
Real-time crowd control of existing interfaces

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation Walter S. Lasecki, Kyle I. Murray, Samuel White, Robert C. Miller,
and Jeffrey P. Bigham. 2011. Real-time crowd control of existing
interfaces. In Proceedings of the 24th annual ACM symposium on
User interface software and technology (UIST '11). ACM, New York,
NY, USA, 23-32.

As Published http://dx.doi.org/10.1145/2047196.2047200

Publisher Association for Computing Machinery (ACM)

Version Author's final manuscript

Citable link http://hdl.handle.net/1721.1/73083

Terms of Use Creative Commons Attribution-Noncommercial-Share Alike 3.0

Detailed Terms http://creativecommons.org/licenses/by-nc-sa/3.0/

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/73083
http://creativecommons.org/licenses/by-nc-sa/3.0/

Real­time Crowd Control of Existing Interfaces

Walter S. Lasecki1, Kyle I. Murray1, Samuel White1, Robert C. Miller2, and Jeffrey P. Bigham1

University of Rochester, Computer Science1

Rochester, NY 14627 USA
{wlasecki,jbigham}@cs.rochester.edu

{kyle.murray,samuel.white}@rochester.edu

MIT CSAIL2

Cambridge, MA 02139 USA
rcm@mit.edu

ABSTRACT

Crowdsourcing has been shown to be an effective approach
for solving difficult problems, but current crowdsourcing sys-
tems suffer two main limitations: (i) tasks must be repack-
aged for proper display to crowd workers, which generally
requires substantial one-off programming effort and support
infrastructure, and (ii) crowd workers generally lack a tight
feedback loop with their task. In this paper, we introduce Le-
gion, a system that allows end users to easily capture existing
GUIs and outsource them for collaborative, real-time control
by the crowd. We present mediation strategies for integrat-
ing the input of multiple crowd workers in real-time, eval-
uate these mediation strategies across several applications,
and further validate Legion by exploring the space of novel
applications that it enables.

ACM Classification: H5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Graphical user interfaces.

General terms: Human Factors, Experimentation

Keywords: real-time crowd control, real-time human com-
putation, crowdsourcing, remote control

INTRODUCTION

Crowdsourcing has been shown to be effective at solving
problems that are beyond the capabilities of current auto-
mated approaches [2, 3]. However, current crowdsourcing
systems suffer from two main limitations: (i) tasks must first
be repackaged for proper display to crowd workers, which
generally requires substantial one-off programming effort
and corresponding support infrastructure; and (ii) crowds
generally participate asynchronously, without a tight feed-
back loop between workers and their task. This paper con-
siders a new approach to crowd computing that surpasses
both limitations by using existing graphical user interfaces
and putting the crowd in control of the mouse and keyboard.
We introduce Legion, a system that allows end users to easily
capture existing GUIs and outsource them for collaborative,
real-time control by the crowd.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’11, October 16­19, 2011, Santa Barbara, CA, USA.
Copyright 2011 ACM 978­1­4503­0716­1/11/10...$10.00.

To use Legion, users first select a portion of their desktop in-
terface that they would like the crowd to control, provide a
natural language description of the task for the crowd to per-
form, and offer a price that they are willing to pay (Figure
2). Legion then forwards a video feed of the interface to the
crowd and forwards key presses and mouse clicks made by
the crowd back to the interface. To improve reliability, mul-
tiple workers are recruited to collaboratively complete the
task. A fundamental question that we explore in this paper
is how to effectively mediate crowd work to balance reliabil-
ity with the desire for real-time control of the interface. Le-
gion coordinates task completion by recruiting crowd work-
ers, distributing the video feed, and providing a flexible me-
diation framework to synthesize the input of the workers.

Legion lets end users leverage crowdsourcing in ways previ-
ously not possible. Our original motivation was to provide
a quick way of bootstrapping highly-robust, intelligent as-
sistive robots. Such systems usually require significant (and
costly) training to work automatically, are prone to errors,
and so can often be controlled remotely by experts. We imag-
ined a hybrid system in which robots could operate mostly
automatically, but in which new tasks could be crowdsourced
on demand for real-time control. Legion supports the flexible
control of such existing remote-control interfaces.

We have used Legion to turn an inexpensive robot into one
that intelligently follows natural language commands. We
have outsourced bits of office work using a word processor
or spreadsheet. We have used it to fill in for us while playing
games requiring constant attention while we got a drink. We
have used it to provide the intelligence of a predictive key-
board to make its suggestions quicker and more accurate. As
we will highlight, not all of these use cases currently work
flawlessly, but they illustrate the broad possibilities of out-
sourcing existing interfaces and motivate our work on real-
time crowd control.

Legion supports experimentation with different ways of com-
bining the input of multiple crowd workers in real-time while
retaining reliability guarantees. Although there are numer-
ous approaches that could be taken, we have implemented
five mediation strategies in Legion that we compare in this
paper: (i) control by a single crowd worker, (ii) mob rule
in which all input from all workers is serialized and for-
warded to the interface, (iii) voting over small time windows
in which only the most popular input is forwarded to the in-
terface, (iv) dynamically choosing a random worker to put in

control, switching only when they become inactive, and (v)
using crowd-agreement to dynamically elect leaders whose
input is immediately forwarded to the interface and whose
time in control is a function of their reputation built over
time. The most appropriate mediation strategy is context
dependent, as we will demonstrate with experiments across
several different types of applications and tasks.

Our contributions are the following:
• We articulate the idea of real-time crowd control of exist-

ing interfaces, and describe considerations for the design
of applications in this space.

• We present a system, Legion, that lets end users easily
outsource existing interfaces to the crowd and exposes a
framework for mediating the inputs of crowd workers.

• We formulate several mediation strategies for aggregating
the input of multiple crowd workers, and investigate these
strategies in experiments with a diverse set of applications.

• We further validate Legion by showing several new types
of applications that we created that illustrate interactive
crowd assistance, programming by demonstration, and the
mash-up of several desktop applications.

BACKGROUND

Individual users have controlled interfaces remotely as long
as networked systems have existed, dating back to early ter-
minals that allowed users to log in and control time-sharing
systems. With graphical user interfaces came remote dis-
play protocols such as the X Window System [18], and Vir-
tual Network Computing (VNC) [17] became popular. Re-
mote control has also been used to compensate for limita-
tions in mobile browsers. For instance, Highlight runs a full
browser on its server, which is remote controlled by the mo-
bile browser [14]. Specialized remote control systems even
allow aircraft to be piloted remotely (Figure 1). The main
difference between these prior systems and Legion is the
idea that multiple workers could collectively control the end
user’s interface directly.

Real time groupware allows remote users to collaborate in
shared online spaces [8], and many online games and multi-
user dungeons (MUDs) likewise allow users to play or inter-
act in the same space with one another. In contrast, Legion
synthesizes the input of multiple workers to act as a single
controller of existing interfaces. A few web-based games
allow multiple users to control a single interface. For ex-
ample, Massively Multiplayer Pong allows all of the current
players to control the paddle [13]. Its interface displays both
the “real” paddle position and the user-specific paddle posi-
tion. Maynes-Aminzade et al. have brought these techniques
into the real world by enabling large audiences to collectively
control a projected interface with collective actions like lean-
ing to the left or right [12].

In machine learning, meta-learners combine multiple weak
learners for better performance [16]. A specific class of
meta-learners called arbiters learn to combine the input of
multiple base classifiers in order to arrive at a final decision
in a supervised manner and can work in an online fashion
[4]. Legion is able to use the metric of crowd agreement that
we have defined to learn how to combine crowd input in an
unsupervised manner.

Figure 1: Cockpit control center for a Predator UAV.
A pilot and several sensor experts collaboratively con­
trol the aircraft remotely, although their effort is split
between different functions. The unofficial role of the
observers is to ensure that the pilot has everything that
he needs so that he doesn’t need to leave the controls.
Image courtesy of Bryan William Jones.

Prior work has considered how graphical user interfaces could
be controlled automatically. Early work in this area used op-
erating system APIs, but these projects quickly ran into prob-
lems because limitations in the APIs meant that many inter-
faces could not be correctly interpreted and manipulated in
this way. The CoScripter [11] web automation system lever-
ages the openness of the web to reliably interpret and ma-
nipulate the web interface, affording the freedom to focus
on high-level problems like end user programming and in-
telligent interfaces for interface automation. Recent projects
have taken a more robust low-level, pixel-based approach to
interpreting and manipulating GUI components [23, 7]. Le-
gion crowdsources not only the interpretation and manipu-
lation of GUI components but also higher-level planning, al-
lowing greater flexibility in how end users decide to automate
their interfaces and what can be automated.

Human computation was introduced to integrate people into
computational processes to solve problems too difficult for
computers to solve alone, but has not been applied to real-
time control problems. Human computation has been shown
useful in writing and editing [2], image description and in-
terpretation [3, 22], and protein folding [6], among many
other areas. Existing abstractions focus on obtaining quality
work, and generally introduce redundancy and layering into
tasks so that multiple workers contribute and verify results
at each stage. For instance, guaranteeing reliability through
answer agreement [22] or the find-fix-verify pattern of Soy-
lent [2]. Unfortunately, this takes time, which makes these
approaches unsuitable for real-time control. Naive solutions
like recruiting a single online worker may allow for real-time
control, but would subvert existing methods of achieving re-
liability and are not robust to workers leaving (common in
the crowd). As a result, new abstractions are necessary.

Several systems have explored how to make human compu-
tation interactive. As an example, VizWiz [3] answers visual
questions for blind people quickly. It uses quikTurkit to pre-
queue workers on Amazon’s Mechanical Turk so that they

will be available when needed. Legion needs multiple users
to be available at the same time in order for its input media-
tors to work correctly. Prior systems have also needed multi-
ple workers to be available. For instance, the ESP Game en-
couraged accurate image labels by pairing players together
and requiring them both to enter the same label, although
ESP Game players could also be paired with simulated play-
ers [22]. Seaweed reliably got Mechanical Turk workers to
be available at the same time to play economic games by re-
quiring the first worker to arrive to wait (generally for a few
seconds) [5]. Legion similarly utilizes the input of multiple
workers and asks workers to wait until enough workers have
arrived, but engages workers for longer control tasks.

Prior systems have enabled real-time control from the web,
most often in the context of robotics [19]. Osentoski et al.
used a web-based interface to a robot to crowdsource a sub-
stantial amount of training data that they then used to train a
system for automatic real-time control of a robot [15]. Gold-
berg et al. enabled groups of web users to collectively control
a web cam [20] and make navigation decisions for a human
actor [9] by interactively choosing regions of interest in cap-
tured images. Such systems are generally created only for
the control of a particular system, whereas Legion can be
used to control a variety of interfaces that were not originally
intended to be crowdsourced. Legion might help researchers
train other types of systems for real-time control.

THE CROWD

We define the crowd as a dynamic pool of anonymous work-
ers of varying reliability. Because the pool is dynamic, work-
ers come and go, and no specific worker can be relied upon
to be available at a given time or to continue working on a
job for a set amount of time. Workers cannot be relied upon
to provide high-quality work of the type one might expect
from a traditional employee for various reasons including
misunderstanding of task directives, laziness, or even mali-
ciousness. Finally, workers may experience delays that are
beyond their control, such as network bandwidth variability.

For enabling real-time control, the dimensions of the crowd
that are most relevant are (i) the time each recruited worker
continues working on the task and (ii) the quality of the
worker’s output. These can be measured empirically for a
specific crowd source, but are expected to be task-dependent
[21]. A related dimension is the latency required to recruit
workers to a particular job. For this paper, we assume that
workers can be made available quickly, recruited and kept
available using systems like quikTurkit [3].

Our experiments are run on Amazon’s Mechanical Turk be-
cause of the ease by which workers can be recruited. Never-
theless, our framework is compatible with worker pools from
other marketplaces, volunteers drawn from social networks,
or any other group of workers available.

CONTROL CONSIDERATIONS

Legion can control a variety of applications, but several di-
mensions are especially important for enabling real-time crowd
control. As we explain later in this paper, Legion synthesizes
input from multiple workers by identifying when workers in
the crowd provided the same input at the same time. To rec-

ognize when multiple inputs agree, Legion requires the in-
put to be discrete, and, to associate input over time, Legion
uses fixed time windows. As we will see, this does not mean
worker input needs to be delayed until the end of a window.

The input space is defined by the application that is being
controlled. GUI applications vary from being controllable
by a few discrete keys to using the full continuous input of
a pointing device. Key presses are already discrete. Pointer
clicks are also discrete in the space of the pixel locations.
Legion reduces the size of this space to a fixed grid in order
to aggregate clicks. Legion does not currently handle other
pointer interactions, such as movement paths or dragging.

Many tasks have several correct ways of completing them.
For instance, if the task is to navigate a robot around an ob-
stacle to a specified location there are at least two reason-
able, high-level paths (going left around the obstacle or going
right). Applications can be characterized by the number and
degree of these decision points. Crowd input can be expected
to diverge more at such decision points.

To correlate worker inputs over time, we divide time into dis-
crete windows called epochs and associate inputs received in
the same epoch together. Tasks with more decision points
may be more easily solved by mediation strategies that allow
for longer term strategies over multiple epochs.

LEGION

Legion is comprised of (i) an end user client application
for capturing and controlling interfaces with the crowd, (ii)
a server-side framework for recruiting and mediating input
from crowd workers, and (iii) a web-based front end on
which crowd workers complete the specified task (Figure 2).

End User Client Application

The Legion client allows users to select a portion of their
screen to be controlled by the crowd by drawing a box around
it. We chose to allow users to flexibly choose the region of
the screen to export, instead of choosing a particular win-
dow, because it allows users to (i) exercise control over the
information shared with the crowd, (ii) expose simpler inter-
faces for workers comprising only necessary interface com-
ponents, and (iii) create new mash-ups by sharing pieces of
multiple applications arranged next to one another (discussed
later). Smaller regions also lower the required bandwidth.

Users provide a natural language description of the task that
they would like the crowd to complete, and create a legend
of keys that the crowd can use and where they are able to
click. To simulate mouse clicks and keyboard events locally,
Legion uses the OS X Application Services framework to
post Quartz events into the event stream at specific screen
locations. The CamTwist library1 captures video from the
user’s screen and sends it to the server. Only specified keys
and mouse clicks in the defined region are simulated (we use
a white list). This does not completely ensure security, but
reduces what workers are able to control on the client GUI.
Future work may explore how to further isolate crowd input.

1http://www.allocinit.com

Legion Client

Legion Server

quikTurkit -
Input Mediators -

Flash Media Server -

Worker Interface

- video stream

- task description

- crowd agreement/payment info

- worker input
(key presses, mouse clicks)

- video stream

- task description

- mediated input

multiple workers

Explanation of
controls, and feedback
regarding current
bonus level (tied to
crowd agreement).

Feedback reflecting worker’s
last key press, and whether
the interface last followed
the crowd or the worker.

Figure 2: Legion is a framework that allows existing interfaces to be outsourced to the crowd. In this example, a user
has outsourced control of her Rovio robot. The Legion client allows end users to choose a portion of their screen to
send to crowd workers, sends a video stream of the interface to the server, and simulates events (key presses, mouse
clicks) when instructed by the server. The Legion server recruits workers, aggregates the input of multiple crowd workers
using flexible input mediators, and forwards the streaming video from the client to the crowd workers. The web interface
presents the streaming video, collects worker input (key presses and mouse clicks), and gives workers feedback.

Users decide when the crowd is done, and decide whether the
crowd as a whole successfully completed their given task.

Server­Side Framework

The Legion server is a Java application that recruits multiple
workers from the crowd; collects, mediates, and forwards
worker key presses and mouse clicks to the client applica-
tion; and pays workers for their work. To recruit workers,
Legion uses quikTurkit, a script for the TurKit platform [10],
that maintains an active pool of workers. The HITs are de-
scribed using the short task description provided by the end
user. Workers can either be recruited on-demand or automat-
ically when the user opens the application in anticipation of
future need. If workers arrive early they are paid to wait.
quikTurkit was able to satisfactorily maintain the dynamic
pool of at least 3-5 workers needed for Legion.

The Legion server also includes Flash Media Server (FMS)2.
Video is streamed from the client application to FMS, which
supports multiple workers receiving the stream via their web
browsers. The video is compressed using On2.VP6 and sent
using the User Datagram Protocol (UDP), which unlike TCP,
allows packets to be dropped. As a result, if bandwidth
is temporarily reduced between our server and the workers,
frames will drop instead of being queued, helping to ensure
that the frame currently being shown is the most recent one.

2http://www.adobe.com/products/flashmediaserver/

Figure 3: Our method for discretizing mouse clicks.
The screen is split into a grid without knowledge of
the interface beneath it, and so some inputs that are
semantically the same will be discretized into different
grid cells (as here). When simulating the click, Legion
either uses the coordinate directly or averages the po­
sitions of each, depending on the input mediator.

Worker key presses and mouse clicks are sent to the server,
which aggregates them and uses one of several input media-
tors to choose which events to send to the client. The server
framework allows inputs to be analyzed, aggregated and fil-
tered in a number of ways. It includes a number of proce-
dures for deciding which inputs to pass through, for blocking
or allowing inputs only from certain workers, or for analyz-
ing inputs over time windows. End users will neither write
these procedures nor need to decide between them, but the
flexibility of the framework may provide opportunities for
researchers looking to evaluate different strategies for medi-
ating input from multiple crowd workers controlling an in-
terface in real-time.

The input mediators require input to be discrete. This is
straightforward for key presses. To discretize mouse clicks,
we divide the screen into a grid and use the grid cell in which
the click occurred (Figure 3). For instance, the event de-
scriptor mc 12 20 refers to a mouse click in the grid cell
at (12,20). Later, this can be generalized by clustering the
mouse clicks in order to find a discrete set of possible actions
to select from. Discrete inputs allow the input mediators to
compare the inputs of crowd workers.

The input mediators that we have implemented are described
in the next section.

Worker Web Page

Workers control the interfaces via a web page hosted by the
Legion server. This web page displays the live video feed of
the client interface, and collects the key presses that work-
ers make and sends them back to the client. As workers are
queued, they play a simple game in which they are shown a
letter and asked to type what it says. Although we don’t cur-
rently, we could use this as a simple test to weed out workers
who provide bad input or whose latency is too high.

Providing good feedback is difficult because a worker’s in-
put may not always be followed. In the robot control case,
for instance, a worker may tell the robot to turn right, but the
robot may go left because that action is preferred by other
workers. As users press keys or click the mouse, their in-
put is reflected back to them visually in the interface (Figure
2). They also see whether their input or the crowd’s input
was last sent to the client. We explored showing the work-
ers the chosen input (e.g. the m key), but workers quickly
learned to mimic it to improve their crowd agreement score.
Workers are shown their current crowd agreement score in a
power meter, a fractional value serving as a multiplier against
the maximum bonus they can receive (in our case 10 cents).
Workers are not told directly whether they are the current
leader (in input mediators that support it), but they may be
able to infer their status.

CROWD CONTROL

Legion aggregates the control input from all of the workers
in the crowd into a single input that is forwarded to the in-
terface as if it was sent by a single user. We developed the
five input mediators described below. Each has strengths and
weaknesses, which we expect to be application dependent
and compare later in the paper. The input mediators each
balance reliability and latency differently. For example, the
solo input mediator recruits a single worker to directly con-
trol the interface. Latency will be low but so will reliability.

Mob The mob input mediator simply serializes the inputs
from each of the workers and sends the single stream of ac-
tions to the interface. Each input from a worker is immedi-
ately sent to the interface being controlled. This approach
may work for systems in which large numbers of redundant
inputs are either ignored or handled gracefully. In this case,
the ‘wisdom’ of the crowd is preserved by the fact that the
majority of the inputs to the system will be those most agreed
upon by the crowd. For applications in which excess or re-
dundant input leads to loss of accuracy, such as editing a doc-
ument, this style of mediation will perform poorly.

Vote The vote input mediator attempts to address the prob-
lem of unreliable individual crowd workers. We use a weighted
vote, in which each user has a corresponding weight that acts
as an influence measure. At the end of each epoch, individual
worker’s most recent inputs are collected as votes and scaled
based on the weight of the worker who cast the vote, then
summed to find the action with the highest weighted value
amongst all participating workers. This action is then sent to
the client and the weights of each worker wi are recomputed
according to the following formula:

w
(t+1)
i = αw

(t)
i + (1 − α)

∑NAi

j=1 w
(t)
j

N
(1)

Where t is the current epoch, NAi
is the number of work-

ers that voted for selected action Ai and N is the total num-
ber of workers casting votes. α is a discount factor selected
such that α < 1. Its effect is that a worker’s influence is
affected more by recent agreement with the crowd than his-
torical agreement.

We expect that using worker inputs as votes will improve ac-
curacy, but at the cost of slowing down response time. This
is because the votes of crowd workers will not be temporally
synchronized, meaning that epoch windows can only be re-
duced so far before corresponding votes start falling into dif-
ferent epochs, thus skewing the vote. We used an epoch of 1
second in our experiments.

Leader In order to reduce the latency inherent in gather-
ing votes over the span of an epoch, the leader input medi-
ator selects the highest influence worker at the beginning of
each epoch to assume direct control for its duration. This
means that each input entered by the leader is immediately
forwarded to the interface being controlled. Since the leader
is elected based on weight, they serve as leader for as long as
they remain in agreement with the crowd, on average.

The leadership model provides a means for real-time re-
sponses to feedback from the system without sacrificing the
benefits of crowd agreement and enables longer term plans.
For example, suppose a navigation task requires a decision
to be made as to which path to take in order to avoid an ob-
stacle. In the vote or mob input mediators, close crowd deci-
sions can result in actions belonging to disparate plans being
performed in a sequence because of crowd weight and par-
ticipation fluctuations. This may lead to a course of action
which is not in alignment with any individual worker’s plan.
In the navigation example, this may result in colliding with
the obstacle. Electing a single leader allows them to take
consecutive actions coinciding with their individual plan.

Worker weights are calculated using a bag-of-votes model to
choose a leader after each epoch. These weights are calcu-
lated by comparing the normalized actions of each worker to
the actions of the crowd with the vector-cosine as follows:

V C(ai, c) =
ai · c

||ai|| ∗ ||c||
(2)

where ai a vector of the proportion of votes cast for each
action by the ith worker and c is the same dimension vec-
tor computed for the whole crowd. We then recompute the

In
p

u
t

M
e

d
ia

to
rs

W
o

rk
e

rs
S
o
lo

M
o
b

V
o
te

L
e
a
d
e
r
A
c
ti
v
e

a

b

c

d

e

Time
0 1 2 3 4 5 6 7 8 9 10

Figure 4: A visual depiction of the five input mediators. The application is controlled using only the left, right, and up arrow
keys. We assume the “best” strategy to be up for epochs 0­3, right for epochs 4­5, and then up again from 6­9. Workers
a, b, d, e all generally exercise this strategy, although none vote during every epoch. Worker c misunderstands the task,
is malicious, or is trying to solve the task in a different way by pressing only left. The shading indicates the worker’s crowd
agreement level for the given epoch. solo chooses worker a at random and accepts input only from that worker, which
works well until that worker stops providing input. mob serializes and passes through all input, without considering crowd
agreement. vote issues the single most popular input over an epoch at the end of the epoch. active works like solo but
switches to a new worker when the chosen worker does not vote during an epoch. leader dynamically chooses the worker
with the highest crowd agreement level at the beginning of each epoch and passes their input through immediately.

worker’s weight after each epoch similar to before, but use
the vector-cosine as the new crowd agreement metric:

w
(t+1)
i = αw

(t)
i + (1 − α)V C(a

(t)
i , c) (3)

where α < 1 is the same discount factor as in Eq. 1.

Active The active input mediator is variation on leader that
we created in order to tease apart the two benefits of leader:
(i) control by a single worker in the crowd, and (ii) the se-
lection of a worker that has been shown to agree the most
with the crowd. The active input mediator randomly selects
a worker, who maintains control as long as they continue to
provide input. If they fail to provide input during some num-
ber of consecutive epochs (here we used 5), a new random
worker is selected.

Mediation Strategies Not Explored There are clearly a num-
ber of mediation strategies beyond the five described here. In
particular, we did not explore hierarchical input mediators in
which different workers have different roles. For instance,
some workers could be responsible for controlling the inter-
face and a separate group of workers could vote whether (or
even which of) the workers were doing a good job. Our input
mediators also do not allow workers to indicate their confi-
dence in the actions they suggest, for instance determining
that they are so confident of an action that they would like
to wager that it will end up being a good action to take in
the long run. We could imagine variations on the strategies
above that allow limited communication between workers to
help them devise and exercise long-term plans.

MEDIATOR EVALUATION

We evaluated our mediation strategies on two applications:
robot navigation and data entry into a spreadsheet. These ap-

plications varied in characteristics that we hypothesize will
manifest in the mediation strategies. Specifically, the robot
task has a small input space and is designed such that workers
can follow only one general path to complete it. The spread-
sheet entry task has a large input space (all keys and mouse
clicks) and can reasonably be completed in different orders.

We paid workers 5 cents per task in our experiments if the
crowd completed the task. Workers could earn up to 10 more
cents based on their crowd agreement level and the total time
taken to complete the task. We waited for at least 3 workers
to be available before starting the task, which generally took
less than one minute.

As an initial feasibility test, we used Legion to control the
web application in Figure 5 to measure latency. The appli-
cation displayed a random key, crowd workers typed it, and
then repeated. They were not shown the latency measure-
ments. Timing is done in the web application, which we ran
on our machine, and sums both system and human latency on
this simple task. On average the recorded latency was 854.6
milliseconds (SD=743.0). This gives a sense of the lowest
overall latency supported by Legion on Mechanical Turk, al-
though realized latency may be task dependent.

Robot Navigation

Robot control is natural as a motivating task because it ex-
ercises three main contributions of Legion: robots need to
be controlled in real-time, creating a new robot control inter-
face for web workers would require significant one-off pro-
gramming effort, and no obvious way previously existed for
multiple crowd workers to simultaneously, collectively con-
trol robots in real-time. Robot control is difficult, so en-
abling even simple navigation tasks can require substantial

Figure 5: Web application used to measure latency.

customization for the robot and the environment. Even rela-
tively simple tasks can become complex - the robot we used
drifts severely to the left when told to go straight. Complet-
ing tasks with a robot can require longer-term strategies to be
executed, e.g. it may need to go around a barrier, moving far-
ther from its goal before reaching it. Finally, tasks naturally
take some time to complete, and so workers available at the
start might leave before the end. Eventually, our aim is to use
crowds to control assistive robots that both navigate through
and manipulate the environment.

We used an inexpensive remote-controlled mobile webcam
called Rovio3 as a platform for experiments with robot nav-
igation. This device can be controlled over wifi via its web-
based interface (Figure 2). Although it is marketed as a
“robot,” it does not contain any functionality for automatic
decision-making or navigation. By connecting the Rovio
to the crowd with Legion, we created an intelligent mobile
robot that accepts natural language commands.

The navigation task was to drive the robot from a start posi-
tion into a tea kettle a few feet away. Although the goal could
be seen from the start of the task, the direct path to it was ob-
structed by various objects (Figure 2). Legion captured video
at 320x240 resolution. As a baseline, we asked three local
students to complete the robot navigation task three times as
quickly as possible. On average these local workers required
46.3 seconds (SD=12.4) to complete the task.

We ran 10 trials for each of the five mediation strategies. The
total unique voters (those who voted at least once) varied
from 1 to 14 per task, although on average 3.1 workers voted
during each epoch. These numbers highlight the highly dy-
namic nature of the crowd on Mechanical Turk. There were
not detectably significant differences in the number of en-
gaged workers across conditions. We ended trials that lasted
more than 10 minutes.

In both the active and leader conditions, all trials were suc-
cessfully completed, as compared to 8/10 successful trials
with vote and mob, and only 4/10 successful trials with solo
(Figure 7). Few trials were completed successfully with solo
because workers who did not quickly complete the task dis-
connected. The crowd seemed unable to exercise a consistent
strategy with the vote and mob input mediators. vote was fur-
ther hampered by its slow rate of issuing actions.

We also considered task completion time (Figure 6). When
the chosen worker completed the task, solo was the fastest,

3http://www.wowwee.com/en/support/rovio

0

50

100

150

200

250

T
im

e
 (

se
c)

LeaderActiveVoteMobSolo

10/10

10/10

8/10

8/10

4/10

Figure 6: The average time required to complete the
robot navigation task for each of the input mediators,
along with the fraction of successful runs. solo was the
fastest but only completed 4 of 10 runs, whereas leader
was close in time and completed all runs. Choosing
leaders based in crowd agreement in leader outper­
formed active, which chooses leaders randomly.

Figure 8: User view of spreadsheet transcription task.

averaging just 56.0 seconds (SD=12.9). Trials in the leader
condition were completed faster than trials in the active con-
dition, 101.7 seconds (SD=81.0) vs 165.7 seconds (SD=166.3),
a significant difference (F1,9=6.96, p < .05). This suggests
that choosing the leader based on crowd agreement, rather
than randomly, leads to better results. vote performed no bet-
ter than mob, 232.4 seconds (SD=110.5) vs. 205.8 seconds
(SD=140.1), a difference that was not statistically significant.

Spreadsheet Transcription

Our next experiment explored the vote, active, and leader
mediators on a simple spreadsheet transcription task (Figure
8). Prior work has demonstrated the value and feasibility of
crowd assistance in word processing tasks [2]. In this exper-
iment, we used Legion to capture both a Google spreadsheet
and a picture of a table scribbled on a whiteboard (the tim-
ing results from the robot navigation task), and workers were
asked to transcribe the table into the spreadsheet. Legion
captured video at 640x480 resolution. This task is interest-
ing because of the large input space (numbers, letters, arrow
keys, and mouse clicks), which makes it more difficult for the
crowd to agree. Furthermore, while Google spreadsheets al-
ready enable collaborative use, there is no protection against
malicious users. As such, it is not suitable for collaborative
use by the crowd.

We again conducted 10 trials of each of the input mediators,
and ended trials lasting more than 10 minutes. Trials were
deemed successful when all of the labels and numbers were
entered into the spreadsheet correctly.

LeaderActiveStarting Condition VoteSolo
Figure 7: Example traces from the robot navigation trials. solo starts well but ends before reaching the goal, vote makes
shaky progress slowly toward the goal, active goes toward the goal but fails to reach it when the worker in control drives
back and forth near it, and leader goes mostly straight toward the goal (the robot tends to go left).

None of the vote trials were successful, whereas 9 of 10 trials
with both active and leader were successful. With the vote
input mediator, it was particularly difficult for the crowd to
converge on a single plan. We did not test the mob media-
tor because we expected similar performance, and we expect
the solo mediator to again perform like active but with fewer
successful completions. Task completion times were again
lower for the leader condition as compared to active, 78.2
seconds (SD=72.3) vs. 100.0 seconds (SD=74.8), although
this difference was not statistically significant.

VALIDATION IN NEW TYPES OF APPLICATIONS

Legion enables end users to flexibly and creatively apply
crowdsourcing to their existing interfaces. In this section, we
explore several new types of applications enabled by Legion
that we created using the framework. Although additional
work is necessary to fully evaluate the utility of these appli-
cations, we present them here as a demonstration of the broad
set of possibilities Legion opens up.

Interactive End User Assistance

Most of our discussion of Legion has assumed that a user
will outsource full control of her interface to the crowd, but
Legion can be used much more flexibly to provide interactive
assistance to end users.

User Support Legion enables end users to outsource certain
functions to the crowd who then can work cooperatively with
them as they work. We used this idea to help make a crowd-
powered predictive keyboard out of an existing predictive
keyboard software program called KeyStrokes4. On-screen
keyboards are used by many people with motor impairments,
who use trackballs, head pointers, and other devices to type.
Because typing in this way can be slow, KeyStrokes pre-
dicts what word the user is likely trying to type and dis-
plays suggestions that can be selected with a mouse click.
We used Legion to outsource the selection of suggestions in
order to bring human intelligence to prediction and possibly
make typing faster (Figure 9). When using this application,

4http://www.assistiveware.com

we found workers would often disrupt our typing by choos-
ing suggestions prematurely; applications of this type clearly
need to manage the initiative between users and the crowd.

Co-Pilot Mode In co-pilot mode, the end user controls the
interface herself with the crowd standing by in case she needs
to temporarily attend to something else. We implemented
this in the Legion framework by creating a modified version
of the Legion client that captures and sends local user input
to the server, a modified version of the server that can accept
input from the local user in addition to the crowd, and a mod-
ified Leader input mediator that artificially gives the end user
a weight high enough that she will always be the leader.

The result is that a user can control her interface as she nor-
mally would, but the system will automatically and quickly
transition control to the crowd when she leaves. This mode
may be particularly useful in real-time gaming or other ap-
plications that require continuous attention and control. Cur-
rently, users must stay at their computers, or signal they will
be away from keyboard (afk).

The Co-Pilot Apprentice An interesting extension of co-
pilot mode is for the end user to train the crowd to control an
interface. Because the end user is always the leader through
an artificially high weight, the best way for the crowd to in-
crease their agreement score (and receive a higher bonus) is
to mimic what the end user does. The co-pilot application
can thus be used to program the crowd by demonstration.

Programming by Demonstration

We used Legion to enable basic programming-by-demonstration
across diverse applications. The eventual goal is for auto-
matic systems to learn to complete new tasks with existing
interfaces by watching the crowd complete those tasks, but
as a proof of concept we implemented a simple recording
mechanism on the Legion server that can capture the inputs
provided by the crowd and then replay them. We success-
fully recorded and replayed tasks with both the Rovio robot
and Google spreadsheet.

Figure 9: In this Legion use case, suggestion selection
in a software keyboard is crowdsourced while the user
continues to control the software keyboard.

Terminal window running
Python robot controller.

Skype relaying video from an iPod Touch mounted on Scribbler robot.

Figure 10: A crowd­powered robot created by mount­
ing an iPod Touch to a Scribbler robot. Legion crowd­
sources the Skype video and the controller terminal.

Mash­Ups of Desktop Applications:

Finally, we explored how Legion could be used to create a
novel type of desktop mash-up in which pieces of multiple
existing interfaces are sent to the crowd for control.

We have already seen an example of this in the second ex-
periment in the previous section, in which we combined a
simple photo viewer and Excel to enable the crowd to fill in
a spreadsheet with the numbers sketched on a whiteboard.

As a second example, we created a new video-enabled robot
by combining a remote-controlled Scribbler5 robot and an
iPod Touch running Skype (Figure 10)6. The Scribbler driv-
ing platform was controlled over bluetooth from a terminal
window. To construct the robot, the iPod was simply taped
to the platform. On the desktop, we moved the Skype and
terminal windows close together and then used the Legion
end user interface to select the relevant parts of both of these

5http://www.parallax.com/tabid/455/Default.aspx
6This robot actually performed better than the Rovio.

windows. This mash-up allowed workers to see where the
robot was going, and type commands to control it.

DISCUSSION

We have introduced Legion, a system for real-time crowd
control of existing interfaces. Although Legion can control
a wide variety of interfaces, our experiments highlighted the
fact that different input mediators may be appropriate for dif-
ferent types of applications. Applications with a large input
space, such as the spreadsheet, proved most difficult for the
input mediators that did not select a single individual. Tasks
in which the crowd was presented with multiple reasonable
courses of action and a large input space made it especially
difficult to achieve high crowd agreement levels.

The input mediator that did consistently well was the leader
input mediator, which elects a leader who has direct con-
trol over the interface as long as he remains in power. This
would go against the notion of the wisdom of the crowds, if
the leader had not been elected by the crowd. Nevertheless,
input mediators that allow a single crowd worker to control
an existing interface trade expediency for trust. As a result,
applications in domains in which errors have consequences
may need to trade higher latencies for reliability.

It was clear that the crowd faced challenges related to miss-
ing feedback. Because multiple workers were controlling the
same interface, a worker’s actions would not always be re-
flected in the behavior of the interface. We received several
emails from workers wanting to let us know that they had
been trying to control the application as instructed but that it
did not seem to be following their instructions. These con-
cerns may dissipate as workers become accustomed to inter-
acting in this way, but we may also need to find ways to give
better feedback via the interface. Such concerns may have
real implications, as we suspect that workers who felt that
they were not being listened to quit the task earlier. Our cur-
rent interface shows workers when the crowd decision was
taken over their own, but it would be nice to give users the
impression that the interface followed their input.

Legion does not support communication between workers,
which is unusual for collaborative systems. Early experi-
ments that showed workers what action the crowd chose re-
sulted in poor quality input as workers mimicked what the
crowd was already doing. Nevertheless, watching the crowd
seem to struggle against one another to complete tasks sug-
gests that a form of limited communication may be helpful.

Our experiments show that it is possible to have multiple
crowd workers collaboratively control an existing interface
in real-time. Our experiments were conducted on Amazon’s
Mechanical Turk, and many of our workers came from coun-
tries other than the United States. We expect that other
crowds would face fewer technological limitations.

FUTURE WORK

Future work may explore how to better enable group work
in Legion. For instance, new input mediators may help facil-
itate consistency. Our leader input mediator enables a con-
sistent strategy as long as the same leader remains in con-
trol. Intelligent input mediators might be able to automati-

cally cluster input into distinct strategies, allowing leaders to
be replaced by other workers likely to execute similar plans.
Other promising approaches include allowing workers lim-
ited communication, or to enforce a management hierarchy.

We are currently working on ways of extending Legion to
more robustly and automatically adjust to different domains.
It may be useful, for example, to dynamically switch between
multiple input mediators. For instance, the mob could nor-
mally provide control with the benefit of a collective crowd
voice, but leader could take over at a decision point at which
the collective voice might not agree.

Complex applications may be better controlled by multi-
ple specialized groups (Figure 1). For instance, an assis-
tive robot requires control for both navigation and manipu-
lation; each function may be best handled by different sets
of crowd workers. For some tasks, limited communication
between workers may facilitate collaboration. Finding effec-
tive ways of moderating communication to avoid excessive
or malicious messaging in this context is ongoing.

As explored briefly in this paper, Legion can be used as a
basis for interactive programming by demonstration. Future
work may look to better support end users training a crowd
to help them on their tasks, or new input mediators that will
continue to reward the crowd for exercising control similar to
what the end user demonstrated even after the user has left.

Workers often found the feedback provided by Legion con-
fusing. Because the control input sent to the interface is
based on the crowd, an individual may find that the interface
does not do what they tell it. It may be interesting to explore
how to allow different users to take different paths. In some
systems with real-world consequences this would not be pos-
sible, e.g. in the robot domain, but for many others it may be
possible to simulate the effects of different actions being sent
to the interface. For instance, copies of the application could
be run simultaneously in virtual machines and only merged
when the crowd’s consensus was clear. We also plan to ex-
plore giving workers more information about their current
status, for instance whether they are the current leader.

CONCLUSION

We have presented Legion, a system that enables real-time
control of existing interfaces by the crowd. Prior approaches
to crowdsourcing require programmers to encapsulate tasks
into new interfaces, cannot be used for continuous control,
and use abstractions for reliability that introduce additional
latency. We have implemented and evaluated several ways
of combining input from multiple workers in real-time, and
have demonstrated how letting the crowd control existing in-
terfaces allows for several new kinds of applications.

ACKNOWLEDGMENTS

The authors would like to acknowledge the contributions of
Craig Harman and Robin Miller.

REFERENCES
1. J. Allen, N. Chambers, G. Ferguson, L. Galescu, H. Jung,

M. Swift, and W. Taysom. Plow: a collaborative task learn-
ing agent. In Proc. of the national Conf. on Artificial intelli-
gence - Volume 2, 1514–1519. AAAI Press, 2007.

2. M. S. Bernstein, G. Little, R. C. Miller, B. Hartmann, M. S.
Ackerman, D. R. Karger, D. Crowell, and K. Panovich. Soy-
lent: a word processor with a crowd inside. In Proc. of
the ACM Symp. on User interface software and technology,
UIST ’10, 313–322, 2010.

3. J. P. Bigham, C. Jayant, H. Ji, G. Little, A. Miller, R. C.
Miller, R. Miller, A. Tatarowicz, B. White, S. White, and
T. Yeh. Vizwiz: nearly real-time answers to visual questions.
In Proc. of the annual ACM Symp. on User interface software
and technology, UIST ’10, 333–342, 2010.

4. P. Chan, and S. Stolfo. Learning Arbiter and Combiner Trees
from Partitioned Data. In KDD 1995, 39–44, 1995.

5. L. Chilton. Seaweed: A web application for designing eco-
nomic games. Master’s thesis, MIT, 2009.

6. S. Cooper, F. Khatib, A. Treuille, J. Barbero, J. Lee, M. Bee-
nen, A. Leaver-Fay, D. Baker, Z. Popovic, and F. Players.
Predicting protein structures with a multiplayer online game.
Nature, 466(7307):756–760, 2010.

7. M. Dixon and J. Fogarty. Prefab: implementing advanced
behaviors using pixel-based reverse engineering of interface
structure. In Proc. of the Intl. Conf. on Human factors in
computing systems, CHI ’10, 1525–1534, 2010.

8. S. Greenberg and D. Marwood. Real time groupware as a
distributed system: concurrency control and its effect on the
interface. In Proc. of the ACM Conf. on Computer supported
cooperative work, CSCW ’94, 207–217, 1994.

9. K. Goldberg, D. Song and A. Levandowski. Collaborative
teleoperation using networked spatial dynamic voting. In
Proceedings of the IEEE. 91(3): 403-439, 2003.

10. G. Little, L. B. Chilton, M. Goldman, and R. C. Miller.
Turkit: human computation algorithms on mechanical turk.
In Proc. of the ACM Sypm. on User interface software and
technology, UIST ’10, 57–66, 2010.

11. G. Little, T. A. Lau, A. Cypher, J. Lin, E. M. Haber, and
E. Kandogan. Koala: capture, share, automate, personalize
business processes on the web. In Proc. of the Conf. on Hu-
man factors in computing systems, CHI ’07, 943–946, 2007.

12. D. Maynes-Aminzade, R. Pausch, and S. Seitz. Techniques
for interactive audience participation. In Proc. of the Intl.
Conf. on Multimodal Interfaces, ICMI ’02, 15–, 2002.

13. Massively multiplayer pong. collisiondetection.net, 2006.
14. J. Nichols, Z. Hua, and J. Barton. Highlight: a system for

creating and deploying mobile web applications. In Proc. of
the ACM Symp. on User interface software and technology,
UIST ’08, 249–258, 2008.

15. S. Osentoski, C. Crick, G. Jay, and O. C. Jenkins. Crowd-
sourcing for closed loop control. In Proc. of the NIPS Work-
shop on Computational Social Science and the Wisdom of
Crowds, NIPS 2010.

16. D. Opitz, and R. Maclin. Popular Ensemble Methods: An
Emperical Study. In the Journal of Artificial Intelligence Re-
search, 11: 169–198, 1999.

17. T. Richardson, Q. Stafford-Fraser, K. Wood, and A. Hop-
per. Virtual network computing. Internet Computing, IEEE,
2:33–38, Jan/Feb 1998.

18. R. W. Scheifler and J. Gettys. The X Window System. ACM
Trans. Graph., 5:79–109, April 1986.

19. D. Schulz, W. Burgard, A. B. Cremers, D. Fox, and S. Thrun.
Web interfaces for mobile robots in public places, 2000.

20. D. Song, A. Pashkevich and K. Goldberg. ShareCam Part
II: Approximate and Distributed Algorithms for a Collabo-
ratively Controlled Webcam. In Proc. of the IEEE Conf. on
Intellignet Robots and Systems, IROS ’03, 1087-1093, 2003.

21. M. Toomim, T. Kriplean, C. Prtner, and J. A. Landay. Utility
of human-computer interactions: Toward a science of pref-
erence measurement. In Proc. of the ACM Conf. on Human
Factors in Computing Systems (CHI 2011), CHI ’11, 2011.
To Appear.

22. L. von Ahn and L. Dabbish. Labeling images with a com-
puter game. In Proc. of the SIGCHI Conf. on Human factors
in computing systems, CHI ’04, 319–326, 2004.

23. T. Yeh, T.-H. Chang, and R. C. Miller. Sikuli: using gui
screenshots for search and automation. In Proc. of the ACM
Symp. on User interface software and technology, UIST ’09,
183–192, 2009.

