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Abstract. We present a novel variational approach to estimate dense
depth maps from multiple images in real-time. By using robust penalizers
for both data term and regularizer, our method preserves discontinuities
in the depth map. We demonstrate that the integration of multiple im-
ages substantially increases the robustness of estimated depth maps to
noise in the input images. The integration of our method into recently
published algorithms for camera tracking allows dense geometry recon-
struction in real-time using a single handheld camera. We demonstrate
the performance of our algorithm with real-world data.

1 Introduction

Reconstructing the geometry of the environment from a hand-held camera is
among the classical topics in computer vision. While sparse reconstructions of
a finite number of tracked points can easily be done in real-time [II2], the fast
computation of dense reconstructions from a moving camera remains an open
challenge.

Traditionally there are two complementary approaches to estimating dense
geometry, namely the reconstruction of depth maps (often called 2.5d recon-
structions) from stereo image pairs and the reconstruction of full 3D structure
from multiple images. While we have observed substantial advances in dense
3D reconstruction from multiple images, many of these approaches are to date
not real-time capable [34]. Moreover, they typically require a larger number of
around 30 calibrated images making them unsuited for live scene reconstructions
from a single moving camera. On the other hand, there exist many approaches
to reconstructing dense depth maps from pairs of images [5l6]. While these ap-
proaches were shown to provide excellent results on dense depth estimation, they
are typically too computationally intense for real-time applications, moreover,
they are rather noise sensitive since they only exploit two images.

In this paper, we propose a variational approach for computing dense depth
maps from multiple images with real-time performance. The key idea is to adopt
recently developed high-accuracy optic flow algorithms [7] to the problem of
depth map estimation from multiple images. Depth maps are computed by se-
quential convex optimization by means of a primal-dual algorithm. In particular,
we prove that the primal variables can be efficiently computed using a sophis-
ticated thresholding scheme. To obtain optimal performance, the dense depth
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maps are computed in coarse-to-fine-manner on the GPU while the camera co-
ordinates are simultaneously computed on the CPU using recently developed
algorithms. Our experiments demonstrate that the algorithm allows to compute
dense high-quality depth maps from a moving camera in real-time. Moreover,
our quantitative evaluation confirms that using multiple images substantially
improves the noise-robustness of estimated depth maps.

After submission of this manuscript we became aware that the problem of
reconstructing depth maps from a handheld camera was independently addressed
in the recent work of Newcombe and Davisson [§]. In the latter work, the authors
first estimate an optical flow field from consecutive images and subsequently use
this flow field to update a depth map. In contrast, we propose a variational
approach which directly provides a depth field. This seems more appropriate to
us: Why estimate a 2D motion vector for each pixel, if - apart from the camera
motion - the considered scene is static? One consequence of the proposed solution
to directly determine the depth field is that our algorithm is real-time capable
on a single graphics card whereas the approach of Newcombe and Davison needs
several seconds per frame on two GPUs.

2 Robust Estimation of Depth Maps from Images

In Section 21 we introduce our mathematical framework for computing dense
depth maps for the simpler case of two input images. In Section we extend
this formulation and introduce a novel variational approach for estimating depth
maps from multiple images. In Section we propose a primal-dual algorithm
which substantially generalizes the one of Zach et al and which allows to effi-
ciently minimize the proposed functional.

First we give an introduction to our notation. Let us assume a given set of
gray value images {I; : 2, — R} with ¢ € {0,..., N} that were taken from
different viewpoints with the same camera. Let us further assume, that the
corresponding camera poses (location and orientation of the camera) and the
projection 7 : R?® — R? that projects from homogeneous coordinates to pixel
coordinates are known. The depth map h, that should be estimated, is a scalar
field which is defined with respect to the coordinate frame of one of the images.
Let us denote this camera image without loss of generality as Iy such that h :
20 — R assigns a depth value to every pixel of Iy. By using homogeneous 2D
coordinates x = (71,72, 1)T € 2y we can express the position of each 3D surface
point X of the depth map by multiplying the homogeneous 2D vector by the
depth value: X(x, h) := h(z1,z2) - x.

Note that the above position vector is relative to the coordinate frame of
Iy. The projection of such a 3D point X onto another image plane §2; can be
achieved by 7(exp(&;) - X), where &; is the camera pose for each image relative
to the coordinate frame of Iy. The camera poses are given in so called twist
coordinates & € R®. The hat-operator transforms &; such that the twist & € se(3)
gives the exponential coordinates of the rigid-body motion that transforms the
coordinate frame of I into the coordinate frame of I;.
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2.1 Stereo Estimation Using Two Images

Let us introduce our mathematical framework for the simplest case, when two
images are provided. To estimate a heightmap h from these two images we
propose the following variational formulation consisting of an L; data penalty
term and an L total variation (TV) regularization of the depth map

E(h):/\/ ’Il(w(exp(él)X(x,h)))—Io(w(x))‘ d’x+ [ |Vh| d*x, (1)
20 20

where the data term I (7T (exp(él) X(x, h))) — I (7r (x)) measures the difference
of the image intensities of Iy and the image intensities that are observed at the
projected coordinates in I;. Above data term is motivated by the Lambertian as-
sumption, that the observed intensity is independent of the viewpoint as long as
the same surface point is observed in both views. The TV-norm regularizer allows
to preserve discontinuities in the depth map, e.g. at object boundaries, while the
robust data term lowers the sensitivity towards outliers in cases where objects
are invisible by occlusion or when the input images are affected with noise. In the
following we will use the simplified notation I (x, h) for I (7 (exp(él) X(x,h))).

We begin with a linearization of I(x,h) by using the first order Taylor ex-
pansion, i.e.

Il(X, h) = Il(X, h()) + (h - ho) %Il(x,h)

(2)

where hg is a given depth map. The derivative %Il (x,h) can be considered as
a directional derivative in direction of a differential vector on the image plane
that results from a variation of h It can be expressed as the scalar product of
the gradient of Iy (x, h) with this differential vector, i.e.

ho

d .
(5, 1) = VI (3, h) - o (exp(€) X, ). (3)
The differential vector mentioned above needs to be calculated with respect to
the chosen camera model.

Using the linear approximation for I1(x,h) and by reordering the integrals
the energy functional (Eq.[d) now reads

Bl
dn't

E(h) = /Q {A!h(x,ho) + (h — ho) %Il(x,h)’hg —Ip(x)| + ’Vh!} d*x.  (4)

p1(x,ho,h)

Though this energy functional is much simpler than the original functional
(Eq. ), the task of minimizing it is still difficult, because both the regularization
term and the data term are not continuously differentiable.

We introduce an auxiliary function u that decouples the data term and the
regularizer, leading to the following convex approximation of Eq. [4¢

B0 = [ {19ul+ ggtu= 17 + Al | P, (5)
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where 6 is a small constant and p;(h) denotes the current residual of the data
term (by omitting the dependency on hy and x). It is immediate to see that for
# — 0 the minimization of the above functional results in both kA and u being a
close approximation of each other.

This minimization problem can be solved efficiently in real-time by minimiz-
ing the data term with a simple thresholding scheme and using a primal dual
algorithm for the minimization of the ROF energy [9].

2.2 Extension to Multiple Images

Let us now consider the case when multiple input images are given. In the
previous section we formulate our energy model for the classical stereo task in
case of two images. Compared to previous approaches that employ the epipolar
constraint by using the fundamental matrix the main difference is that here we
formulate the data term relative to the coordinate system of one specific view
and use the perspective projection to map this coordinate system to the second
camera frame. This makes it easy to incorporate the information from other
views by simply adding up their data terms. We propose the following energy
functional to robustly estimate a depth map from multiple images

E(h):A/Q > lpi(x, b)) d2x+/Q|Vh| d?x (6)

1€Z(x)

where Z(x) contains the indices of all images for which the perspective projection
m(exp(&;) - X(x, h)) is inside the image boundaries. With p;(x, k) we denote the
residual of the linearized data term for image I;

pi(x,h) = I;(x, ho) + (h — ho) I'(x) — Iy(x), (7)

where I['(x) is a simplified notation for the derivative --I;(x, h) "
By using the above functional we should expect two benefits. First of all

algorithms using only two images are not able to estimate disparity information
in regions that are occluded in the other view or simply outside of its image
borders. The use of images from several different views should help in these
cases because information from images where the object is not occluded can be
used. The use of the Li-norm in the data terms allows an increased robustness
towards outliers in cases where objects are occluded. The second benefit of using
multiple images is the increased signal to noise ratio that provides much better
results when the input images are affected by noise, which is a typical property
of image sequences acquired by webcams or consumer market camcorders.

This functional is more complicate to solve because the data term consists of
the sum of absolute values of linear functions, that cannot be minimized using
the simple thresholding scheme proposed in [7]. In [4] the authors extend the
thresholding scheme to data terms of the form ), |z —b;|, with a set of constants
{b; € R}. Unfortunately the data term in the proposed functional is not of such
form. Nevertheless, we will show in the next section that the thresholding concept
can be generalized to a substantially larger class of functionals.
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2.3 Generalized Thresholding Scheme

In this section we provide a substantial generalization of the thresholding scheme
which also applies to multiple images and more sophisticated data terms.

We decouple the smoothness and data term by introducing an auxiliary func-
tion u and get the following convex approximation of Eq.

_ i _ 2 i 2
By = [ J19ul+ g2+ 2 3 It b] b dPx (®)

1€ (x)

The above functional is convex so an alternating descent scheme can be ap-
plied to find the minimizer of Fy:

1. For h being fixed, solve

1
min/ {|Vu| + (- h)2} Px )
This is the ROF energy for image denoising [T0/9].

2. For u being fixed, solve

min/ﬁ %(ufh)%r)\ > pix,h)| p dx (10)

h
1€Z(x)
This minimization problem can be solved point-wise.

A solution for the minimization of the the ROF energy, the first step in our
alternating scheme, was proposed in [9], that uses a dual formulation of Eq. [0
For the convenience of the reader we reproduce the main results from [9].

Remark 1. The solution of Eq. [ is given by
u=h—6divp, (11)

where p = (p1,p2) is a vector field and fulfills V(6 divp — h) = |VOdivp — h|p,
which can be solved by the following iterative fixed-point scheme:

ki1 PP+ 7V(divp* —h/6)
- 14+ 7|V(divp* — h/0)|’

P (12)

where p’ = 0 and the time step 7 < 1/8.

The second step of the alternation scheme, Eq.[I0, can be solved point-wise, but
shows some difficulties as it is not continuously differentiable. Nevertheless we
provide a closed-form solution by generalizing the thresholding concept to data
terms of the form > |a; x — b;].

3



16 J. Stithmer, S. Gumhold, and D. Cremers

By taking a look at Eq. [ we see, that for fixed hg and x the residuals of the
linearized data terms p; can be expressed in the general form of linear functions,
pi(x, h) = a; h + b;, with a; := I['(x) and b; := I;(x, ho) — ho I (x) — Io(x). The
absolute valued functions |p;(h)| are differentiable with respect to h except at
their critical points, where a function equals zero and changes its sign. Let us
denote those critical points as

bi Ii(X, ho) — ho IZh(X) — Io(X)

=TT () ’ (13

where i € Z(x).

At these points Eq.[lis not differentiable, as the corresponding p; changes its
sign. Without loss of generality we can assume that ¢; < ¢;11, i.e. we obtain a
sorted sequence of {p; : i € Z(x)}, that is sorted by the values of their critical
points. In order to avoid special cases we add tp = —oo and #z(x)+1 = +0o0 to
this sequence.

Proposition 1. The minimizer of Eq. can be found using the following strat-
egy: If the stationary point

ho=u=-M[ Y I'x- Y II'x (14)
1€Z(x):i<k JEL(x):5>k

lies in the interior of (tg,ti11) for some k € I(x), then h = hy. Else the mini-
mizer of Eq. can be found among the set of critical points:

1
are iy (g ,EZI( it fe) 15)

Proof. Eq. [0 is differentiable with respect to h in the interior of intervals
(tg, tk+1). Let us assume that the stationary point

hi=u—20 Y (sgn (ps(x, 1)) Iih(x)) (16)
1€Z(x)

exists and lies in the interior of the interval (tx,tx+1), then

> (en(pem) )= Y 1M - I(x) (17)

1€Z(x) 1€L(x):t;<hy JEL(x):t;>hy
= Z IM(x) — Z Ijh(x). (18)
i€Z(x):i<k JETI(x):j>k

This stationary point exists, iff it stays in the interior of (¢, tx+1) for some k.
If none of the proposed stationary points stays in the interior of its corresponding
interval, the minimizer of Eq.[I0 resides on the boundary of one of the intervals,
i.e. it can be found among the set of critical points {¢;}. O
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3 Implementation

Because the linearization of the data term (Eq.[f) only holds for small displace-
ments of the projected coordinates, the overall innovation of the depth map is
limited. To overcome this, the energy minimization scheme is embedded into
a coarse-to-fine approach: Beginning on the coarsest scale a solution A is com-
puted. This solution is used as new point hg for the linearization on the next
finer scale. By using this scheme we not only employ an iterative linearization,
but also utilize the multi-scale approach to avoid convergence into local min-
ima. When processing a consecutive sequence of input images, an initialization
of the coarsest scale can be achieved by transforming the depth map computed
in the preceding frame to the current camera pose, thus utilizing the sequential
property of the input data.

We embedded our method into a recently published camera tracking approach,
that allows tracking of a handheld camera in real-time [II]. An integral part of
this camera tracker is the storage of keyframes. While the pose for the current
camera image needs to be estimated in real-time, and thus contains a signifi-
cant amount of noise in the pose estimation, the camera pose associated to each
keyframe can be refined iteratively, leading to very accurate estimates for the
keyframes. Instead of using subsequent images with noisy real-time pose esti-
mates, our approach enables to estimate a depth map in a similar fashion to the
strategy employed in the camera tracker, by estimating the depth map using the
current camera image and the IV closest keyframes to the current pose. By using
the much better camera pose estimates of the keyframes, the amount of noise in
the camera poses is minimized.

Fig. 1. Dense depth maps computed from images of a hand-held camera
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4 Experimental Results

High-accuracy dense depth maps from a hand-held camera: The proposed al-
gorithm allows to compute dense depth maps from a moving camera. Figure [I]
shows the reconstruction result from 5 input images. In contrast to the commonly
used structure-and-motion algorithms [II2], the proposed method computes a
dense geometry rather than the location of sparse feature points. Another exam-
ple is given in Figure [ that shows the reconstruction result of an office scene.
Note the accurate reconstruction of small-scale details like the network cable.

Fig. 2. Textured (a,c) and untextured geometry (b,d). Note the accurate reconstruction
of small-scale details like the network socket and cords. (e) Images.

Realtime geometry reconstruction: The proposed primal-dual scheme can be ef-
ficiently parallelized on the GPU. The joint estimation of camera motion on the
CPU allows for live dense reconstructions of the scene. Clearly there is a trade-
off between speed and accuracy of the reconstructed geometry. Figure [3] shows
reconstruction results from 5 input images with different parameter settings and
for different resolutions of the resulting depth map. For evaluation we used a
standard personal computer equipped with a NVidia GTX 480 graphics card
and implemented our method using the CUDA framework. With high quality
parameter settings, an accurate reconstruction of the scene can be computed at
1.8 frames per second (fps). A slightly less accurate reconstruction can be ob-
tained at 11.3 fps. In both cases, the input images and reconstructed depth map
have a resolution of 640 x 480 pixels. By reducing the resolution of the computed
depth map, even realtime performance can be reached with 24 fps at a depth
map resolution of 480 x 360. In the two latter cases, a slightly different numerical
scheme is used: a number of 4 internal iterations is performed before the data
is exchanged with other blocks of the parallelized implementation, resulting in
small blocking artifacts visible in the reconstruction.
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Table 1. Parameter settings for different frame rates

Quality Setting High Medium Low
Pyramid Levels 24 10 7
Pyramid Scale-Factor 0.94 0.8 0.7
Iterations per Level 120 70 70
Internal Iterations 1 4 4
Frames per Second 1.8 11.3 24

(a) 1.8 fps (b) 11.3 fps (c) 24 fps

Fig. 3. Trade-off between speed and accuracy

Quantitative evaluation of the noise robustness: In contrast to traditional stereo
approaches, the proposed framework makes use of multiple images in order to

increase the robustness of the reconstruction. Figure [4] shows the reconstruction

— Jolhe—he=0)?dx
OITOT € = TohT dxt [, h2_, dx
two-frame formulation, the integration of multiple frames is substantially more
robust to noise.

as a function of the noise level . In contrast to the
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Fig. 4. Reconstruction error € as a function of the noise level o. The integration of
multiple images is significantly more robust to noise.
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5 Conclusion

We proposed a variational method to compute robust dense depth maps from
a handheld camera in real-time. The variational approach combines a robust
regularizer with a data term that integrates multiple frames rather than merely
two. Experimental results confirm that the integration of multiple images sub-
stantially improves the noise robustness of estimated depth maps. The nonlinear
and non-convex functional is minimized by sequential convex optimization. To
this end, we adapt a primal-dual algorithm originally proposed for optical flow
to the problem of depth map estimation, and show that the primal update can
be solved in closed form by means of a sophisticated thresholding scheme. While
the camera motion is determined on the CPU, the depth map is estimated on
the GPU in a coarse-to-fine manner, leading to dense depth maps at a speed of
24 frames per second.
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