c(R2, L̃2);

if v1 < 0 then

// shift left border to the right until

// the correct position is found

j = i + 1;

n = i + wx ;

while j <= n and v1 < 0 do

v2 = c(R1, L1) − c(R2, L̃2);

if v2 < 0 or −v1 > v2 then

D(i, k) = db;

i = i + 1;

end

v1 = v2;

j = j + 1;

end

else

// shift left border to the left until

// the correct position is found

j = i − 1;

n = i − wx ;

while j >= n and v1 > 0 do

v2 = c(R1, L1) − c(R2, L̃2);

if v2 > 0 or v1 > −v2 then

D( j, k) = do;

end

v1 = v2;

j = j − 1;

end

end

end

i = i + 1;

end

end

The correction of all right object borders requires a

second pass over the whole disparity image. The algo-

rithm is the same apart from some minor differences

and is therefor not explicitely given here. The first dif-

ference is that a negative disparity step is searched

(i.e. D(i − 1, k) > D(i, k)) instead of a positive step.

Next, the disparity of the object do is D(i − 1, k)

and the disparity of the background db is D(i, k).

Finally, the calculation of the difference between both

halves of the correlation window is done by using

c(R̃1, L̃1)−c(R2, L̃2) instead of c(R1, L1)−c(R2, L̃2).

Correction of the left and right object border could be

done within one pass over the image. However, special

care is required to adjust the loop counter i and the

values that depend on it (i.e. R1, L1, etc.), because the

i is increased in some inner loops too.
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Notes

1. The SAD correlation has low values if the similarity is high.

2. http://www.research.microsoft.com/∼szeliski/stereo/.

3. http://www.cse.dmu.ac.uk/∼hhm/research.html.

4. Single Instruction Multiple Data.
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