
Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2009)
E. Grinspun and J. Hodgins (Editors)

Real-Time Deformation and Fracture in a Game Environment

Eric G. Parker James F. O’Brien

Pixelux Entertainment University of California, Berkeley

Abstract

This paper describes a simulation system that has been developed to model the deformation and fracture of solid

objects in a real-time gaming context. Based around a corotational tetrahedral finite element method, this system

has been constructed from components published in the graphics and computational physics literatures. The

goal of this paper is to describe how these components can be combined to produce an engine that is robust to

unpredictable user interactions, fast enough to model reasonable scenarios at real-time speeds, suitable for use

in the design of a game level, and with appropriate controls allowing content creators to match artistic direction.

Details concerning parallel implementation, solver design, rendering method, and other aspects of the simulation

are elucidated with the intent of providing a guide to others wishing to implement similar systems. Examples from

in-game scenes captured on the Xbox 360, PS3, and PC platforms are included.

Keywords: Physics engine, game physics, simulation, deformation, fracture, real-time physics, Star Wars: The Force Unleashed.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
RealismAnimation; I.6.8 [Simulation and Modeling]: Types of SimulationGames; K.8.1 [Computing Milieux]: Personal
Computing GamesSimulation.

Star Wars: The Force Unleashed game content and screenshots courtesy of LucasArts, a division of Lucasfilm Entertainment Company Ltd. Used here under authorization. c©2009 Lucasfilm Entertainment Company Ltd. or
Lucasfilm Ltd. All rights reserved.

Figure 1: A character in the game Star Wars: The Force Unleashed directs a surge of energy at a closed gate, blasting it open.

The motion of the gate and resulting debris was simulated with a real-time finite element system running on an Xbox 360.

1. Introduction

Techniques for physically based animation have progressed
significantly over the last twenty years. Real-time simula-
tions on low-cost machines can now generate results that
would have previously taken many hours of computation
on high-end workstations. Offline simulations of complex
phenomena involving fluids, solids, and their interaction can
produce animations that many viewers find indistinguishable
from reality. These advances are due in part to the contin-
ued march of Moore’s law, but they are also a direct result of
specialized simulation algorithms developed in the graphics
community that have been designed specifically for stability
and visual fidelity.

This paper describes a system we have developed for sim-
ulating solid deformation and fracture in the real-time set-
ting of a commercial video game such as the one shown
in Figure 1. This setting presents a number of strict crite-
ria that must be satisfied before a simulation method can be
successfully integrated. Simulation performance must be ef-

ficient and predictable so that simulated game content can
be reliably integrated into a game level without causing spo-
radic drops in frame rate or stutters in control response. The
simulation cannot blow up or crash because even infrequent
crashes can quickly sour a user’s experience. These prop-
erties should apply regardless how the user interacts with
the system and one should never assume that the user will
behave in a predictable or even reasonable fashion. Mem-
ory usage is an additional concern, particularly for console
games. Mechanisms for easy authoring and artistic control
should also be provided and should be accessible to typical
level designers.

The core of this system is a tetrahedral finite element
method that incorporates ideas from several simulation tech-
niques previously published in the computer graphics and
computational physics literatures. This combination was se-
lected to provide a solution that is fast, robust to inconsistent
input, easily separable, amenable to parallelization, and ca-
pable of producing the dynamic visual appearance of defor-
mation and fracture.

Copyright c© 2009 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for commercial

advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit

is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions Dept, ACM

Inc., fax +1 (212) 869-0481 or e-mail permissions@acm.org.

Eurographics/ACM SIGGRAPH Symposium on Computer Animation 2009, New Orleans, Louisiana, August 01 - 02, 2009
c© 2009 ACM 978-1-60558-610-6/09/0008 $10.00

mailto:permissions@acm.org

Parker, O’Brien / Real-Time Deformation and Fracture in a Game Environment

157

Our intended contribution is to describe in detail the de-
sign of this system, including aspects of implementation that
were specific to making it work robustly in a game con-
text. These details include parallel implementation of the
solver and other simulation components, collision handling
designed to prevent undesirable vibratory behavior, parti-
tioning methods used to break large problems into a set of
smaller ones, and algorithmic changes to minimize wasted
CPU time due to memory latency. We also describe several
graphical “tricks” we use to improve the overall appearance
of the simulated materials and compensate for limitations on
the simulation imposed by the real-time requirement.

Some of the techniques we discuss may already be in use
internally at a few research labs and companies that special-
ize in real-time simulation. However, these important imple-
mentation details are often omitted from academic publica-
tions. Our goal is to provide implementation details and de-
sign rationale that will be of benefit to other researchers and
practitioners developing similar interactive real-time simu-
lation systems. Stated more colloquially, we want to share
some of the inside secrets for achieving robust interactive
real-time simulation.

2. Background

The use of simulation-based methods to animate deformable
objects has been an active area of graphics research for over
twenty years. Key concepts in the area were originally intro-
duced by [TPBF87] and other contemporaneous work. The
survey article in [GM97] details much of the early work on
deformable modeling, while [NMK∗05] surveys recent ap-
proaches, including several targeting real-time performance.

In the context of finite element methods, [MDM∗02] de-
scribe a method for decomposing deformation into separate
rigid-body and strain components. The decomposition al-
lowed linear analysis of the deformation independent of ro-
tation, and thus permitted the use of fast solution methods
in the context of large deformation. However, their node-
centric decomposition produced undesirable ghost forces.
Further work in [MG04] and [EKS03] improved upon the
method by using an element-based approach. [ITF04] ro-
bustly deals with flat and inverted elements by diagonalizing
the 3× 3 deformation matrix using SVD and this approach
was adopted for real-time use in [CAR∗09].

In the finite element literature, this basic notion of sepa-
rating out rotation is known as a corotational formulation

(e.g. [Fel07]). Work by [BH79] first introduced the term
corotational in 1979. Initially, the idea was used to remove
an overall rigid body motion from the entire domain. How-
ever, [NOR91] described an element by element approach
that acts as a filter around an existing finite element library,
effectively extending the domain of application for the li-
brary into the large deformation regime.

Collision detection for deformable objects remains an ac-
tive area of research. The survey paper [TKZ∗04] covers re-
cent techniques including bounding-volume hierarchies, dis-
tance fields, stochastic methods, and spatial subdivision.

The related problem of collision response and persis-
tent contacts for deformable bodies is another active re-
search area. Contact methods can be classified into two
main categories: penalty and constraint. Penalty methods
(e.g. [MW88]) produce a contact force proportional to some
characteristic of the contact, often penetration depth. Errors
or discontinuities in determining a good contact depth and
normal can lead to high-frequency bouncing (i.e. “chatter”),
non-conservative rebound, and other difficulties. (See dis-
cussion in [HFS∗01].) An additional problem is choosing
the magnitude for the penalty stiffness constant such that it
minimizes overlap while keeping the system stable and well
conditioned (e.g. [Fel07]). However, penalty methods re-
main popular due to their ease of implementation and com-
patibility with nearly any type of solver.

Constraint methods attempt to prevent any overlap by
solving for the exact force required to prevent interpenetra-
tion. This topic has been explored thoroughly in the con-
text of rigid bodies [Bar89, Bar94, GBF03, KEP05, Erl07].
For soft bodies, [BW92] provides a nice overview of the ge-
ometry of flexible body collision and contact. Constraint-
based techniques for handling collisions with deformable
bodies can be found in [BW98,JP99,BFA02,HSO03,SBT07,
HVT08, OTSG09].

Destruction is an important feature that fits well into
the settings of many computer games. Both [OH99] and
[OBH02] describe a method for simulating fracture propa-
gation based on a stress map derived using the finite ele-
ment method. Work presented in [ITF04] uses an alterna-
tive element replication technique (see [MBF04]) that aims
to reduce the impact of sliver elements. In a real-time
setting, [SWB00] describe a method using breakable con-
straints across tetrahedral faces, and [MMDJ01] performs a
quasi-static finite element analysis to determine how object
should break during an impact. Similar work in [BHTF07]
also computes fracture based on a quasi-static analysis and
extends the idea to include ductile deformation. For interac-
tive simulations, [MG04] compute the maximal tensile stress
for each tetrahedra, and then separate the mesh at one of the
vertices (randomly) of tetrahedra which exceed a threshold.

Although methods based on quasi-static analysis, such
as [SWB00, MMDJ01, BHTF07], have the potential to be
cheaper than a fully dynamic deformation simulation, we
found that fully dynamic fracture propagation produces
more energetic, vibrant, and realistic looking results. Prior
to breaking, the material deforms and stores elastic energy.
When fracture occurs, the new degrees of freedom allow the
material to move so that the stored elastic energy is con-
verted to kinetic. This released energy dramatically changes
the resulting fracture patterns and motion of the material.
In contrast, methods that ignore stored elastic energy, such
as quasi-static finite elements or rigid bodies joined by con-
straints, produce deadened motions where the objects look
like they simply fell apart.

The use of physical simulation in video games follows a
long tradition. The game Space Wars, considered by many

c© Association for Computing Machinery, Inc. 2009.

158

Parker, O’Brien / Real-Time Deformation and Fracture in a Game Environment

to be the first video game, required players to account for
the gravity of a central sun and to keep track of their ship’s
momentum. Other early games including Pong, Asteroids,
and Lunar Lander all include physical simulation as a key
aspect of the game play. Unfortunately, the academic lit-
erature on physics in computer games is somewhat sparse.
Two books that specifically cover game physics are [Ebe04]
and [ESHD05]. The text by Eberly contains chapters on
rigid and soft bodies, collision detection, shader program-
ming, ODE integration, linear complementarity, and quater-
nions. The text by Erlben and coauthors covers the finite
element method, collision detection, kinematics, rigid bod-
ies, and contains a basic math primer. [MSJT08] provides
a tutorial covering soft bodies, rigid bodies, and fluids. Er-
win Coumans maintains a forum as part of his Bullet physics
library [Cou08].

Although not targeted specifically at real-time applica-
tions, the study in [HGS∗07] presents a detailed analysis of
parallelized simulation code running on a simulated multi-
core architecture. Many of the observations from this study
concerning bottlenecks and memory access patterns are also
applicable on a smaller scale to parallelized real-time simu-
lation code.

3. Finite Element Formulation

We use a finite element method to model simulated materials
that the user can interact with. The materials can deform and
fracture, and can be assigned a wide range of material prop-
erties. The objective is not to model materials in a predictive
fashion, but instead to give content designers the freedom to
specify virtual materials with properties that match technical
direction for a given setting.

The finite element method we use employs tetrahedral el-
ements with linear basis functions so that the strain field is
piecewise constant over the mesh. This type of element has
found widespread use in the graphics literature, for exam-
ple [OH99, MDM∗02, MG04, ITF04, BWHT07, CAR∗09],
and is described in detail in most finite element texts, for
example [CMPW01].

Each element is defined by four nodes with reference po-
sitions u1, u2, u3, and u4. Let Du be a 3×3 matrix with
columns u2 −u1, u3 −u1, and u4 −u1, the element ba-
sis matrix is then β = D−1

u . Each node also has its current
position and velocity in world space denoted respectively by
xi and vi. The matrices Dx and Dv are defined as Du

but with the xi or vi in place of the ui. The deformation
gradient F and its time derivative G are then given by

F =
∂x

∂u
= Dx β and G =

∂v

∂u
= Dv β . (1)

Cauchy’s infinitesimal strain tensor, ε = 1/2(F +F T)−
I is cheap to compute directly from F , scales linearly with
deformation, and its Jacobian with respect to the xi is con-
stant. All of these properties are desirable, but unfortunately
ε is not invariant with respect to rotation, and so creates ob-
jectionable artifacts when applied to large deformations. To

compensate, we use a corotational method that factors out
the rotation on a per-element basis. Corotational methods
are often discussed in finite element texts (e.g [CMPW01]),
and variations of the concept have been used in the graphics
literature, [MDM∗02,EKS03,MG04,ITF04]. Like [EKS03]
and [MG04] we perform a polar decomposition of F into
F = QA where Q is orthonormal and A is symmetric.

Elements with degenerate or inverted world configura-
tions would normally cause the simulation to “blow up”
which would be unacceptable in a game setting. In [ITF04]
they use a nonlinear strain metric and fully diagonalize to ex-
plicitly correct the offending singular values of F . We have
found a cheaper, albeit less accurate, solution that works
well in practice is to detect when a tetrahedron has fallen
to below 6% of its reference volume, and in those cases
switch to a QR decomposition of F . With this decompo-
sition, Q is still orthonormal, and now guaranteed to have
positive determinant, but A is upper triangular rather than
symmetric. This switch prevents inverted elements from
disrupting the entire simulation, but QR decomposition pro-
duces a coordinate-biased rotation and it will change discon-
tinuously from the Q produced by the polar decomposition.
However, inverted elements typically only occur during vio-
lent motions which mask any induced artifacts. The merits
of QR decomposition for handling element inversion have
also been noted by [NPF05].

Once we have Q computed, we can factor it out of the de-
formation gradient by replacing F with F̃ = QTF and the

corotational strain is given by ε̃ = 1/2(F̃ + F̃
T
)− I . Us-

ing a linear isotropic constitutive model, the element stress
is given by σ = λTr(ε̃)I +2µε̃.

The elastic force exerted by the element on node i is f i =
Qσni, where ni is the area-weighted outward normal for
the face opposite node i expressed in reference coordinates.
The Jacobian of f i with respect to the position of node j is
the 3×3 matrix given by

J ij = −Q(λnin
T

j +µ(ni ·nj)I +µnjn
T

i)QT . (2)

The core of (2), consisting of inner and outer normal prod-
ucts, does not change as the mesh deforms and can be cached
for each element. If the individual 12×12 stiffness matrix
for a single element were required it would be assembled
from the 16 3×3 J ij blocks for all node pairs. Note that

because J ij = JT

ji, the element stiffness matrices are sym-
metric.

Following [OBH02] and [MG04], we use an additive plas-
ticity model that separates the total strain into separate elas-
tic and plastic components so that we have ε̃ = εP + εE .
The total strain, ε̃, is computed as described above, and εE

takes the place of ε̃ in force computation. Initially εP = 0. If
||εE || (Frobenius norm) exceeds a material yield threshold,

y, then we update εP according to

ε
P := ε

P + c
||εE ||−y

||εE ||
ε

E (3)

where c is a material parameter that controls creep rate. If

c© Association for Computing Machinery, Inc. 2009.

Parker, O’Brien / Real-Time Deformation and Fracture in a Game Environment

159

||εP || exceeds the material’s maximum plastic strain, n, we

clamp the plastic strain by setting ||εP || := εP n/||εP ||. As
pointed out by [ITF04], this additive plasticity model is only
reasonable for small strains. However we have found that
it works well with the corotational formulation we use and
does not add significant cost to the simulation.

We follow the now common practice of divorcing the
graphical representation of an object from the mesh used to
simulate it. For each object we construct a tetrahedral mesh
that encloses the majority of the object’s graphical represen-
tation. Each vertex of the graphical model is assigned to the
tetrahedron that encloses it (or that it is closest to) and we
store the barycentric coordinates of the vertex relative to that
tetrahedron. As the mesh nodes move, the vertex positions
are updated using the barycentric weights.

In modern video games, the graphical mesh may consist
of many thousands or even millions of triangles. Typically
these meshes are stored within the GPU’s memory and are
not readily available for the CPU to operate on. We perform
deformation within the GPU using shader programs. The
graphical mesh is stored using the vertex barycentric coor-
dinates within the owning tetrahedron instead of the usual
Cartesian coordinates. Historically, mesh deformation on
GPUs is done for character skinning using dedicated bone
matrices. The number of available hardware matrices is typ-
ically limited to 256 or less. To support larger simulation
meshes, we instead encode the deformed simulation mesh
nodal positions into a texture map stored in the GPU’s main
memory. Similar to [Mic05], the vertex positions are com-
puted from blended texture references in a vertex shader. Re-
cent GPUs support texture fetches from vertex shaders, but
for older GPUs we must perform deformation on the CPU.

One difficulty often encountered during mesh generation
is the presence of a few badly shaped elements. These el-
ements are characterized by β matrices with large singular
values. To facilitate content authoring we adopt the approach
from [IO06] that modifies the matrices to clamp the mag-
nitude of their singular values. This approach, combined
with the simulation’s tolerance of inverted elements, allows
level designers to work without excessive concerns regard-
ing mesh quality.

4. Matrix Assembly and Time Integration

With a real-time system, time integration presents several
opportunities for difficulties. The bulk of the simulation’s
compute time is spent integrating the system forward, so
inefficiencies here can easily destroy overall performance.
Time integration is also where stability issues arise that can
cause the simulation to blow up, oscillate in a physically un-
realistic way, or otherwise produce unacceptable results. For
these reasons we have focused a significant amount of atten-
tion on tuning and parallelizing the code responsible for time
integration and related tasks.

Multithreaded code offers significant advantages over se-
rial implementations, even when running on a single pro-
cessor. Many operations are applied independently to each

element or node and can be trivially parallelized with perfor-
mance gains nearly linear in the number of available proces-
sors. Additionally, on modern architectures memory access
can be a more significant bottleneck than CPU contention.
With CPU features such as hyperthreading, one thread can
utilize the CPU while another is stalled waiting for a mem-
ory fetch. Modern CPUs often include some form of vector
instructions such as SSE or AltiVec. Ideally the compiler
would make optimal use of these vector instructions, but re-
sults obtained in practice leave something to be desired. Ex-
plicitly coding key parts of the code to take advantage of
vector instruction can result in large gains, particularly if the
memory layout of one’s data structures is adjusted to facili-
tate loads to the vector registers.

To facilitate parallelism our meshes are broken up into
islands that persist across multiple timesteps. Individual is-
lands may be in one of three states: live, asleep, or kine-

matic. The islands are formed at runtime in a greedy fashion
based on nodal adjacency. Nodes within an island are parti-
tioned using METIS [KK99]. This improves cache locality
for live islands (which are always maximal), and provides
boundaries for breaking up kinematic and sleeping islands
based on factors such as available memory and target island
size.

Islands are initially asleep and are not simulated. They
are awoken if they are struck by another object or if a force
above some threshold is applied to one of their nodes. Is-
lands whose nodes are below a velocity threshold for mul-
tiple timesteps are put to sleep. Kinematic islands follow
an imposed or scripted behavior and are not simulated. Is-
lands are dissolved if fracture occurs within the island, or if
some of it’s nodes change state. Groups of islands that are in
contact form a composite-island. Composite-islands are not
persistent since contacts are largely a transient phenomenon.
Each composite-island is a single subsystem that can be in-
tegrated separately.

Our simulations use a linearized backward Euler integra-
tor. As pointed out by [BW98], this semi-implicit integrator
can behave stably even when given very stiff materials. Non-
linear strain metrics can reduce these stability benefits, but
the corotational linear strain works well with this integration
scheme. Many researchers have pointed out that backward
Euler can exhibit excessive damping. However, we found
this behavior acceptable because the scenarios being mod-
eled in our game context are violent situations where exter-
nal forces are actively driving the simulation. In these con-
texts, the damping behavior is actually somewhat desirable
because we don’t want objects to continue bouncing around
for a prolonged period once the interaction has stopped, and
the good stability characteristics are mandatory.

The differential equation that describes each island to be
integrated is of the form

Ma+Cv +K(x − u) = f (4)

where x, v, and a are the concatenated vectors of positions,

c© Association for Computing Machinery, Inc. 2009.

160

Parker, O’Brien / Real-Time Deformation and Fracture in a Game Environment

velocities, and accelerations for all the nodes within the is-
land, f is the vector of external forces acting on the nodes,
and M , C , and K are respectively the mass, damping, and
stiffness matrices. The mass matrix is lumped with diago-
nal entries corresponding to the mass of each node. We use
Raleigh damping where C is a linear combination of M and
K .

The stiffness matrix, K , has a sparse structure where
nodes that belong to the same tetrahedron will correspond
to a 3×3 block of non-zero values in K that are the Jaco-
bian of the force on one node with respect to the position of
the other node. Since the edge between two nodes generally
belongs to multiple tetrahedra, the system Jacobian entry is
the sum of the per-element Jacobian entries given by (2).

We store K as an array of noderows where each noderow
holds the three consecutive rows in K corresponding to a
given node. The noderows are stored as row-compressed
lists [Pis84] with each entry being a 3×3 block of floats. On
machines that support vector instructions, these blocks are
padded to facilitate fast loads of their rows into the vector
registers. Although K is symmetric, we store the full ma-
trix redundantly as doing so resulted in code that was both
simpler and faster. This structure is optimized for multiply-
ing K by a vector. Because the matrix is symmetric, there is
no need to support fast multiplication by the matrix’s trans-
pose.

Assembling K can take a substantial amount of time so
we parallelize the computation. First the J ij blocks are
computed for each element. These computations are inde-
pendent so groups of elements can be dispatched to separate
threads. Second, groups of noderows are assigned to threads
and each noderow is assembled independently of the others.

Once we have K we can integrate (4) forward over ∆t
to obtain new positions and velocities, x+ and v+. Let a+

be the acceleration at the end of the timestep, then we have
v+ = v + ∆ta+ and x+ = x + ∆tv+. Substituting into (4)
and rearranging gives us
(

M +∆tC +∆t2
K

)

v
+ = ∆tf +Mv−∆tK (x−u)

(5)
which can then be solved for v+, allowing us to compute
x+. We solve (5) using the conjugate gradient method,
which is well described in [She94]. The main expense of
the method comes from matrix-vector multiplications in-
volving K and KT, for which our sparse data structure is
well suited.

Generally we will have multiple live islands at any given
time. These islands can be computed independently. It is
also common to have a small number of islands that are sig-
nificantly larger than the others. We use the heuristic that an
island is considered “large” if contains at least sixty nodes
and the number of nodes in the island is more than one quar-
ter the total number of nodes in all live islands.

We use two complementary strategies to parallelize com-
puting the solution to (5). Regular islands will be each

Time

P
r
o
c
e
s
s
o
r

Figure 2: Pending jobs are scheduled on available threads

in order of expected compute time. When a thread becomes

available and no jobs remain to be scheduled, the free thread

is assigned to assist with any in-progress large jobs and that

large job switches to a parallel solver.

solved with a serial implementation of the conjugate gradi-
ent method, but multiple regular islands will be dispatched
simultaneously to different threads. The large islands will
be solved using a parallelized implementation of the con-
jugate gradient method. The parallelized implementation
distributes the row-vector multiplies over multiple threads.
Both the serial and parallel implementations take advantage
of the block structure of the noderows to compute all three
row-vector multiplies for a given node simultaneously.

Islands are dispatched to threads in a greedy fashion
where larger islands are dispatched first. When a thread be-
comes available, the next largest pending island is assigned
to it. If no islands are waiting for assignment, then any idle
threads are assigned to assist in parallel solving of any large
islands that have not yet completed. This procedure is illus-
trated in Figure 2.

Conjugate gradient iterations for a given island stop once
a relative error of 0.001 has been reached. We also limit
the number of iterations to a predefined maximum. We have
found that it is convenient to allow the content designer di-
rect access to set the maximum number of iterations as if it
were another material parameter.

5. Fracture

The fracture algorithm we use is a simplified version of the
algorithm that appears in [OH99] and [OBH02]. The main
difference is that we have disabled splitting individual tetra-
hedra. Although the remeshing process is quite cheap and
our solver is not adversely effected by the quality of the split
elements, the difficulty is that splitting elements causes the
number of tetrahedra in a scene to grow in a way that content
designers cannot easily plan for. In an environment where
maintaining a specified framerate is mandatory, allowing the
number of tetrahedra in a scene to grow in an unpredictable
fashion is not desirable. Other algorithms that replicate
tetrahedra rather than splitting them, for example [MBF04],
would raise similar objections.

The fracture algorithm does not necessarily run at every
timestep and it does not run at all for nodes that are not part
of materials that have been tagged as breakable. When it
is run, we gather the forces on each node to compute the

c© Association for Computing Machinery, Inc. 2009.

Parker, O’Brien / Real-Time Deformation and Fracture in a Game Environment

161

separation tensor as described in [OH99]. This process is
easily parallelizable on a per-node basis.

Once the 3 × 3 separation tensors are available for the
nodes, we dispatch multiple threads to compute their eigen-
values. When we find a node with a positive eigenvalue that
exceeds the material’s toughness parameter, we set the split
plane to be the plane normal to the corresponding eigenvec-
tor passing through the node, and we replicate the node. We
then reassign the tetrahedra that were attached to the orig-
inal node to either the original or new node depending on
whether the tetrahedron is predominantly on the positive or
negative side of the split plane. This procedure is identical
to [OH99] except that we skip the step of splitting tetrahedra
that straddled the plane.

Ideally this process would proceed from largest eigen-
value to smallest and include residual propagation and up-
dating the separation at nodes in the star of elements effected
by a previous fracture as done in [OH99]. However, to facil-
itate efficient parallelization, we examine nodes in a random
order, we do not perform residual propagation, and we do
not update the separation of nearby nodes. We also set an
arbitrary limit on the number of fracture events that we will
allow in any given timestep.

Unfortunately, splitting only on the existing tetrahedral
mesh boundaries tends to produce unappealing looking frac-
ture surfaces. Rather than looking as if a material like
stone or wood has been torn apart, the materials look as if
they were constructed from artificial blocks with triangular
faces. To alleviate this problem we extend the method we de-
scribed previously of embedding a higher resolution graph-
ical model in the mesh. When artists generate the graphical
representations that will be embedded in the finite element
mesh for rendering, they can also designate how the dynam-
ically created fracture surfaces should appear.

The surface appearance is specified by breaking the em-
bedded geometry up into many pieces that are significantly
smaller than the tetrahedral elements. We call these pieces
splinters. The splinters are rendered as embedded surfaces,
but we also create an association between each splinter and a
single tetrahedron that contains the splinter’s centroid. Dur-
ing fracture when we create new boundary faces in the mesh
(the fracture surfaces) we test to see if any splinter vertices
belong to a tetrahedron that is no longer connected to the
tetrahedron that contains the splinter’s centroid. If this con-
dition exists, we de-associate the vertex from the discon-
nected tetrahedron and re-associate it with the nearest con-
nected one. (See example in Figure 3.)

The splinters allow artistic control over the appearance of
the object as it breaks. This control is particularly impor-
tant for materials like wood that should fracture according
to the material’s underlying anisotropic structure. Splinters
will also mask the appearance of individual tetrahedra so that
the fracture surfaces look more appropriate for the material
being simulated. For some types of materials, such as brick
or wood, we have built tools that take an object and auto-

Figure 3: The apparent geometric detail of the simulated

objects is enhanced by embedding higher-resolution, tex-

tured polygonal surfaces in a coarse tetrahedral finite ele-

ment mesh. To preserve the appearance of high detail during

fracture, discrete units of geometry called splinters are kept

intact.

matically subdivide it in to appropriately shaped splinters.
For other materials, an artist may elect to manually divide it
using standard modeling software.

This splinter approach superficially resembles scoring the
object into static pieces that will break apart in a predeter-
mined way. However, the key difference is that the splinter
approach still allows fractures to propagate through the mesh
based on computed dynamic behavior. The splinters only
serve to add realistic detail that is finer than the resolution of
the simulation mesh.

Fracture is suppressed if it would create a connected com-
ponent with fewer than three face-connected tetrahedra. We
do so to prevent unattractive fragments that are recogniz-
able as single tetrahedra. If a fracture would leave two com-
ponents only connected by a single edge, creating a floppy
hinge joint, or single node, creating a ball joint, we also sep-
arate the edge or node. For some materials like concrete,
we create graphical particle effects distributed over the new
fracture surfaces.

6. Collision Detection and Response

Collision detection and response for unstructured finite ele-
ment methods can easily consume more time than all other
simulation components combined. Additionally, algorithms
for accurate collision resolution can impose timestep limi-
tations that are substantially more restrictive than those oth-
erwise imposed by the integrator. To prevent unacceptable
slowdown of our simulation system we have focused on im-
plementing a collision subsystem that sacrifices accuracy in
favor of speed and stability.

c© Association for Computing Machinery, Inc. 2009.

162

Parker, O’Brien / Real-Time Deformation and Fracture in a Game Environment

Star Wars: The Force Unleashed game content and screenshots courtesy of LucasArts, a division of Lucasfilm Entertainment Company Ltd. Used here under authorization. c©2009 Lucasfilm Entertainment Company Ltd. or
Lucasfilm Ltd. All rights reserved.

Figure 4: A wooden panel being smashed. The first four images show frames from a sequence where a wooden panel is being

battered to pieces. The inset image on the far right shows the concept art that motivated the design of the material.

To justify this trade off we observe that game contexts re-
quiring the type of simulation we are developing are not typ-
ically contexts where subtle collision errors are likely to be
noticed. Furthermore in situations involving many dynamic
collisions (for example the collapse of a large structure) we
expect users to be more forgiving of inaccurate collision re-
sponse than they would be of a drop in framerate or simula-
tion crash. We also believe that some types of inaccuracies
are more acceptable than others. Incorrect friction or slightly
penetrating objects are unlikely to be noticed, while objects
that chatter on the ground are likely to be objectionable.

Collision detection starts with an initial broad-phase ap-
plication of the “sweep and prune” algorithm over the island
bounding boxes. (See [Bar92] and [CLMP95] for detailed
descriptions of the algorithm.) This algorithm maintains a
persistent list of contacts that is incrementally updated each
frame. This property is particularly useful in keeping self-
collision efficient as it avoids rediscovering at each timestep
numerous false collisions that occur due to mesh adjacen-
cies.

Once the broad-phase has located potential collisions, a
narrow-phase tests individual triangle pairs for intersection.
Only the exterior triangle faces of the tetrahedral mesh are
tested. The triangle-pair tests are computed in parallel using
a vectorized version of the OpCode library [Ter01].

When two intersecting tetrahedra are located, we follow
the approach in [O’B00] and compute the polyhedron de-
fined by their overlap. The separating force will be applied
at the polyhedron’s center of mass, c. The direction of the
force, r, is given by the sum of area-weighted normals for
the faces contributed by either one of the tetrahedra.

Our initial approach was to add an implicit penalty force
to the system with magnitude proportional to the volume of
the overlap. We did this by linearizing the penalty force
with the direction fixed and approximating the change in
volume with respect to node position using only the terms
due to motion in the force direction. This force was rep-
resented as a temporary element involving the eight nodes
and it contributed 64 3×3 blocks of non-zeros to K . (This
type of element is often referred to as a “mortar” element
in the finite element literature [CMPW01].) This approach
worked quite well nearly all the time. Unfortunately, situ-
ations would very rarely arise where objects would align in
some very particular configurations that resulted in disturb-

ing jitter. For an offline system this infrequent annoyance
would not be an issue. However, in a game setting the sim-
ulation must run continuously while unsupervised and even
infrequent jitter was determined to be objectionable.

To eliminate this problem, we chose to implement colli-
sion response using only damping forces. When two tetrahe-
dra are found to overlap each other we compute the overlap
volume, force direction, and force application point as de-
scribed above. We then compute barycentric weights for the
position c with respect to each of the two colliding tetrahe-
dra, b1 and b2. Using the node velocities of the two tetra-
hedra, v1 and v2, we compute the relative approach speed,
scaled by the magnitude of r, as s = r · (bT

1 v1 −bT

2 v2) and
we set the response force to be proportional to s in the direc-
tion r̂, where ·̂ denotes normalization. The force is applied
at c so that the force is distributed to the nodes of the two
tetrahedra according to the barycentric weights of c. If we
treat c as a constant, this force is linear in the node veloc-
ities and can be treated implicitly by including an extra 64
3×3 blocks of non-zeros in the damping matrix. The block
between nodes i and j is φr̂rTbibj where bi and bj are the
relevant barycentric weights with appropriate sign, and φ is
the penalty coefficient. These terms preserve the symmetry
of the damping matrix. In practice this force behaves well
with the implicit integrator and φ can be set quite high with-
out inducing stability problems.

We use a fixed-sized timestep for predictable real-time
performance, with the resulting drawback that fast-moving
or small objects could potentially pass through each other or
find themselves in a deeply embedded configuration. Damp-
ing forces alone cannot correct existing overlap between ob-
jects, so it is important to detect contact as soon as possi-
ble. An approximate form of continuous collision detec-
tion is employed to help reduce this overlap error. Objects
that move more than 1/6 their bounding box diagonal per
timestep are considered “fast”. The positions of fast ob-
jects are linearly interpolated using a discrete number of sub-
steps, chosen such that the object moves less than 1/6 of
its bounding box diagonal during each sub-step. Collision
detection is performed after each sub-step, and the time of
first contact for the object is saved. Fast objects for which
collisions were detected are arbitrarily moved to their inter-
polated location where the first collision was detected. This
procedure is clearly only approximate, but it does help to
reduce the most egregious overlap and tunneling errors.

c© Association for Computing Machinery, Inc. 2009.

Parker, O’Brien / Real-Time Deformation and Fracture in a Game Environment

163

Star Wars: The Force Unleashed game content and screenshots courtesy of LucasArts, a division of Lucasfilm Entertainment Company Ltd. Used here under authorization. c©2009 Lucasfilm Entertainment Company Ltd. or
Lucasfilm Ltd. All rights reserved.

Figure 5: Images captured from glass explosion scene. These images are from a scene where an explosive force ruptures a

glass detention unit. The walls of the enclosure are formed by glass panes held in metal frames.

Friction is implemented with a hybrid system in which
dynamic friction is handled implicitly while static friction is
computed explicitly. The justification for this model is that
static friction is only needed when the simulation is nearing
equilibrium, and large fluctuations in frictional forces that
would cause instability are less likely to occur. Our dynamic
friction model acts solely as a damping force and is com-
puted as part of the implicit solve, so it is inherently stable
and cannot lead to jitter.

Similar to the contact normal force used to prevent inter-
penetration, we compute the dynamic force proportional to
the tangential velocity w = (bT

1 v1 − bT

2 v2)− s · r. In the
Coulomb friction model, the tangential force should be pro-
portional to the normal force Ff <= µFn. However, we
separate the two and approximate the dynamic friction force
magnitude using a heuristic because linking them would lead
to a non-symmetric K requiring a more sophisticated, and
likely slower, solution method. This simplification leads to
the same set of 64 3× 3 blocks of non-zeros as for the nor-
mal force, making it very simple to modify the normal force
computation to account for dynamic friction.

The normal force heuristic for dynamic friction is com-
puted as Fn = Misland ×G×µ× ry ×α where Misland

is the mass of the composite-island, G is the force of grav-
ity, µ is the Coulomb coefficient of friction, α is the frac-
tion of volume for this contact with respect to the total vol-
ume of all contacts in the composite-island, and ry is the
y-component of the contact normal direction as described
above. This heuristic approximates the equilibrium normal
force magnitude for objects under the influence of gravity.

We compute an imprecise static friction using a software-
based PID controller [Sel01]. Static friction is enabled
once the magnitude of the tangential velocity drops below
a threshold value. The PID constants were derived from an
optimization procedure on a large number of objects falling
down a hill using adaptive simulated annealing [Ing96].
Static friction is reset once contact is broken, or the velocity
once again rises above the threshold value.

7. Other Implementation Issues

Rigid-body dynamics are a commonly used simulation
method in many current computer games. Although finite
element simulation could replace rigid-body simulation in
most applications, game designers are already familiar with

rigid-body tools and so new simulation methods must be
able to interoperate with rigid-bodies. Most current rigid
body systems use an impulse-based solver requiring multiple
iterations to converge. Interfacing with this type of solver re-
quires computing the deformation response to each impulse
for each iteration. For a rigid body this response can be com-
puted analytically [Ebe04], but for finite element systems it
requires a full solve.

Instead, we use a force-based approach where the contact
reaction force on a proxy of the rigid body is computed, and
then applied to the rigid body system as an explicit force.
The rigid body system is then stepped and the process re-
peats. This is a type of interleaved hybrid simulation sys-
tem [BW97] that requires multiple frames to converge to-
wards a reasonable solution. It is limited to small stacks,
or contact with soft objects where the resulting contact er-
rors are typically not objectionable. While not ideal, this
method was sufficient for the small numbers of interactions
with rigid bodies that we have encountered.

With the finite element method it is easy to modify the
system to account for kinematically driven animations such
as elevators, sliding doors, or walking characters. In each
of these cases, some or all of the nodes of the mesh will
have prescribed velocities which should not be altered by
the solver. Modifying the system to account for the motion
of these nodes follows a cookbook procedure. Equation 5
reduces to a single linear matrix equation where v are the
velocities to be solved for, and b is a column vector of con-
stants: Av = b. Each row of this system represents an equa-
tion that must be satisfied. Prescribed values of v produce a
constant value on the left hand side of these equations. This
value may be moved to the right hand side by simply sub-
tracting it from both sides. We then just strike the rows and
columns corresponding to prescribed degrees of freedom to
return the system to nonsingular status.

8. Results and Discussion

The system we have described has been implemented as a
separate physics engine that can be integrated with other
game components. It is currently being sold commercially
by Pixelux Entertainment under the trade name DMM and
has been successfully used in the Xbox 360 and the PS3 ver-
sions of the video game Star Wars: The Force Unleashed

published by LucasArts. The results presented here were

c© Association for Computing Machinery, Inc. 2009.

164

Parker, O’Brien / Real-Time Deformation and Fracture in a Game Environment

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160 180

M
il

li
s
e
c
o

n
d

s

Frame

1 Proc 2 Proc

3 Proc 4 Proc

Figure 6: Timing results for glass explosion. This plot

shows the simulation time required to model the scenario

shown in Figure 5 using a variable number of processors on

a PC with Intel 2.4 GHz Core 2 Q6600, 667 MHz DDR2.

The simulation involved approximately 2400 tetrahedra.

generated using both our own standalone test software and
the release version of Star Wars: The Force Unleashed. Fig-
ures 1 and 5 show two representative scenes from the game.
Additional examples are included in the companion video.

The development of our physics engine involved a sub-
stantial amount of close interaction with the game’s devel-
opment team. This process helped inform the design and
selection of many of the algorithms described above. For ex-
ample, although element splitting is computationally cheap
and the stability issues with split elements are easily dealt
with, splitting was avoided because it causes the number of
tetrahedra to change dynamically and complicates level bal-
ancing. Instead we used the splinter technique which avoids
dynamic element creation and also provides an avenue for
artistic control. Feedback from the content artists indicated
that they liked the splinter approach and the control it af-
fords, and did not find the required authoring to be burden-
some. Figure 4 shows images from a test program used to
preview materials. A wood material is shown along with the
concept artist’s sketch of what the desired material should
look like.

In the published game, objects fade away once the game
engine has determined that they are no longer needed. This
decision was made by the game’s development team not
because of limitations in the simulation, but because they
did not want the levels to become cluttered with debris that
would interfere with the kinematic motion of the player and
other characters.

Our system has been implemented to run on several archi-
tectures including standard PCs, the Xbox 360, and the PS3.
Unfortunately, contractual restrictions preclude disclosure of
detailed timing information for the Xbox 360 and PS3 imple-
mentations. However, we can provide information measured
from our PC implementation. The plot in Figure 6 shows
our system’s performance for the scene depicted in Figure 5.
(This scene and several others are included in the video.) As
one would expect, we do not achieve perfect linear speedup
scaling with the number of processors, in part because not
all parts of our code have been parallelized and also because

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120 140 160 180

M
il

li
s
e
c
o

n
d

s

Frame

Fracture

Solve

Solver Setup

Collision Detection

Build Islands

Other

Figure 7: Breakdown of timing results for glass explosion.

This stacked plot shows a breakdown of time spent in each

major phase of the simulation algorithm. The data were

gathered from an additional run of the four-processor sce-

nario plotted in Figure 6.

0

500

1000

1500

2000

2500

0 20 40 60 80 100 120 140 160 180

Frame

Sleeping Tets

Live Tets

Live Nodes

Active Contacts

Figure 8: Variation of workload over time for glass explo-

sion. This plot shows the numbers of sleeping tetrahedra,

live tetrahedra, live nodes, and active contact points vary-

ing as the simulation is run. The data were gathered from

the same run that was used for Figure 7.

of issues with memory coherence on the Q6600. However
we see that the parallel versions of the code realize substan-
tial gains over the serial version. The total time for the case
with four processors is broken down in Figure 7 to show how
much time was spent in each part of the simulation code. For
reference, Figure 8 shows how the number of active tetrahe-
dra, nodes, and contact regions varies over the course of the
simulation run.

Although we designed this system for real-time simula-
tion, there is no reason why it cannot be used to simulate
the behavior of larger systems that push it beyond the limits
of what it can do in real-time. Figures 9 and 10 are exam-
ples of such scenes. They demonstrate the type of real-time
behaviors that one could expect in the near future.

The example shown in Figure 11 demonstrates an effect
that could not be modeled with a quasi-static method. As
the tough wooden pole is twisted it stores a large amount of
elastic energy. Once stress in the relatively brittle material
reaches its fracture threshold, the released energy causes a
cascade of fractures resulting in a violent mechanical explo-
sion and flinging high-speed debris outward.

The current design decisions represent what we felt was
a “sweet spot” in the continuum of possible choices. This

c© Association for Computing Machinery, Inc. 2009.

Parker, O’Brien / Real-Time Deformation and Fracture in a Game Environment

165

Figure 9: Trestle collapsed by a hurled boulder. This exam-

ple demonstrates a complex heterogeneous structure made

from different materials. This result was generated by ap-

plying our system to a scenario that exceeds its real-time

capacity and it took a couple minutes to compute.

Figure 10: A rope being wound onto a spool. To resolve

this scenario with no visible penetration our collision han-

dler required a smaller integration step that only allowed

interactive, not real-time, performance.

sweet spot changes as the capacity of available hardware
evolves. For example, our tests with a multigrid solver show
that it under-performs our current solver for the size of mesh
that we can currently model in real-time. For larger systems
this relation reverses and the multigrid solver will be supe-
rior. Other options that might prove to be useful for different
types and sizes of system include fill-reducing direct linear
solvers, non-linear iterations to converge the corotational el-
ement formulation, and element splitting.

Acknowledgments

The authors would like to thank their colleagues at Pixelux
Entertainment and U.C. Berkeley for their help and support,
and The Force Unleashed team at LucasArts for giving us
the opportunity to work with them. Jonathan Shewchuk and
Nuttapong Chentanez provided valuable feedback and edi-
torial suggestions. The video for this paper was edited by
Sebastian Burke, and Vik Sohal helped with video capture.
Eric Larsen, Karl Hillesland, Mitch Bunnell, Vik Sohal, and
Dave McCooey at Pixelux Entertainment worked on the de-
velopment of the DMM physics engine.

References

[Bar89] BARAFF D.: Analytical methods for dynamic simulation
of non-penetrating rigid bodies. In Proceedings of ACM SIG-

GRAPH 1989 (1989), pp. 223–232.

[Bar92] BARAFF D.: Dynamic Simulation of Non-Penetrating

Rigid Bodies. PhD thesis, Computer Science Department, Cor-
nell University, 1992.

[Bar94] BARAFF D.: Fast contact force computation for nonpen-
etrating rigid bodies. In Proceedings of ACM SIGGRAPH 1994

(1994).

[BFA02] BRIDSON R., FEDKIW R., ANDERSON J.: Robust
treatment of collisions, contact and friction for cloth animation.
In Proceedings of ACM SIGGRAPH 2002 (2002).

[BH79] BELYTSCHKO T., HSIEH B.: Application of higher order

corotational stretch theories to nonlinear finite element analysis.
Computers & Structures 11 (1979), 175–182.

[BHTF07] BAO Z., HONG J.-M., TERAN J., FEDKIW R.: Frac-
turing rigid materials. IEEE Transactions on Visualization and

Computer Graphics 13, 2 (2007), 370–378.

[BW92] BARAFF D., WITKIN A.: Dyanmic simulation of non-
penetrating flexible bodies. In Proceedings of ACM SIGGRAPH

1992 (1992), pp. 303–308.

[BW97] BARAFF D., WITKIN A.: Partitioned Dynamics. Tech.
rep., Robotics Institute, Carnegie Mellon University, 1997. Tech-
nical Report CMU-RI-TR-97-33.

[BW98] BARAFF D., WITKIN A.: Large steps in cloth simula-
tion. In Proceedings of ACM SIGGRAPH 1998 (1998), pp. 43–
54.

[BWHT07] BARGTEIL A. W., WOJTAN C., HODGINS J. K.,
TURK G.: A finite element method for animating large viscoplas-
tic flow. In Proceedings of ACM SIGGRAPH 2007 (Aug. 2007),
pp. 291–294.

[CAR∗09] CHENTANEZ N., ALTEROVITZ R., RITCHIE D.,
CHO L., HAUSER K. K., GOLDBERG K., SHEWCHUK J. R.,
O’BRIEN J. F.: Interactive simulation of surgical needle in-
sertion and steering. In Proceedings of ACM SIGGRAPH 2009

(Aug. 2009).

[CLMP95] COHEN J. D., LIN M. C., MANOCHA D., PONAMGI

M. K.: I-COLLIDE: An interactive and exact collision detection
system for large scale environments. In Proceedings of the ACM

Symposium on Interactive 3D Graphics (Apr. 1995), pp. 189–
196.

[CMPW01] COOK R. D., MALKUS D. S., PLESHA M. E., WITT

R. J.: Concepts and Applications of Finite Element Analysis,
fourth ed. John Wiley & Sons, New York, 2001.

[Cou08] COUMANS E.: Bullet physics. www.bulletphysics.com,
2008.

[Ebe04] EBERLY D. H.: Game Physics . Morgan Kaufmann,
2004.

[EKS03] ETZMUβ O., KECKEISEN M., STRAβER W.: A fast
finite element solution for cloth modelling. In Proceedings of

the Pacific Conference on Computer Graphics and Applications

(2003), p. 244.

[Erl07] ERLEBEN K.: Velocity-based shock propagation for
multibody dynamics animation. In ACM Trans. on Graphics

(2007), vol. 26.

[ESHD05] ERLEBEN K., SPORRING J., HENRIKSEN K.,
DOHLMAN H.: Physics based animation. Charles River Me-
dia, 2005.

[Fel07] FELIPPA C.: Introduction to finite element meth-
ods. www.colorado.edu/engineering/cas/courses.d/NFEM.d,
2007. Course notes published as webpages.

[GBF03] GUENDELMAN E., BRIDSON R., FEDKIW R.: Non-
convex rigid bodies with stacking. In Proceedings of ACM SIG-

GRAPH 2003 (2003).

[GM97] GIBSON S. F. F., MIRTICH B.: A Survey of Deformable

Modeling in Computer Graphics. Tech. rep., Mitsubishi Electric
Research Laboratories, 1997.

[HFS∗01] HIROTA G., FISHER S., STATE A., LEE C., FUCHS

H.: An implicit finite element method for elastic solids in con-
tact. In Proc. of Computer Animation (2001), pp. 136–146.

[HGS∗07] HUGHES C. J., GRZESZCZUK R., SIFAKIS E., KIM

D., KUMAR S., SELLE A. P., CHHUGANI J., HOLLIMAN M.,

c© Association for Computing Machinery, Inc. 2009.

http:www.bulletphysics.com
http:www.colorado.edu/engineering/cas/courses.d/NFEM.d

166

Parker, O’Brien / Real-Time Deformation and Fracture in a Game Environment

Figure 11: A mechanical explosion. In this example, a thick wooden pole is twisted in opposite directions from the top and

bottom. The stress builds in the pole until it shatters violently, flinging high-speed debris into the surrounding glass panes.

CHEN Y.-K.: Physical simulation for animation and visual ef-
fects: parallelization and characterization for chip multiproces-
sors. ACM SIGARCH Computer Architecture News 35, 2 (2007),
220–231.

[HSO03] HAUSER K. K., SHEN C., O’BRIEN J. F.: Interactive
deformation using modal analysis with constraints. In Graphics

Interface (June 2003), pp. 247–256.

[HVT08] HARMON D., VOUGA E., TAMSTORF R.: Robust
treatment of simultaneous collisions. In Proceedings of ACM

SIGGRAPH 2008 (2008).

[Ing96] INGBER L.: Adaptive simulated annealing (asa): Lessons
learned. Control and Cybernetics 25 (1996), 33–54.

[IO06] IBEN H. N., O’BRIEN J. F.: Generating surface crack
patterns. In Proceedings of the ACM SIGGRAPH/Eurographics

Symposium on Computer Animation (Sept. 2006), pp. 177–185.

[ITF04] IRVING G., TERAN J., FEDKIW R.: Invertible finite
elements for robust simulation of large deformation. In ACM

SIGGRAPH / Eurographics Symposium on Computer Animation

(July 2004), pp. 131–140.

[JP99] JAMES D. L., PAI D. K.: Artdefo: accurate real time
deformable objects. In Proceedings of ACM SIGGRAPH 1999

(1999), pp. 65–72.

[KEP05] KAUFMAN D. M., EDMUNDS T., PAI D. K.: Fast fric-
tional dynamics for rigid bodies. In Proceedings of ACM SIG-

GRAPH 2005 (2005).

[KK99] KARYPIS G., KUMAR V.: A fast and high quality multi-
level scheme for partitioning irregular graphs. SIA J. Sci. Comput.

(1999), 359–392.

[MBF04] MOLINO N., BAO Z., FEDKIW R.: A virtual node
algorithm for changing mesh topology during simulation. ACM

Trans. Graph. 23, 3 (2004), 385–392.

[MDM∗02] MÜLLER M., DORSEY J., MCMILLAN L., JAG-
NOW R., CUTLER B.: Stable real-time deformations. In ACM

SIGGRAPH Symposium on Computer Animation (July 2002),
pp. 49–54.

[MG04] MÜLLER M., GROSS M.: Interactive virtual materials.
In Proceedings of Graphics Interface 2004 (2004), pp. 239–246.

[Mic05] MICROSOFT: Direct x 10 developer documenta-
tion/texture skinning. msdn.microsoft.com/en-us/library, 2005.

[MMDJ01] MÜLLER M., MCMILLAN L., DORSEY J., JAGNOW

R.: Real-time simulation of deformation and fracture of stiff
materials. In Proceedings of the Eurographic workshop on Com-

puter animation and simulation (2001), pp. 113–124.

[MSJT08] MÜLLER M., STAM J., JAMES D., THÜREY N.: Real
time physics: class notes. In SIGGRAPH ’08: ACM SIGGRAPH

2008 classes (2008), pp. 1–90.

[MW88] MOORE M., WILHELMS J.: Collision detection and re-
sponse for computer animationr3. In Proceedings of SIGGRAPH

1988 (1988), pp. 289–298.

[NMK∗05] NEALEN A., MÜLLER M., KEISER R., BOXERMAN

E., CARLSON M.: Physically based deformable models in com-

puter graphics. Tech. rep., Eurogrphics 2005 state of the art re-
port, 2005.

[NOR91] NOUR-OMID B., RANKIN C. C.: Finite rotation anal-
ysis and consistent linearization using projectors. Comp. Methds.

Appl. Mech. Engrg. 93 (1991), 353–384.

[NPF05] NESME M., PAYAN Y., FAURE F.: Efficient, physi-
cally plausible finite elements. In Eurographics 2005, short pa-

pers (Trinity College, Dublin, Irlande, Aug. 2005), Dingliana J.,
Ganovelli F., (Eds.).

[O’B00] O’BRIEN J. F.: Graphical Modeling and Animation of

Fracture. PhD thesis, College of Computing, Georgia Institute of
Technology, 2000.

[OBH02] O’BRIEN J. F., BARGTEIL A. W., HODGINS J. K.:
Graphical modeling and animation of ductile fracture. In Pro-

ceedings of ACM SIGGRAPH 2002 (Aug. 2002), pp. 291–294.

[OH99] O’BRIEN J. F., HODGINS J. K.: Graphical modeling and
animation of brittle fracture. In Proceedings of ACM SIGGRAPH

1999 (Aug. 1999), pp. 137–146.

[OTSG09] OTADUY M. A., TAMSTORF R., STEINEMANN D.,
GROSS M.: Implicit contact handling for deformable objects.
Computer Graphics Forum (Proc. of Eurographics) 28, 2 (apr
2009).

[Pis84] PISSANETZKY S.: Sparse Matrix Technology. Academic
Press, London, 1984.

[SBT07] SPILLMANN J., BECKER M., TESCHNER M.: Non-
iterative computatino of contact forces for deformable objects.
Journal of WSCG 15, 1–3 (2007), 33–40.

[Sel01] SELLERS D.: An overview of proportional plus integral
plus derivative control and suggestions for its successful applica-
tion and implementation. In Proceedings for the 2001 Interna-

tional Conference on Enhanced Building Operations (2001).

[She94] SHEWCHUK J. R.: An Introduction to the Conjugate

Gradient Method Without the Agonizing Pain. Tech. Rep. CMU-
CS-94-125, School of Computer Science, Carnegie Mellon Uni-
versity, Mar. 1994.

[SWB00] SMITH J., WITKIN A., BARAFF D.: Fast and control-
lable simulation of the shattering of brittle objects. Computer

Graphics Interface (may 2000), 27–34.

[Ter01] TERDIMAN P.: Memory-optimized bounding-volume hi-
erarchies. www.codercorner.com/Opcode.pdf, 2001.

[TKZ∗04] TESCHNER M., KIMMERLE S., ZACHMANN G.,
HEIDELBERGER B., RAGHUPATHI L., FUHRMANN A., CANI

M.-P., FAURE F., MAGNETAT-THALMANN N., , STRASSER

W.: Collision detection for deformable objects. Tech. rep., Eu-
rographics Association, 2004.

[TPBF87] TERZOPOULOS D., PLATT J., BARR A., FLEISCHER

K.: Elastically deformable models. In Proceedings of ACM SIG-

GRAPH 1987 (jul 1987), vol. 21, pp. 205–214.

c© Association for Computing Machinery, Inc. 2009.

http:msdn.microsoft.com/en-us/library
http:www.codercorner.com/Opcode.pdf

