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The acquisition of cryo-electron microscopy (cryo-EM) 
data from biological specimens is currently largely un-
coupled from subsequent data evaluation, correction 
and processing. Therefore, the acquisition strategy is 
difficult to optimize during data collection, often lead-
ing to suboptimal microscope usage and disappointing 
results. Here we provide Warp, a software for real-time 
evaluation, correction, and processing of cryo-EM data 
during their acquisition. Warp evaluates and monitors 
key parameters for each recorded micrograph or tomo-
graphic tilt series in real time. Warp also rapidly corrects 
micrographs for global and local motion, and estimates 
the local defocus with the use of novel algorithms. The 
software further includes a deep learning-based particle 
picking algorithm that rivals human accuracy to make 
the pre-processing pipeline truly automated. The output 
from Warp can be directly fed into established tools for 
particle classification and 3D image reconstruction. In 
a benchmarking study we show that Warp automatical-
ly processed a published cryo-EM data set for influenza 
virus hemagglutinin, leading to an improvement of the 
nominal resolution from 3.9 Å to 3.2 Å. Warp is easy to 
install, computationally inexpensive, and has an intuitive 
and streamlined user interface. 

INTRODUCTION
Modern cryo–electron microscopy (cryo–EM) allows struc-
tures of protein assemblies to be solved at an ever-increasing 
speed. Automation of the data acquisition process and im-
proved instrument stability have reduced the time required to 
collect hundreds of thousands of particle images to mere days. 
As the field attracts more scientists and the research projects 
become more ambitious, data collection time on a high-end mi-
croscope will remain a scarce and expensive resource. To make 
the best use of microscope time, the operator needs to continu-
ously monitor data quality. Because many artifacts only become 
evident in the later stages of processing, the results of as many 
processing steps as possible should be available quickly to en-
able informed decisions during data collection.

The standard cryo–EM processing pipeline begins with the 
alignment of dose-fractionated image frames to cancel out sam-
ple motion. This is followed by an estimation of the contrast 
transfer function (CTF). Particles are then selected and extract-
ed from the images. These steps are usually referred to as ‘data 
pre-processing’. Subsequent 2D and 3D classification of the par-
ticles serves to separate different complex conformations. Final-
ly, 3D refinement is performed to obtain a three-dimensional 
map that is used to build a model. 

Separate tools exist that can each handle one of the pre-pro-
cessing steps1-4. Software packages like Appion5, FOCUS6 and 
Scipion7 are built around these tools to provide a common in-
terface. Several tools can also be combined, but the resulting 

toolchains are not user-friendly and are not performing at high 
speed. No toolchain today can reliably perform pre-processing 
of cryo–EM raw data at the speed of data collection. Only for 
exceptionally favorable samples data processing has been re-
duced to “one push of a button” by fully automated procedures8, 

9. In the vast majority of cases, however, human expertise, cre-
ativity, and intervention remain required. 

Here we present Warp, a new software that takes over all 
pre-processing steps for 2D and tomographic cryo–EM data. 
Warp offers improved, real-time algorithms and a fully visual, 
intuitive interface that assists the user with immediate feedback 
and an augmenting presentation during data collection and 
pre-processing. The new algorithms can handle both standard 
data collection strategies and advanced scenarios such as tilted 
2D data collection10 or dose-symmetric tilt series11, in a trans-
parent, unsupervised manner. Coupled with automated acqui-
sition software12, 13, Warp provides a continuous low-latency 
stream of reliably picked and corrected particle images that can 
be seamlessly fed into 2D classification, ab initio reconstruction, 
and 3D refinement using other packages9. Warp offers an accu-
rate impression of the data quality during data collection, mon-
itors the microscope behavior, and can enable advanced data 
analysis before data acquisition is completed. In favorable cases, 
this can result in high-resolution cryo-EM structure solution 
during ongoing data collection.

RESULTS

Rationale of Warp

We aimed at providing a software package that enables the elec-
tron microscopy user to evaluate, correct, and process cryo-EM 
raw data immediately during data acquisition. The rationale 
was to provide a single, streaming interface between the data 
acquisition software that produces the raw data, and the exist-
ing software solutions for 2D classification and 3D refinement 
of pre-processed cryo-EM single-particle data, such as cryo-
SPARC9 or RELION8. We called the resulting software package 
‘Warp’ in reference to its highly efficient correction of object 
distortions that occur in cryo-EM and its GPU-based imple-
mentation that results in almost instantaneous output. Our ra-
tionale was that Warp should be used for the online evaluation, 
correction and processing of both 2D and tilt series cryo-EM 
data. Warp can be installed on standard platforms and operated 
by non-expert users via a streamlined user interface (UI) that 
has been developed in parallel to the underlying algorithms to 
augment their operation. Warp was designed to be widely ap-
plicable for biological data acquisition at any cryo-EM facility 
and substantially speeds up the process of cryo-EM structure 
determination with improved results.

Overall design

A schematic of the computational steps carried out by Warp is 
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provided in Fig. 1. For simplicity, we first describe the workflow 
for 2D data, before we describe the application to tomograph-
ic tilt series at the end of the results section. At the beginning 
of the pipeline, Warp reads any new data saved by the acqui-
sition software. Warp then estimates and corrects the motion 
captured in the frames both globally and locally. Next, Warp 
fits a spatially resolved CTF model, enabling the assignment of 
local defocus values to any particles extracted from the micro-
graph later. Warp then uses a neural network-based approach 
to automatically pick particles from the corrected micrographs 
with very high accuracy. Finally, Warp exports the resulting 
dose-weighted particle images to a downstream structure deter-
mination program such as cryoSPARC9 or RELION8 that carry 
out 2D and 3D classification, map refinement and reconstruc-
tion. During pre-processing, Warp provides a comprehensive 
overview of all important data parameters, allowing the oper-
ator to tune the acquisition settings to achieve optimal results 
faster. In the following we will describe the most important 
components in more detail.

User interface

Warp’s UI is designed to help the user to comprehend and in-
teract with the thousands of data objects generated routinely 
during cryo-EM data collection (Fig. 2). The ‘Overview’ tab dis-
plays various properties, such as defocus, estimated resolution, 
amount of motion, or particle count, for all processed micro-
graphs or tilt series as interactive plots. The user can immedi-
ately grasp the statistical distribution, observe intrinsic patterns, 
and make an informed decision to manually adjust the acquisi-
tion parameters, e.g. to tune the lens astigmatism, increase the 
stage settling time, or skip a bad grid square. A filter range can 
be specified for every plotted parameter to automatically ex-
clude lower-quality images from downstream processing. Any 
data point can be quickly inspected in more detail in a tab called 
‘Fourier & Real Space’. Here, a display of the power spectrum 
and the CTF fit allows optimization of CTF fitting parameters. 
In the real-space view, a deconvolution filter (Methods, Fig. 7) 
can be instantly applied to micrographs to improve the con-
trast and make the particles more visible to the human eye. The 
defocus variation obtained through local CTF estimation can 
be overlaid semi-transparently. Particle picking results can be 

assessed in the context of a micrograph, and edited manually. 
Dedicated dialogs assist the user with tasks like micrograph list 
export, particle extraction, template matching, tomogram re-
construction, and neural network training.

Motion correction

Warp generally represents space- and time-dependent parame-
ters as coarse, uniform grids, on which a computationally cheap 
B-spline interpolation can retrieve any intermediate value 
(Methods). The motion, i.e. the translational shift observed be-
tween frames, is due to two effects: movement of the mechanical 
sample stage, and beam-induced motion (BIM). Stage move-
ment causes global shifts over the entire field of view, whereas 
BIM leads to shifts between adjacent micrograph patches14, 15. 
While stage drift can lead to rapid shift changes between frames, 
BIM occurs more slowly after rapid relaxation during initial ex-
posure16. Warp corrects for both global drift and local BIM at 
variable temporal resolution (Fig. 3). The strategy is similar to 
the one used by MotionCor21, except that Warp does not apply 
any additional a priori assumptions about BIM beyond those 
imposed by the parameter grid resolution. As a result, Warp 
corrects very efficiently and thoroughly for the two types of mo-
tion that occur during cryo-EM data acquisition in any kind of 
support film hole morphology and orientation.

Estimation of local defocus and resolution

The CTF model can be estimated based on the power spectrum 
(PS) of a micrograph. However, the defocus varies over the 
micrograph area due to stage inclination, uneven sample sur-
face, or an uneven particle distribution along the optical axis17. 
Warp provides a flexible way to model local defocus variation in 
spatial and temporal dimensions without the need for a priori 
knowledge of particle positions. Instead of one global estimate, 
a tilted plane or a more complex geometry is fitted to the PS of a 
movie patch to estimate local defocus. A 1D average of all local 
power spectra rescaled to a common defocus value allows the 
user to easily assess whether fitting the more complex geome-
try recovered more Thon rings beyond the spatial frequencies 
used for the fitting. Thus, Warp goes beyond state-of-the-art 
CTF estimation by providing a spatially resolved model without 
the need for a priori knowledge of particle positions, and costly 
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Figure 1 | Warp handles all pre-processing steps to close a gap in the 2D cryo–EM pipeline.
Data is acquired by the microscope in an automated fashion and stored as compressed stacks of movie frames. Warp continuously monitors its 
input folder for new files, and subjects them to all steps of the pre-processing pipeline: frame alignment, CTF estimation and particle picking. 
Warp writes out a stack of particles for each pre-processed micrograph and maintains a dynamically updated STAR file with references to all par-
ticles and their local CTF parameters. This file can be used as a data source in a tool such as cryoSPARC, which will periodically run subsequent 
processing steps like 2D classification and ab initio reconstruction on the latest set of particles.
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Figure 2 | User interface of Warp.
(a) The processing settings (left) specify all steps and parameters for online data evaluation, correction and processing. The ‘Overview’ tab (right) 
presents all important processing results and lets the user specify selection filters to remove low-quality data.
(b) View of a single micrograph. In Fourier space (left), the simulated 2D CTF (i), the 1D power spectrum (PS) and its fit (ii), and the 2D PS (iii) 
are presented. The real space view (right) shows the aligned movie average with particle positions (green dots), motion tracks (white curves) and 
the defocus variation (transparent magenta-cyan overlay), and applies a deconvolution filter. Individual display elements can be shown or hidden. 
The navigation bar (bottom) shows the processing status for all items and allows to quickly switch between them as well as to manually exclude 
single items from processing.
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hyper-parameter tuning. The spatially resolved CTF model can 
converge on the correct solution for tilts as high as 60°, based on 
the inclination of the estimated defocus gradient. This makes 
Warp a useful tool for tilted 2D data collection, which has been 
shown to increase the resolution isotropy for samples with 
preferred orientation10. The useful resolution range of a micro-
graph is estimated as the spatial frequency where the fit quality 
falls below a threshold (Methods). 

Particle picking with BoxNet

The next step in cryo-EM structure determination is the ac-
curate selection of single particles from the corrected micro-
graphs. Warp includes a novel particle picking routine based 
on a machine learning algorithm (Methods). For several years, 
the computer vision community has been using convolutional 
neural nets (ConvNets) to vastly outperform template matching 
in object recognition tasks18, 19. First attempts to apply ConvNets 
to the particle picking problem in cryo-EM have shown perfor-
mance on par with traditional template matching approaches20. 
Today, deep residual network (ResNet) architectures enable the 
training of arbitrarily deep models21. Warp employs ‘BoxNet’ 

– a fully convolutional ResNet architecture with 72 layers, im-
plemented in TensorFlow 1.522. BoxNet was trained with data 
from the EMPIAR raw data repository23 and synthetic data sim-
ulated from PDB24 structures with a molecular weight range of 
0.064–18 MDa. As a result of these efforts, the pre-trained neu-
ral network bundled with Warp performs well on many new 
particle species and is able to accurately mask out high-contrast 
artifacts, such as ethane. The performance of BoxNet compares 
favorably with available tools when representative single-parti-
cle cryo-EM data are used as input (Fig. 4).

Retraining of BoxNet

Since the performance of BoxNet can vary between different 
data, Warp offers a retraining interface for BoxNet. Such re-
training leads to human-like accuracy in automated particle 
picking. For retraining, the user can indicate to Warp positive 
and negative examples of BoxNet performance. Using ~1000 
examples, retraining of BoxNet typically takes less than 10 
minutes, with an estimate of the achieved accuracy provided 
during the process. After retraining, the user can pick the same 
micrographs with the re-trained network and select more posi-
tive and negative examples for another round of retraining if re-
quired. To decrease the need for retraining in the future, Warp 
also provides the option of submitting training data to a central 
GitHub repository. De novo training will be carried out by us 
periodically with all deposited data, and the resulting updated 
pre-trained BoxNet offered to the community. The training set 
is centrally curated and a list of particle species in the current 
version is available from https://github.com/cramerlab/boxnet. 
The BoxNet version name will be stored in each micrograph’s 
metadata to ensure reproducibility of picking results obtained 
with older versions.

Online pre-processing during data collection

The design of Warp is optimized for processing raw cryo-EM 
data immediately during data collection. Files written out by 
the image acquisition software are detected automatically in the 
specified input folder and added to the list of ‘processable items’ 
in Warp. Each item maintains its metadata in an XML file that 
includes the exact previous processing settings. Warp contin-
uously performs the processing steps necessary to bring each 
item into accord with the settings currently specified for the 
entire folder. During the processing, all results can be immedi-
ately inspected. Items can be forcibly included (i. e. exempted 
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Figure 3 | Motion and CTF model fitting by Warp.
The unaligned, defocused movie (i) is parametrized with a coarse grid (black dots), divided into patches for the alignment (ii), and power spectra 
of these patches are computed (iii) for CTF fitting. The motion model (iv) includes 2 components: global motion (cyan trajectory) with fine tem-
poral and no spatial resolution, and local motion (magenta trajectories) with coarse temporal, and fine spatial resolution. Both components are 
optimized to minimize the squared difference between the individual patch frames and their aligned average. The spatially resolved CTF model 
(v) is optimized to minimize the squared difference between the power spectra (iii, upper left part of each patch) and the simulated local 2D CTF 
(iii, bottom right part of each patch). Here, the defocus gradient follows the 40° tilt of the specimen, with the notable exception of the hole edge in 
the bottom left corner.
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from the quality filters) or excluded from downstream process-
ing. The processing must be stopped to change the settings or to 
retrain the BoxNet model. If changes were made, Warp will first 
reprocess all outdated items. During online processing, Warp 
is able to estimate parameters such as motion, defocus and the 
resolution limit from micrographs, as well as perform particle 
picking within less than one minute after the raw data become 
available. In our experience, high-quality single-particle data 
of complexes of RNA polymerase II enable the user to obtain 
detailed 2D classes of particles and 3D reconstructions at better 
than 5 Å resolution using Warp and cryoSPARC within only a 
few hours after the start of data collection (D. Tegunov, C. Di-
enemann, and P. Cramer, data not shown).

Pre-processing tomographic data

Warp can also be used to pre-process data from cryo-electron 
tomographic (cryo-ET) tilt series. Warp can reconstruct tomo-
grams from a tilt series and can perform template matching in 
tomograms with available 3D structures. The (sub)-tomogram 
reconstruction considers the local CTF, sample distortion and 
magnification anisotropy (Methods). Additionally, a decon-
volved version of the tomograms can be produced using the 
same interface to help with their visual evaluation. To ensure 
the CTF model is as accurate as possible, Warp’s CTF fitting pro-
cedure goes beyond fitting the tilt images individually. Instead, 
local patch 2D power spectra from all tilts are fitted simultane-
ously, with constraints imposed on the inter-tilt angles, and reg-
ularizing assumptions made for the progression of phase shift 
and astigmatism (Methods). The tilt series CTF fitting can also 
be performed as part of the online processing.

Template matching

Finding a previously known structure in new data is central to 
many stages of cryo-EM data processing. The structure must 
be compared at many different orientations to every position 
in the new data under the consideration of the CTF. Warp im-
plements template matching only for 3D templates, because 
matching a set of 2D templates for particle picking is better han-
dled by a neural network such as BoxNet (see above). A tem-
plate volume can be either provided by the user or automatically 
downloaded from the EMDB25 through the same UI. For tem-
plate matching, 2D micrographs are subdivided into tiles. Then, 
normalized cross-correlation is computed between the tiles and 
2D projections generated from the 3D template at the specified 
angular intervals, convolved with the local 2D CTF (Methods). 
All local correlation peaks with a minimum inter-peak distance 
corresponding to the template particle diameter, and the corre-
sponding best-scoring template orientations are saved so that 
the user can later instantly explore different peak thresholds 
without repeating the costly correlation step. This procedure 
is also implemented for tomographic volumes, where the local 
patches are replaced by local sub-volumes, and the local 3D 
CTF is considered.

Software implementation

Warp is written in the programming languages C#, C++ and 
CUDA C. The expressiveness of C# and the availability of pow-
erful development tools kept the high-level data management 
layer brief and maintainable. Warp’s rich UI is enabled by the 
Windows Presentation Foundation (WPF) framework. All per-
formance-critical parts are implemented to run on a GPU. Cen-
tral data primitives, such as 2D movies and tilt series, and all 

BoxNet, generic

Original image

BoxNet, re-trained

RELION, Gaussian blob RELION, 2D class templates

Figure 4 | Automated particle picking with Warp’s deep learning-based BoxNet.
Representative example of automated particle picking with BoxNet in Warp on a micrograph with high-contrast artifacts. Areas masked out 
automatically by BoxNet are colored orange. The generic version of BoxNet was never presented with the sample during training. The re-trained 
version was given 5 micrographs of the same sample, which did not include the one shown. The template-based picking in RELION used 25 class 
averages derived from 3000 particles, filtered to 20 A. RELION’s results show the 120 highest-scoring positions. For visualization purposes, the 
micrograph was deconvolved, high-pass filtered and cropped at the borders.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 14, 2018. ; https://doi.org/10.1101/338558doi: bioRxiv preprint 

https://doi.org/10.1101/338558


6

associated algorithms are wrapped in a stand-alone C# library 
that we called ‘WarpLib’. The granularity of most of these meth-
ods is fine enough to make them useful for applications beyond 
those implemented in Warp. Thus, WarpLib has the potential 
to speed up the development of future GPU-enabled tools that 
provide new functionality around the same data. We intend to 
keep developing Warp to enable state-of-the-art, rapid cryo-EM 
data pre-processing in the future. 

Benchmarking

To test the performance of Warp, we reprocessed a published 
single-particle cryo-EM data set for the influenza hemaggluti-
nin trimer10 (Methods) (Fig. 5). We chose this case for bench-
marking because the processing of a 150 kDa protein imaged 
at 40° tilt required a significant amount of manual screening 
in the original analysis10, providing a challenging test case for 
the Warp pipeline. With the original set of 130,000 particles, 
cryoSPARC reached a similar resolution as that reported in 
the original analysis (Fig. 5a, b), showing that refinement in 
cryoSPARC and RELION yields equivalent results for this data 
set. However, because this particle set and the general particle 
population both exhibit significant heterogeneity, we draw the 
comparison between results obtained after subjecting all data 
to the same 3D classification steps in cryoSPARC (Methods). 
For the original set, the best class containing 57,346 particles 

reached a global resolution of 3.9 Å with a B-factor of -200 Å2. 
The same particles, updated with the defocus information 
from Warp, reached a notably higher resolution of 3.5 Å with a 
B-factor of -170 Å2. This suggests that Warp’s local CTF mod-
el is more accurate than the per-particle CTF fitting in gCTF2 
used in the original study. Warp processing also estimated a 
narrower range of astigmatism amplitudes (Fig. 5c), in agree-
ment with the assumption of a stable optical system. For the full, 
completely automated Warp pre-processing pipeline, the best 
class containing 249,495 particles reached a global resolution of 
3.2 Å with a B-factor of -170 Å2, accompanied by a significantly 
increased level of detail in the map (Fig. 5a). After classification 
in cryoSPARC, the best classes contained 45 % and 51 % of all 
particles in the original EMPIAR-10097 set and Warp’s auto-
matically picked set, respectively, suggesting a similar degree 
of particle ‘purity’ in the manual and automated approaches. 
Furthermore, Warp’s result demonstrates that tilted data collec-
tion can lead to near-atomic resolution – significantly higher 
than previously established – with minimal effort in the data 
pre-processing step. Taken together, our results establish Warp 
as a very useful tool for high-performance, automated cryo-EM 
data pre-processing.

DISCUSSION
Here we present Warp, a novel software tool for real-time eval-

EMPIAR-10097 half-maps
Original set

Original set, best class
Original set, best class + Warp CTF

Full Warp pipeline

Fourier shell correlation Local resolution

2.6 Å 2.6 Å5.2 3.510.5

4.3 3.5

0.143

1 30 %

3.9 3.2

250 nm42 820

Original set, best class
+ Warp CTF

| Astigmatism |

250 nm0 37

| DefocusOri. set, best cl. – Defocus+ Warp CTF |

Full Warp pipelineOriginal set, best class + Warp CTF

Original set, best classOriginal seta b

c

Figure 5 | Warp’s 2D pipeline improves cryo-EM density for influenza hemagglutinin.
As a benchmarking case we used the published EMPIAR-10097 data set containing influenza hemagglutinin trimer particles. ‘Original set’: 
130,000 pre-extracted particles from EMPIAR-10097 with their original CTF parameters; ‘Original set, best class’: 57,346 particles from ‘Original 
set’ after 3D classification in cryoSPARC with their original CTF parameters; ‘Original set, best class + Warp CTF’: the same 57 346 particles, but 
with Warp’s CTF estimates; ‘Full Warp pipeline’: 249,495 particles obtained from the raw EMPIAR-10097 data after unsupervised pre-processing 
in Warp and 3D classification in cryoSPARC. 
(a) Isosurface renderings of the 3D maps generated with cryoSPARC using the respective sets of particles and CTF parameters, filtered to local 
resolution using the auto-tightened masks generated by cryoSPARC. 
(b) Global masked FSC plots, and histograms of the local resolution used to filter the maps depicted in (a). ‘EMPIAR-10097 half-maps’ refers to 
the original half-map volumes deposited in EMPIAR-10097, obtained from the same 130,000 particles as ‘Original set’. 
(c) Histogram comparison between the original defocus parameters and those estimated by Warp for the 130 000 particles from ‘Original set’. The 
mean value for each metric is specified underneath the horizontal axis in the same color as the corresponding histogram.
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uation, correction and pre-processing of cryo-EM data during 
data collection. Warp bridges between the microscope and 
available software for 2D classification and 3D reconstruction, 
taking care of all pre-processing steps. Warp also helps the 
microscope operator to monitor the data quality during acqui-
sition, thus allowing the user to change and optimize the ac-
quisition strategy during ongoing data collection. This enables 
one to make the best use of microscope time and prevents dis-
appointing results during traditional data processing long after 
the data collection is concluded. A particularly useful tool in-
cluded in Warp is the deep learning-based algorithm BoxNet 
that performs reliable, automated particle picking. Warp is easy 
to install, has an intuitive user interface, and will be maintained 
and improved over the next years.

To further improve cryo–EM data collection efficiency in the 
future, we envision that an automated feedback loop between 
the acquisition software and Warp would be particularly useful. 
Such feedback could be beneficial towards the goal to maximize 
the number of images collected in sample areas with the best 
data quality, as follows. Areas with low estimated resolution or 
particle count could be skipped quickly. The stage settling time 
could be adjusted dynamically based on Warp’s motion esti-
mate for the previous image. Furthermore, the time-consuming 
process of focusing the microscope by tilting the beam could be 
reserved for large stage shifts only, whereas the defocus in re-
cent images could be obtained from Warp’s precise CTF fits and 
used to adjust the instrument without delaying the data collec-
tion. Additional feedback from Warp users will also contribute 
to further development of the software, aimed at serving the 
rapidly growing cryo-EM community.

METHODS

Spline interpolation on multi-dimensional grids

Many methods in Warp are based on a continuous parametri-
zation of 1—3-dimensional spaces. This parameterization is 
achieved by spline interpolation between points on a coarse, 
uniform grid, which is computationally efficient. A grid extends 
over the entirety of each dimension that needs to be modeled. 
The grid resolution is defined by the number of control points in 
each dimension and is scaled according to physical constraints 
(e. g. number of frames or pixels) and available signal. The lat-
ter provides regularization to prevent overfitting of sparse data 
with too many parameters. When a parameter described by the 
grid is retrieved for a point in space (and time), e. g. for a par-
ticle (frame), B-spline interpolation is performed at that point 
on the grid. To fit a grid’s parameters, in general, a cost function 
associated with the interpolants at specific positions on the grid 
is optimized. In the following, we distinguish between 2—3 spa-
tial grid dimensions (X and Y axes in micrographs; X, Y and Z 
in tomographic volumes), and a temporal dimension as a func-
tion of the accumulated electron dose.

Motion model

Two sources contribute to the observed translational shift be-
tween frames in a dose-fractionated image sequence. First, me-
chanical stage instability leads to rapid shift changes that are 
uniform within the entire frame. Second, beam-induced mo-
tion (BIM) causes slowly changing, local motion. Warp consid-
ers the physical properties of both sources in its motion mod-
el, using two sets of grids to parametrize the frame shifts and 
sample deformation. Global motion is described by two grids, 
Xglobal

 and Y
global

, with high temporal, and no spatial resolution. 
The temporal resolution can match the number of frames, or, in 
case finer dose fractionation is performed to reduce intra-frame 
motion, the resolution can be lower to regularize a potentially 

overfitted model. BIM is described by two grids, X
local

 and Y
local

, 
with a temporal resolution of at most 3, and a spatial resolution 
of typically 4—5 in both dimensions. The overall shifts required 
to bring the same object in all frames into a common reference 
frame are then defined as (X

global
 + X

local
, Y

global
 + Y

local
). 

Global and local motion correction

In the absence of known particle positions and high-resolution 
reference projections, individual frame patches are aligned to 
their averages. The movie is subdivided into groups of 5122 px 
patches with a 50 % spatial overlap, masked with a raised cosine. 
To simplify computation, the images are transformed into Fou-
rier space where complex multiplication replaces translation. 
For each group, the patches are shifted according to the interpo-
lants at their extraction positions using the current grid values. 
The average of a group’s shifted patches is then compared to the 
individual patches to calculate the patch costs as

,

where  denotes the frame index,  denotes the spatial frequen-
cy,  is the Fourier transform of a shifted patch frame, and  is 
the average of all shifted patch frames. The shifts are obtained 
by interpolating on the current state of the parameter grids at 
the patch frame’s position in space and time. The derivative is 
approximated numerically with the symmetric difference quo-
tient. The overall cost for all grid control points is the sum of 
all patch costs, and the derivative for each grid control point 
is the weighted sum of the derivatives of all patches affected by 
it. The weights for each control point’s derivative can be pre-
computed by applying a one-pixel shift to the control point and 
storing all resulting non-zero patch shifts. The cost and deriva-
tives are used by the Limited-memory Broyden-Fletcher-Gold-
farb-Shanno (L-BFGS) algorithm26 to optimize the values of all 
control points. The optimization is performed in several steps 
to improve global convergence. In the first step, the temporal 
resolution of X

global
 and Y

global
 is set to 3, and increased to the 

next power of 3 in subsequent steps until the desired temporal 
resolution is reached.

Contrast transfer function estimation in micrographs

The CTF analytically describes the convolution applied to the 
images by the electron-optical system. Estimating its properties 
with high precision is essential for reversing the effects and ob-
taining high-resolution reconstructions27. Whereas the meth-
odology for measuring defocus and astigmatism from a micro-
graph’s power spectrum (PS) has been well-established4, 28, the 
recent increase in EM map resolution calls for a more localized 
approach. Local defocus variation of a seemingly flat sample 
can exceed 60 nm within a single micrograph, resulting in an 
out-of-phase CTF for some particles at resolutions beyond 3 Å. 
Attempts to address this issue by fitting the defocus per-particle 
have been made2, but they require knowledge of particle posi-
tions, and lack robustness for all but the largest particle species. 
Even with a local smoothing approach, per-particle defocus re-
quires high particle density to not lose accuracy compared to a 
global estimate. On the other hand, strong local irregularities in 
the specimen surface are almost never observed in tomographic 
volumes in vitro17, suggesting per-particle precision might be 
unnecessary.

Estimation of local defocus

To parametrize the defocus, a single grid typically consists of 
5x5 spatial control points and 1 temporal control point. Option-
ally, another single grid with exclusively temporal resolution 
tracks the development of the phase shift generated by a Volta 
Phase Plate29. Global parameters, such as astigmatism magni-
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tude and angle, are optimized as additional scalars in the mod-
el. In practice, the effect of using a more complex geometry or 
temporal resolution appears negligible. However, the increased 
signal of future camera hardware might make these options rel-
evant. Like in the frame alignment procedure, groups of patches 
matching the desired PS size (e. g. 5122—10242 px) are extracted 
with a spatial overlap of 50% from the raw movie data, trans-
formed into Fourier space, and converted to PS by taking their 
squared amplitudes. If no temporal resolution is desired, each 
group will be averaged to a single PS to save resources. Similar-
ly, in the absence of spatial resolution, the same frame from all 
groups will be averaged.

For the initial, exhaustive search, a 1D rotationally averaged 
PS is calculated from all patches. A B-spline with 3 control 
points is then fitted through it and subtracted to remove most 
of the background. The user-defined range of defocus and, op-
tionally, phase shift values is evaluated by matching a simulated 
1D CTF. The result with the highest normalized correlation is 
then used to estimate the 1D PS background and envelope more 
accurately to consider both in subsequent 2D CTF fitting. The 
cost function to be minimized is calculated between a 2D PS, 
and the 2D CTF simulated based on the local defocus at the 
patch extraction position:

 ,

where  denotes the frame index (in case a temporal dimension 
is used),  denotes the spatial frequency within the range used 
for fitting,  is the 2D contrast transfer function,  is the FT 
of a patch frame,  is the envelope of the 1D PS,  is the back-
ground of the 1D PS, and  is a normalization operator 
that brings the value distribution to mean = 0, standard devia-
tion = 1. The defocus and, optionally, phase shift is obtained by 
interpolating on the current state of the respective parameter 
grid at the patch frame’s position in space and time. The deriva-
tive is approximated numerically with the symmetric difference 
quotient. The same pre-computed weights strategy as in the 
frame alignment procedure is employed for the control point 
derivatives. An L-BFGS algorithm finally optimizes the model 
for all control point values.

The PS of a tilted plane will usually only show low-resolu-
tion Thon rings, regardless of what model was used for the de-
focus gradient. To provide the user with feedback on whether 
the more complex defocus model is beneficial, the 2D spectra 
from all patches, whose parameters are herein referred to as the 

“source” PS, are rescaled and rotationally averaged to a 1D PS 
with a single defocus value, referred to as the “target” PS, such 
that the CTF phases match using the following scaling function:

 ,

where ' denotes the “target” PS coordinate system, and its ab-
sence denotes the “source” PS coordinate system;  is the sam-
pling angle coordinate,  is the anisotropic pixel size,  is the 
spherical aberration,  is the electron wavelength,  is the spa-
tial Nyquist frequency,  is the anisotropic defocus value, and 

 is the sampling radius coordinate. A similar formulation was 
provided before28 for the special case of isotropic pixel size, and 
was used to reduce the comparison between CTF and PS to a 
1D problem. However, Warp performs the fitting in 2D and only 
uses the rescaling for visualization purposes. If the complex 
defocus model fits the data better, the recovery of additional 
high-resolution Thon rings can be observed in the 1D average.

Estimation of resolution

To estimate the useful resolution range, a normalized cross-cor-

relation value between the averaged 1D PS and the simulated 
1D CTF curve is calculated within a sliding window. The win-
dow size at any given position scales to twice the width between 
the zero points of the closest CTF peak, but is not allowed to 
fall below 16 samples. The resolution limit is then reported as 
the frequency where the cross-correlation falls below 0.3 for the 
first time. Since the higher number of optimizable parameters 
allows for some overfitting, it is important that the useful reso-
lution extends beyond the range used for fitting.

Contrast transfer function estimation in tilt series

The single micrograph CTF estimation procedure with planar 
sample geometry described in the previous section can be used 
for tilted 2D data collection. However, full tilt series pose addi-
tional challenges for CTF fitting. Mechanical stage instabilities 
and imperfect eucentric height setting necessitate additional ex-
posures for tracking and focusing12 to correct the stage position 
between individual tilt images. Thus, the defocus cannot be as-
sumed to stay constant, or change smoothly over the course of a 
tilt series. Each tilt image requires its own defocus value, which 
can be challenging due to the small amount of signal available. 
Even at 120 e-/Å2 for an entire series of 60 images, each tilt only 
has 2 e-/Å2 to perform the same estimation as for a 40 e-/Å2 2D 
image, while striving to achieve comparable accuracy.

To improve the fit accuracy, the individual tilt image fits must 
be subjected to a common set of constraints. As the imaged 
sample content does not change significantly throughout the 
tilt series, 1D background and envelope can be derived from 
the average 1D spectrum of all tilt images. The relative tilt an-
gles and the tilt axis orientation are known to a higher precision 
than could be derived from fitting a planar geometry de novo, 
and are kept constant throughout the optimization. However, 
the absolute inclination of the sample plane is unknown. This 
is especially critical in some of the typical applications of to-
mography, like the imaging of lamellae prepared through FIB 
milling because a lamella can be tilted by over 20° relative to the 
grid. This additional inclination remains constant throughout 
the tilt series, and is made a single optimizable parameter for all 
tilt images. Astigmatism and, optionally, phase shift can be kept 
constant throughout 2D image exposures, but can benefit from 
a temporally resolved model in a tilt series where the overall 
exposure is fractionated over a much longer time, e. g. 20—30 
min. Warp uses 3 control points in the temporal dimension to 
model these parameters.

With these considerations, the full estimation process is as 
follows. 2D patches are extracted from all aligned tilt movie av-
erages, as described in the micrograph CTF fitting procedure, 
and treated in parallel in all subsequent calculations. To pro-
vide a better initialization for the per-tilt defocus searches, an 
estimate for the average defocus of the entire series is obtained 
by preparing 1D spectra from all patches, and comparing them 
to simulated CTF curves for the defocus values at the respective 
positions and tilts, taking into account the fixed relative tilt in-
formation and the currently tested average defocus (and phase 
shift, optionally). This search is performed exhaustively over a 
range of values specified by the user. The result is used as the 
starting point of a more complex optimization. Defocus values 
for all individual tilts, 3 astigmatism magnitude/angle pairs, 3 
optional phase shift values, and the two global inclination an-
gles (i. e. the plane normal) are optimized using the L-BFGS al-
gorithm with the derivatives obtained numerically as described 
in the micrograph CTF fitting section. Upon convergence, the 
1D spectra of all patches are rescaled to a common defocus 
value. This is especially useful for validation in tilt series since 
the individual images will have very noisy spectra. If the useful 
resolution range does not extend sufficiently beyond the fitting 
range, the latter is automatically decreased and the optimization 
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repeated.
In our experience, the direction of the tilt axis is often mis-

calibrated. Correct handedness in structures obtained from 
sub-tomogram averaging does not guarantee the tilt angle sign 
is not flipped. In Warp, a positive rotation around the positive Y 
image axis is defined to result in an increased underfocus at po-
sitions to the positive X side of the tilt axis, i. e. those parts of the 
sample come physically closer to the electron beam source. The 
CTF fitting procedure in Warp can detect such mistakes by op-
tionally repeating the optimization with the tilt angles flipped, 
and notifying the user if the “wrong” set of angles provides a 
better fit. Such a test can be used to re-calibrate the acquisition 
software for future data collection.

Considerations for tomogram reconstruction

Whereas the process of 3D map reconstruction from 2D imag-
es of single particles is well established today, full-tomogram 
reconstruction breaks some of the simplifying assumptions 
so they must be handled explicitly to obtain better results. In 
the 2D case, the CTF can be assumed to be the same for all 
parts of a single particle image, although corrections for a wid-
er range of defocus values in images of large objects have been 
proposed30. In a tomographic tilt series, the highest tilt image 
can show a defocus spread of 1 um or more. Accounting for 
such variations in local defocus is necessary for reaching high 
resolution31. Furthermore, each region in the tomographic vol-
ume is reconstructed from images with different CTFs, and the 
zeros and peaks of those CTFs will not overlap in Fourier space. 
CTF-based weighting of individual projections is common-
place for 2D data8, 32, but the algorithms used in tomographic 
reconstruction do not go beyond CTF phase flipping, giving all 
spectral components equal weight31, 33. This gives spectral com-
ponents with pure noise (CTF = 0) the same weight as the best 
available signal (|CTF| = 1) if they overlap. Performing CTF-, 
dose- and tilt-based weighting later in sub-tomogram averag-
ing has been shown to be beneficial34, but it has an even more 
significant effect when applied at the level of initial tomogram 
reconstruction. Anisotropic magnification has been described 
in the past35 and is routinely corrected in 2D data. In tomogra-
phy, the real-space distortion is even more pronounced than in 
single particle reconstructions because the distances affected by 
the distortion are more than 1 μm, i. e. the extent of the entire 
tomogram, leading to positional errors on the order of nanome-
ters in scenarios where the anisotropy does not coincide with 
the tilt axis.

Tomogram reconstruction

Warp takes the local defocus and sample distortion, as well as 
magnification anisotropy into account when reconstructing full 
or partial tomographic volumes. For a partial reconstruction at 
any position in the volume, the original 2D images are sampled 
at the following positions:

 ,

where  is the rotation matrix for 3 Euler angles follow-
ing the Xmipp convention36,  is the stage tilt angle,  is the 
in-plane angle of the tilt axis,  is the particle position within 
the tomographic volume, and  is the in-plane offset of the tilt 
axis. The coordinates are centered within the volume and imag-
es. The CTF for each 2D image is calculated using a defocus of:

 ,

where  is the average defocus estimated for the tilt image, 
 is the sample plane normal,  is the z component of 

the normal, and  denotes the scalar product between two vec-
tors. The reconstruction is performed in Fourier space using a 
gridding algorithm8, with the data weighted by the respective 

CTF, and the dose- and tilt-dependent heuristic from RELION34, 
but without the final deconvolution step (i. e. the weights are in-
serted as |CTF|, not as CTF2). To obtain a full tomogram, Warp 
reconstructs a uniform grid of small, cubical volumes with an 
overlap of 50%, and inserts the central 50% into the overall vol-
ume to account for artifacts associated with Fourier space re-
construction at the borders of the local volumes. This ensures 
the corrections can be applied with local precision and remain 
reasonably continuous between adjacent sub-volumes.

Export of corrected data

Whereas the Warp model for a movie or tilt series describes the 
non-linear deformation of the entire particle ensemble and its 
environment, it is unclear whether this deformation gradient 
stays continuous throughout a single particle, i. e. if the protein 
structure is subject to the same compression and shearing as the 
ice around it. Many recent high-resolution maps were recon-
structed using particles extracted from dose-weighted averages 
produced by MotionCor21. The tool assumes the deformation 
gradient to be continuous in all parts of the image, and will thus 
deform images of particles and ice in the same way. This will 
be beneficial if the underlying physical model is indeed con-
tinuous. However, it also distorts the CTF locally without pass-
ing any knowledge of the distortion to downstream processing 
tools. In case of a strong local change in the motion direction, 
this will result in an artifact similar to lens astigmatism.

Warp assumes a continuous deformation field when export-
ing dose-weighted averages of whole 2D movies, i. e. each pixel 
will be shifted according to the grid interpolants at that exact 
position. This has the benefit of uniformly sharper images for 
visual inspection and particle picking. For particle and sub-to-
mogram extraction, however, the entire particle image will 
be shifted uniformly according to the grid interpolants at the 
particle’s center. This keeps the CTF true to its fitted analytical 
description, but makes the assumption that the protein is more 
rigid than the surrounding ice and thus deforms less due to 
BIM. For whole-tomogram reconstruction, a hybrid approach 
is pursued: the local volumes are produced using the same pro-
cedure as sub-tomogram extraction, but the combined volume 
is largely continuous depending on how small the local volumes 
were. 

Particle picking with a residual neural net

In the past years, the recipe for improving the performance of 
deep learning algorithms has been “deeper networks, more train-
ing data”. Outside of cryo-EM, deep ResNet architectures have 
been demonstrated to enable the training of very deep models 
by essentially solving the vanishing gradient problem21. At the 
same time, the EMPIAR raw data repository23 has accumulated 
a diverse collection of 2D cryo-EM data sets that can be lever-
aged for training. Warp employs a model with 35 ResNet blocks 
and 2 conventional convolution layers (Fig. 6) to segment a mi-
crograph into 3 classes: background, particle, and high-contrast 
artifact (e. g. ethane drops). The input window has a constant 
size of 2562 px. After initial convolution with 32 5x5 kernels the 
data are processed by a sequence of 5 groups of each 5 ResNet 
blocks. At the beginning of each but the first group, the data are 
down-sampled by a factor of 2, while the number of channels is 
doubled. This enables the recognition of an increasing number 
of large, higher-order features. After reaching a spatial extent 
of 16x16 in the contractive part of the network, the data are 
processed by the expanding part: a sequence of 4 groups of each 
2 ResNet blocks. At the beginning of each group, the data are 
up-sampled by a factor of 2. Each group’s output is concatenated 
with the output of its mirror counterpart from the contractive 
part in a U-Net-like fashion37. This combines the global context 
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and higher-order features obtained in the contractive part with 
the higher spatial resolution of the previous layers. After reach-
ing the original extent of 256x256 in the expanding part, the 
data are processed by the final 2 ResNet blocks and projected 
onto 3 channels by convolution with 3 1x1 kernels. A pixelwise 
argmax operation finally retrieves the most likely label at each 
location in the original image. The model graph and variables 
are initialized and saved using TensorFlow’s Python API, while 
all subsequent training and inference are performed through its 
C API, wrapped in C# classes. 

To segment a micrograph, it is down-scaled to the standard 
8 Å/px resolution and divided into 2562 px tiles with 64 px over-
lap. Each tile is extracted, normalized, and presented to the net-
work. All tiles’ softmax and argmax outputs are combined and 
subjected to a user-defined threshold for the softmax value to 
remove uncertain picks. Connected components of pixels la-
beled as “particle” are extracted, and their centroids are used as 
particle positions. In cases where two particles overlap accord-
ing to a user-defined diameter, the particle with the bigger con-
nected component is kept. To obtain a mask from the “artifact” 
label, a threshold of 0.1 is applied to the softmax values, and 
connected components with less than 20 pixels are removed. 
The remaining pixels are saved as a binary mask. The final list of 
particle positions only contains those with a user-defined mini-
mum distance to the masked regions.

Initial training of BoxNet

10 EMPIAR and 5 in-house data sets (Table S1) each contribut-
ed 20–50 micrographs to the training set. Additionally, synthet-
ic data were prepared from 21 PDB models using a modified 
version of the InSilicoTEM38 package, contributing ca. 1600 
particles per species. The simulated data contained only one 
species per micrograph, although more heterogeneous exam-
ples might be added in the future. The training set was split 9/1 
for training/validation, and trained with the momentum opti-
mizer in TensorFlow 1.5 using a learning rate gradually decreas-
ing from 1E-2 to 1E-5. The normalized data were augmented in 
each training epoch by extracting the 2562 px window at ran-
dom positions, and applying random rotation, flipping, shear-
ing, and Gaussian noise with a random standard deviation be-
tween 0.0 and 0.6. This augmentation was observed to have an 
excellent regularizing effect, as the final training and validation 
scores were virtually identical. The training was performed for 
800 epochs, using a batch size of 1.

Retraining of BoxNet

User-supplied positions of positive examples and, optionally, 
areas of increased and decreased certainty in the micrographs 
are automatically converted to training data. If requested, the 
training set is diluted with data from the latest version of the 
centrally curated set (in the following referred to as ‘old data’) 
in a 1:1 ratio to prevent possible overfitting of the new data. The 
retraining regime is identical to initial training, but lasts only 
100 epochs. During the retraining, 4 metrics are calculated con-
tinuously for every batch: the old network’s accuracy for old and 
new data, and the retrained network’s accuracy for old and new 
data. Ideally, the retrained network’s accuracy for new data will 
improve to approach or even surpass the old network’s accuracy 
for old data by the end of the retraining process, whereas the 
accuracy for old data will stay constant.

Template matching in micrographs and tomograms

2D micrographs are subdivided in tiles with an overlap match-
ing twice the template particle diameter. For each square, 2D 
projections of the template are prepared at user-defined angu-
lar intervals, convolved by the square’s CTF, and normalized to 
mean = 0, standard deviation = 1 in real space. The square’s FT 
is multiplied by the conjugate of the projection’s FT, and an IFT 
yields the cross-correlation scores for all positions within the 
square. These scores are normalized by the local standard devia-
tion within the square. The scores are compared for all template 
orientations, and the best one is stored for each pixel within 
the square. Finally, the result is cropped to exclude a border 
matching the template particle diameter, and combined with 
the results from other squares to obtain the correlation scores 
for the entire micrograph. A local peak search is performed 
using the template particle diameter as the minimum distance, 
and all peak positions are stored for further processing. Tem-
plate matching in tomographic volumes follows the same con-
cept. Instead of square tiles, local cubes are cross-correlated 
with the template convolved by the local 3D CTF. Optionally, 
a spectrum whitening of the target micrograph/tomogram can 
be performed as previously described39. This has the benefit of 
equalizing the spectral noise amplitudes for all spatial frequen-
cies, effectively giving more weight to the higher frequencies 
and sharpening the correlation peaks.

Deconvolution

In the absence of a phase plate, the CTF will be dominated by 
its sine component, i. e. have very little contrast in the lowest 

5
x

 R
, 3

x
3

x
3

2
 /

1

5
x

5
x

3
2

 /
1

5
x

 R
, 3

x
3

x
3

2
 /

2

5
x

 R
, 3

x
3

x
6

4
 /

2

5
x

 R
, 3

x
3

x
1

2
8

 /
2

5
x

 R
, 3

x
3

x
2

5
6

 /
2

2
x

 R
, 3

x
3

x
6

4
 /

0
.5

2
x

 R
, 3

x
3

x
3

2
 /

0
.5

2
x

 R
, 3

x
3

x
1

6
 /

0
.5

2
x

 R
, 3

x
3

x
1

6
 /

0
.5

2
x

 R
, 3

x
3

x
1

6
 /

1

1
x

1
x

3
 /

1

concatenate

copy

2
5

6
x

2
5

6
x

3
2

2
5

6
x

2
5

6
x

3
2

1
2

8
x

1
2

8
x

3
2

6
4

x
6

4
x

6
4

32x32x128 32x32x64 +128

1
2

8
x

1
2

8
x

1
6

 +
3

2

2
5

6
x

2
5

6
x

1
6

 +
3

2

2
5

6
x

2
5

6
x

1
6

64
x6

4x
32

 +
64

16x16x256

Input ArgMax(Output)

Figure 6 | Neural network architecture of BoxNet.
Rectangles depict the intermediate tensor dimensions. Their width and height are proportional to the number of channels and the spatial extent, 
respectively. Thick arrows represent convolution operations. Their format is encoded as “(Kx R), LxMxN /O”, where K is the number of consecu-
tive ResNet blocks, or absent in case of a single convolution operation; L and M are the dimensions of the convolution kernel; N is the number of 
kernels, resulting in N channels in the output; O is the stride length (1 = no change, 2 = downsampling by factor of 2, 0.5 = upsampling by factor 
of 2 through transposed convolution). The stride parameter is only applied to the first convolution in a chain of ResNet blocks, whereas all subse-
quent convolutions use stride = 1. The contractive part of the network is colored in cyan, the expanding part in magenta. The final image shows 
the result of applying a per-pixel ArgMax operator to the result of the last convolution to obtain the spatial distribution of the 3 labels the model is 
trained to predict: background (black), particle (yellow), artifact (purple).
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spatial frequencies. This creates a high-pass filter effect in the 
raw data and, due to increasingly noisier higher frequency com-
ponents, makes it hard to assess the image content visually. On 
the other hand, a phase plate creating the desired phase shift of 
π/2 will apply a low-pass filter in defocused images, rendering 
them blurry. Both scenarios do not affect subsequent alignment 
and averaging procedures significantly, and the filters will be 
reversed in the final reconstruction by dividing its 3D FT by 
the weighted average of all contributing CTFs. This becomes 
possible because the spectral signal-to-noise ratio (SSNR) is 
sufficiently high after averaging enough particles with differ-
ent CTFs. However, even in single images the lowest frequency 
components often contain enough signal so that boosting them 
by inverting the CTF will increase the visible low-frequency 
contrast while maintaining acceptable noise levels. This pro-
vides conventional images with a better definition of object 
boundaries, making their manual selection easier. In defocused 
phase plate images, this improves sharpness.

To construct a Wiener-like filter, Warp makes ad hoc assump-
tions about the SSNR that can be adjusted by the user. The SSNR 
is assumed to be a combination of an exponential decay curve 
and a raised cosine high-pass filter:

 ,

where  denotes the spatial frequency,  is an optional high-
pass filter,  is the custom fall-off parameter, and  is the cus-
tom strength parameter. The factors for  and  are empirical-
ly tuned so that the default values of 1 produce good results 
for typical direct electron detector data, although adjustments 
might be required in some cases. The SSNR is then used in a 
Wiener-like filter:

 ,

where  is the FT of the image, and  is the 2D contrast trans-
fer function. The shape of the SSNR curve prevents the lowest 
frequency components from being boosted too much, giving 
rise to a noisy sample background, and acts as a low-pass filter 
at the same time to suppress the noisy high frequency compo-
nents. An example of such a filter and its effect on a 2D micro-
graph are shown in Fig. 7. In practice, a higher electron dose 
helps to obtain good low-frequency contrast in conventional 
images. The commonly used dose of 30–40 e-/Å2 works well 
for holey grids with thin ice, while more might be required in 
the presence of carbon support or thick ice. The deconvolution 

works especially well in tomograms, where the overall dose of-
ten surpasses 100 e-/Å2.

Benchmarking

Raw movie data and pre-extracted particles from EMPIAR 
10097 were downloaded. The movies were processed with the 
full Warp pipeline using the following settings: motion correc-
tion with a temporal resolution of 40 for the global motion, and 
5x5 spatial resolution for the local motion, using the 0.03–0.25 
Nyquist range and a B-factor of -400 A2; CTF estimation with 
6x6 spatial resolution, using the 0.1–0.35 Nyquist range; par-
ticle picking with a BoxNet model retrained on particles from 
3 micrographs, using the default 0.95 threshold. Quality filters 
were applied in Warp as follows: defocus between 0.3 and 5.0 
µm, resolution better than 8 Å, intra-frame motion of at most 
1.5 Å, particle count above 120. Particles were extracted from 
the micrographs meeting these filters and subjected to process-
ing in cryoSPARC: no 2D classification was performed; ab initio 
refinement was performed with 6 classes and no symmetry; the 
6 classes were then refined heterogeneously, with no symmetry 
imposed; the only class showing the expected Hemagglutinin 
structure was refined with C3 symmetry. The original particle 
set from EMPIAR-10097 was subjected to 3 different processing 
strategies. First, the full set was refined in cryoSPARC with C3 
symmetry using the original CTF estimates. Second, the full set 
was subjected to the same classification and refinement as the 
particles from Warp, using the original CTF estimates. Third, 
particles from the Hemagglutinin class obtained in the second 
processing branch were updated with local CTF estimates from 
Warp, and refined again with C3 symmetry. Resolution esti-
mates were obtained for all maps using the respective masks 
automatically generated by cryoSPARC.
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Figure 7 | Deconvolution of a low-defocus micrograph.
A micrograph from EMPIAR-10061 acquired at 0.9 μm defocus is shown in its original form and after applying the deconvolution filter integrated 
in Warp. The boundaries of individual 400 kDa proteins can be distinguished more clearly (arrow). The filter largely reverses the effect of the first 
CTF peak, while also suppressing the lowest and higher frequencies.
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Table S1 | Protein species currently used in the pre-trained version of BoxNet.

Access code Sample Synth
et

ic

Carb
on su

pport

Phase
 p

la
te

EMPIAR-10017 beta-galactosidase

EMPIAR-10077 80S ribosome ✓

EMPIAR-10078 20S proteasome ✓

EMPIAR-10081 HCN1 channel

EMPIAR-10084 Haemoglobin ✓

EMPIAR-10089 TcdA1 in prepore state

EMPIAR-10097 Influenza Hemagglutinin

EMPIAR-10122 Apoferritin ✓

EMPIAR-10153 80S ribosome ✓ ✓

EMPIAR-10156 80S ribosome ✓

RNA Polymerase II complex

RNA Polymerase II complex ✓

RNA Polymerase II complex

Viral polymerase

Nucleosome complex

PDB-1sa0 Tubulin-Colchicine ✓

PDB-2gtl Lumbricus Erythrocruorin ✓

PDB-2wri 70S ribosome ✓

PDB-3j9i 20S proteasome ✓

PDB-4hhb Haemoglobin ✓

PDB-4zor S37P MS2 viral capsid ✓

PDB-5foj Grapevine Fanleaf virus ✓

PDB-5mmi Chloroplast ribosome, large subunit ✓

PDB-5ngm 70S ribosome ✓

PDB-5vy5 Aldolase ✓

PDB-5w3l Rhinovirus B14 ✓

PDB-5w3s TRPML3 channel ✓

PDB-5xnl Stacked PSII-LHCII supercomplex ✓

PDB-5xwy LbuCas13a-crRNA complex ✓

PDB-5y6p Phycobilisome ✓

PDB-6az1 80S ribosome, small subunit ✓

PDB-6b7n Coronavirus spike protein ✓

PDB-6b44 CRISPR Csy surveillance complex ✓

PDB-6bco TRPM4 channel ✓

PDB-6bcx mTORC1 ✓

PDB-6bhu MRP1 ✓
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