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The connection between Maxwell’s equations and artificial neural networks has revolutionized the capability and
efficiency of nanophotonic design. Such a machine learning tool can help designers avoid iterative, time-
consuming electromagnetic simulations and even allows long-desired inverse design. However, when we move
from conventional design methods to machine-learning-based tools, there is a steep learning curve that is not as
user-friendly as commercial simulation software. Here, we introduce a real-time, web-based design tool that uses a
trained deep neural network (DNN) for accurate far-field radiation prediction, which shows great potential and
convenience for antenna and metasurface designs. We believe our approach provides a user-friendly, readily acces-
sible deep learning design tool, with significantly reduced difficulty and greatly enhanced efficiency. The web-
based tool paves the way to present complicated machine learning results in an intuitive way. It also can be
extended to other nanophotonic designs based on DNNs and replace conventional full-wave simulations with
a much simpler interface. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.413567

1. INTRODUCTION

Nanophotonic devices offer new capabilities to control light
with nanostructures designed for different functionalities. In
these photonic devices, a large number of geometric parameters
play critical roles in altering the light–matter interaction. For
complex nanostructures, there could be millions or even bil-
lions of combinations of all possible structures. However, con-
ventional design methods rely on time-consuming, full-wave
simulations and an iterative optimization process. It is challeng-
ing to explore all the options; usually only a limited number of
designs are explored, leaving an enormous parameter space
underexplored.

Machine learning has led to revolutionary developments in
numerous applications. Its complex models and algorithms can
help exploit the enormous parameter space in nanophotonics,
enabling both efficient forward prediction and on-demand in-
verse designs. Artificial neural networks (ANNs) [1–6] are an
interconnected group of nodes that are similar to the compli-
cated network of neurons in a brain with the capability of self-
learning. It is a data-driven approach, which is in contrast to a
computation-driven approach, such as optimization [7–10].
Recent representative examples include near- and far-field pre-
diction [11], metasurface and metamaterials designs [12–14],

and structural color design [15]. The merging of deep learning
and nanophotonics has reduced computation time by orders of
magnitude and expands the design space that previously could
not be realized.

In Ref. [11], the authors show good agreements of near-field
and far-field scattering of three-dimensional (3D) nanostruc-
tures between the simulation results and the neural network
prediction by using a convolutional neural network.
Unfortunately, the transition from conventional simulation
to deep-learning-based tools requires knowledge from both
nanophotonics and computation. There is a steep learning
curve that hinders researchers from accessing such a convenient
and efficient tool. On the other hand, there is no demonstra-
tion of the application of deep neural networks (DNNs) for
nanophotonic design in a web-based, real-time setting. If a
trained DNN can be interfaced with a web-page tool, the real
application process can be even simpler than using commercial
simulation software, with accurate results displayed in real time.
In this way, device designers can effortlessly benefit from deep-
learning-enabled computation.

Here, we demonstrate the training of DNNs for accurate
far-field pattern prediction of dielectric antennas. Then we in-
terface the DNNs with a web-page tool for real-time design
output. The far-field radiation profile [16] is used in the design
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of many nanophotonic devices, such as optical antennas
[17,18] and metasurfaces [19–21]. The conventional approach
to obtain a far-field radiation pattern is through finite difference
time domain (FDTD) simulation with near- to far-field trans-
formation [22,23], or using a commercial/open source software
package; either method can take from tens of minutes to hours
to complete the computation. In practice, iterative optimiza-
tion is necessary to get an optimal structure. For repetitive
designs, it requires a considerable amount of computation re-
source and time. By investing one set of DNNs training data,
we demonstrate an online tool to predict the far-field radiation
pattern of any arbitrary scatterer in real time. The results sug-
gest that a web-page tool can maximize the advantages of a
DNN-based design method and significantly improve a design-
er’s productivity.

2. TRAINING OF DNN PREDICTORS

Here we use 2D scatterers to demonstrate our method. It can
be easily generalized to high-dimensional spaces. We consider a
silicon dioxide (εr � 2.1) scatterer in air (εr � 1) with a finite
dimension. For example, here we limit the size of the scatterer
to 1.5λ on each side, where λ is the incident wavelength. Our
goal is to build a tool that can instantaneously provide a far-
field radiation profile when the SiO2 scatterer is illuminated
by a plane wave. The structure of the scatterer, which is a binary
image, is used as the input of the neural network. The output
of the network is a vector, which corresponds to the directivity
of the radiation pattern in the angular range from 0 to 360 deg.
The relationship of the output and the input can be seen in
Fig. 1(a).

We first need to create training samples to train the network
so that it can perform the function as described above. Each
training sample consists of a pair of data: the structure and the
far-field radiation pattern. The training set contains 87,000
training samples. In addition to the training set, we also create
a test set that contains 11,000 pairs of structures and their far-
field patterns. It will be used to test the performance of the
trained neural network.

One crucial factor in evaluating the quality of the training
data set is the diversity of the training samples. To increase the
diversity, we use a large number of geometries with random
features across different length scales. Specifically, we use three
fundamental shapes in our design: a rectangle, a circle, and a
triangle. We randomly vary the geometrical parameters includ-
ing positions, the side length for rectangles, the radius of circles,
and the side length and angle for the triangles. We also ran-
domly combine the number of each shape. One of the structure
examples is shown in the left panel in Fig. 1(a), with the blue
part representing SiO2. The corresponding matrix size of the
structure is 30 × 30, which corresponds to a spatial resolution
of λ∕20.

Next, we discuss the calculation of a far-field pattern in the
training samples, which are done by full-wave simulations of
Maxwell’s equations. We use the 2D finite difference frequency
domain (FDFD) method [24] to obtain the scattered field and
total field of the input structure. In our case, the incident plane
wave comes from the left side and propagates along the x axis
with TE polarization. After getting the near-field radiation

pattern, we use near-field/far-field transformation method
(i.e., the Stratton–Chu formula), to obtain the far-field pat-
terns. The Stratton–Chu formula [25] in 2D is expressed as

EP �
ffiffiffi
λ

p jk
4π

r0 ×
Z

�n × E − ηr0 × �n × E��ejkr·r0dS, (1)

where E and H are fields on the surface S enclosing the scat-
terer, r0 is the unit vector pointing from the origin to the field
point P, r is the radius vector of the surface S, n is the unit
normal to the surface S, η is the impedance, approximately
equaling 377 Ω in air, k is the wavenumber, and EP is the cal-
culated far field in the direction from the origin toward point P.
A circular boundary is used inside the scattered field when real-
izing the integral of transformation, and the far-field radiation
pattern of the example is shown in Fig. 1(a), on the right panel.
To get accurate near-to-far-field transformation, here we used a
very high spatial resolution λ∕100 to perform the simulation.
The simulations are performed at the Center for High
Throughput Computing (CHTC) [26] at the University of
Wisconsin–Madison. The far-field patterns are used as the
ground-truth patterns that are consistent with the commercial
software results.

The network is fully connected. The loss function is the L2
loss defined as

J � 1

2

X
i

�ri − oi�2, (2)

where ri is the magnitude of the electric field, and oi is the
network output value corresponding to the electric field at

Fig. 1. Illustration of our approach and the loss curve of the neural
network. (a) Sketch of a scatterer and its far-field pattern. (b) Loss
curve of our neural network.
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different angles. Since the original values of the electric far field
are about 10−4, the values multiplied by 103 are used to facili-
tate the training process. Figure 1(b) shows the loss curve with a
rapid decline, reaching a very small value of test loss, which
means the neural network works very well for our problems.
We also noted that there are a few steep drops in the curve,
and we assume that, as the training process proceeds, the loss
is approaching some local minimums or saddle points in the
parameter space, so the loss value gradually converges first.
For the learning rate that we used, however, it could help
the loss escape from those local minimums or saddle points
and decrease again quickly after a few epochs. The absolute
value that the loss drops at large epochs is smaller, which means
the loss value is finally close to the global minimum.

Hyperparameters are chosen by a grid search, including the
learning rate, batch size, and the number of layers and units.
Our network architecture has six hidden layers with 8192 units
in every layer. We use the activation function leaky rectified
linear unit (leaky ReLU) [27] whose leaky rate is 0.2 for every
hidden layer, and ReLU for the output layer. The reason for
using ReLU for the output layer is that our far-field values
are positive numbers without a specific range and nonlinear
functions like tanh or sigmoid work only within a small range
of input values, which limits the scope of the output values. An
AdamOptimizer with the learning rate 2×10−5 is employed,
and the batch size is 128. The input structures are flattened
to a 900-by-1 vector, and the output layer has 1000 units
to depict the far-field radiation pattern at different angles.
The optimization process of DNNs is briefly introduced as fol-
lows. First, the parameters (i.e., weight and bias of each neural

node) of the neural network are randomly initialized. With the
input structures, the output of the whole neural network is then
calculated. The L2 loss is used to evaluate the performance of
these parameters, and they are optimized subsequently by error
back propagation [28] to minimize the loss value. By modifying
the hyperparameters and repeating the training process, we
could finally achieve a very low L2 loss and, at the same time,
the far-field pattern prediction is good enough.

Figure 2 shows a series of results from the test set. Here we
compare the far-fields patterns produced by the neural network
and the ground truth, which is produced using full-wave sim-
ulations. As shown in Fig. 2(a), they agree with each other very
well for a variety of different geometries. In Fig. 2(b), we show
some typical scatterer shapes with different physical sizes to see
if the network can handle structures with different sizes. In fact,
no matter how large or small the structures are, the far-field
patterns generated by the neural network are consistent with
the ground truth.

On a laptop with an Intel core-i7 4720HQ, the neural net-
work takes about 500—or even fewer—milliseconds to com-
pute the far-field patterns. This speed makes it possible to
design a far-field radiation profile in real time. One can modify
the structure and instantaneously obtain real-time feedback
about the far fields. Here, we further develop an online tool
to demonstrate this capability.

3. ONLINE DNN TOOL

After obtaining the trained neural network model, traditionally
one needs to work with the code script to input the test struc-
ture, call the trained model, and then show the results, which is
not convenient and intuitive for a practical design process. It
also is not straightforward for the designers in optics without
knowledge of machine learning methods to improve productiv-
ity. In this case, a method that can translate the machine learn-
ing results to an intuitive manifestation will be very useful for
the optical community. Here, we design and implement a very
efficient web tool to realize the calculation procedure, which
combines such features as user-friendly and highly efficient
to generate results, with extendibility. It also can be hosted
on a website to provide easy access to a community. The main
advantage of the web-page tool is that designers can intuitively
use the online tool for their designs without knowing the
underlying programming methods.

The application programming interface functions in
TensorFlow for deep learning are transferred into the
Javascript provided by Ref. [29]. Basically, we must develop
two interface windows to draw the scatterer structures and
exhibit the output far-field profile, and the well-trained neural
network model is imported by downloading it from a known
source path. For the input window, we specify two materials for
the scatterer (i.e., air and silica), and one can easily extend them
to multiple materials. Two functional buttons, including the
undo and clear operation, are used to help the design. Then
we extract the structure data from the input window as a matrix
and then flatten it into a vector. The same fully connected neu-
ral network architecture as the trained model is employed with
the hyperparameters and activation function to calculate the far
field. The raw trained model is transferred to the binary file

Fig. 2. Examples of results from our method on: (a) random struc-
tures from the test set; and (b) typical shapes with different sizes, com-
pared to the ground truth.
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format for the web script to recognize the trained network
parameters. Finally, we draw the far-field profile based on the
polar coordinate. A screenshot of the web tool is shown in
Fig. 3, and the framework is based on the one developed by
Ref. [29]. In our web tool, one can hand-draw a shape on
the input box, and the far-field radiation pattern will be avail-
able right away after each drawing stroke. Currently, the web
page supports Firefox 67.0 or earlier. We also host the source
codes on GitHub (see Code 1, Ref. [30]).

The operational details of the web are depicted as follows.
There are 256 × 256 pixels in the input box. During the draw-
ing process, a handwritten figure step by step, we extract a
30 × 30 matrix by downsampling from the original input ma-
trix. At each step, we use our trained network model imported
from TensorFlow to calculate and exhibit the far-field radiation
pattern on the output window. Figures 3(a) and 3(b) show the
operation of the tool. The far field is calculated in real time as
we draw a structure. The structures we draw in Fig. 3 are similar
to those in Fig. 2(a), and we can see that the far-field profile is
almost the same as the ground truth. A real application process
of the web tool can be found in Visualization 1. It proves that
our tool will be very effective to improve the far-field design
efficiency. Our tool demonstrates a new perspective to use
the current emerging machine learning technologies to facilitate
the complicated design process in the optics and improve pro-
ductivity greatly. The neural network can also be trained to real-
ize the inverse design [12,13,15,31, 32], and thus, by using the
same method, one can also integrate multiple features into
the tool.

4. CONCLUSION

In summary, we propose a deep learning integrated online tool
to facilitate the design of far-field radiation. Unlike solving a

full-wave Maxwell’s equation, our tool produces the results
through DNNs in real time. Our demonstration shows that
the DNN online design tool not only decreases the computa-
tion cost and time by orders of magnitude, but also provides a
user-friendly platform compared to conventional software.
More importantly, it shows that complicated DNNs methods
could be translated to a very simple interface so that others
could use it easily without any prior knowledge about a neural
network. There are also other aspects of the tool that can be
further improved to extend its utility, including different ma-
terials, wideband applications, and even inverse design of nano-
photonics. In the future, researchers could share their trained
model by integrating it with the web-based tool. We believe
this will definitely enhance the usefulness of deep learning
as a method to improve optical design efficiency.
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