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ABSTRACT Alternaria leaf spot, Brown spot, Mosaic, Grey spot, and Rust are five common types of

apple leaf diseases that severely affect apple yield. However, the existing research lacks an accurate and

fast detector of apple diseases for ensuring the healthy development of the apple industry. This paper

proposes a deep learning approach that is based on improved convolutional neural networks (CNNs) for

the real-time detection of apple leaf diseases. In this paper, the apple leaf disease dataset (ALDD), which

is composed of laboratory images and complex images under real field conditions, is first constructed via

data augmentation and image annotation technologies. Based on this, a new apple leaf disease detection

model that uses deep-CNNs is proposed by introducing the GoogLeNet Inception structure and Rainbow

concatenation. Finally, under the hold-out testing dataset, using a dataset of 26,377 images of diseased apple

leaves, the proposed INAR-SSD (SSD with Inception module and Rainbow concatenation) model is trained

to detect these five common apple leaf diseases. The experimental results show that the INAR-SSD model

realizes a detection performance of 78.80% mAP on ALDD, with a high-detection speed of 23.13 FPS.

The results demonstrate that the novel INAR-SSD model provides a high-performance solution for the early

diagnosis of apple leaf diseases that can perform real-time detection of these diseases with higher accuracy

and faster detection speed than previous methods.

INDEX TERMS Apple leaf diseases, real-time detection, deep learning, convolutional neural networks,

feature fusion.

I. INTRODUCTION

With a high nutritional and medicinal value, apples are one of

the most productive types of fruit in the world. However, vari-

ous diseases occur frequently on a large scale in apple produc-

tion, thereby causing substantial economic losses. Therefore,

the timely and effective detection of apple leaf diseases is

crucial for ensuring the healthy development of the apple

industry and has become a research hotspot in the field of

agricultural information.

The associate editor coordinating the review of this manuscript and
approving it for publication was Huimin Lu.

Traditionally, visual observation by experts has been con-

ducted to diagnose plant diseases. However, there is a risk for

error due to subjective perception [1]. In this context, various

spectroscopic and imaging techniques have been studied for

detecting plant diseases. However, they require precise instru-

ments and bulky sensors [2], [3], which lead to high cost and

low efficiency. In recent years, with the popularization of dig-

ital cameras and other electronic devices, automatic plant dis-

ease diagnosis via machine learning has been widely applied

as a satisfactory alternative [4]–[11]. Nevertheless, in most

cases, traditional machine learning approaches such as sup-

port vector machine (SVM) and K-means clustering have
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complex image preprocessing and feature extraction steps,

which reduce the efficiency of disease diagnosis. Machine

learning approaches are more suitable for the identification

of uniform-background plant images that have been captured

in an ideal laboratory environment. Recently, deep learning

and convolutional networks have made an essential break-

through in computer vision and many relevant theoretical

and practical achievements have been reported [12]–[14].

Because CNNs can extract features automatically and directly

from the input images, thereby avoiding complex prepro-

cessing on images, they have been a research hotspot in

object detection [15], [16]. Inspired by the breakthroughs of

CNNs in object detection, research and applications of CNNs

are not rare in crop disease detection currently [17]–[23].

However, implementing the real-time detection of apple leaf

diseases remains difficult because ALDD has the following

characteristics: first, multiple diseases may occur on the same

leaf. Moreover, the sizes of the disease spots on the leaves

vary among diseases and for the same disease. In addition,

most spots of apple leaf diseases are very small. Finally,

environmental factors such as shadow, illumination, and soil

also interfere with apple leaf disease detection.

To overcome these challenges, this paper applies the latest

deep learning approach, which is based on improved convo-

lutional neural networks, to perform real-time detection of

apple leaf diseases. The main contributions of this paper are

summarized as follows:

• The apple leaf disease dataset is built to provide an

important guarantee of generalization capability of the

proposed model. First, for enhancing the robustness of

CNN model, diseased apple images with uniform and

complex backgrounds are collected not only in the labo-

ratory but also under real field conditions. Furthermore,

to solve the problem that diseased apple leaf images are

insufficient and prevent overfitting of the CNN-based

model in the training process, natural diseased apple

images are processed to generate sufficient training

images via data augmentation technology.

• A novel real-time detection model that is based on

the single-shot multibox detector (SSD) [24] for apple

leaf diseases is proposed. First, the basic pre-network,

namely, VGGNet [25], is modified to obtain the new

basic pre-network, namely, VGG-INCEP (VGGNetwith

the Inception module) by introducing the GoogLeNet

Inception module to improve the extraction performance

for multiscale disease spots. Then, the Rainbow concate-

nation method in R-SSD [26] is integrated. Pooling and

deconvolution are utilized simultaneously to integrate

context and fuse features of the feature pyramid at the

back of the SSD, via which higher small diseased object

detection performance can be realized.

• A deep convolutional neural network is employed for

the real-time detection of apple leaf diseases. The pro-

posed deep-learning-based approach can automatically

identify the discriminative features of the diseased apple

images and detect the five common types of apple leaf

diseases with high accuracy. At the same time, the pro-

posed approach can detect not only various diseases in

the same diseased image but also the same disease of

different sizes in the same diseased image. In addition,

the proposed approach can handle all the diseased apple

images that were captured under real conditions in an

apple field environment.

The experimental results demonstrate that the proposed real-

time detection approach realizes a mean average precision

of 78.80% and a detection speed of 23.13 FPS, which cor-

responds to an improvement of 2.98% mAP over the origi-

nal SSD. The proposed model also exhibits strong detection

performance and robustness.

The remainder of this paper is organized as follows:

In Section II, generation techniques of ALDD are introduced

briefly. Section III details the detection model for apple

leaf diseases. In Section IV, experiments for evaluating the

performance of the proposed approach are presented and

the experimental results are analyzed. In Section V, related

work is introduced and summarized. Finally, this paper is

summarized in Section VI.

FIGURE 1. Real-time detection flow chart of apple leaf diseases.

II. GENERATING THE APPLE LEAF DISEASE DATASET

A. OVERVIEW

The detailed real-time detection process is illustrated in

Figure 1. First, the ALDD is built by collecting diseased

images from the laboratory and a real apple field. Then,

the original ALDD is manually annotated and extended via

a series of data augmentation operations. Next, the dataset is

divided into two parts: The training dataset is used to train

the INAR-SSD model and the testing dataset is used for per-

formance evaluation. The detection results include both the

classes and the locations of the identified apple leaf diseases.

B. APPLE LEAF DISEASE DATASET (ALDD)

1) DATA COLLECTION

At the beginning of our work, many human and material

resources were devoted to the collection of diseased apple

leaves because few suitable datasets were available for the

real-time detection of apple leaf diseases. The disease pat-

terns of apple leaves vary with the season and with other

factors such as the humidity, temperature and illuminance.
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For example, rainy weather is conducive to the generation

and spread of germs, thereby resulting in the expansion and

diffusion of the disease spots on affected leaves. Taking that

into consideration, images of ALDD are collected under vari-

ous weather conditions for more comprehensive applications.

In addition to the artificially collected images, other images

in the dataset are supplied by Apple Experiment Station

of Northwest A&F University in Baishui county, Shaanxi

province, China.

A total of 2029 images of diseased apple leaves are

obtained, which correspond to five classes: Alternaria leaf

spot (caused by Alternaria alternata f.sp mali), Brown spot

(caused byMarssonina coronaria), Mosaic (caused by Papaya

ringspot virus), Grey spot (caused by Phyllosticta pirina Sacc.

and Coryneum foliicolum) and Rust (caused by Pucciniaceae

glue rust). These five common diseases of apple leaves are

selected for two reasons: initially, these five types of diseases

can be visually identified from leaves, which is essential for

the application of CNNs. In addition, they are responsible for

substantial yield reductions in the apple industry.

FIGURE 2. Five common types of apple leaf diseases. (a) Alternaria leaf
spot. (b) Brown spot. (c) Mosaic. (d) Grey spot. (e) Rust.

Figure 2 shows representative images of the diseased apple

leaves in the dataset. In Figure 2, the diversity among the

five apple leaf diseases is easily observed. First, lesions that

are caused by the same disease show certain commonalities

under similar natural conditions. Second, the yellow lesions

in the Mosaic class diffuse throughout the leaves, which

distinguish them from other lesions. Third, the Alternaria leaf

spot and Grey spot are similar in terms of geometric features,

thereby increasing the complexity of detecting them. Finally,

the Rust class is composed of rust-yellow spots that have

brown pinhead-sized points in the center. Because of this

remarkable difference, Rust is easier to distinguish from other

diseases. These observations are helpful for the diagnosis and

recognition of various apple leaf diseases.

The collected dataset has the following three character-

istics: First, multiple diseases may co-occur on the same

diseased image. Second, most images contain complex back-

grounds, which ensures the high generalization performance

of the approach. Finally, all diseased images in the dataset are

annotated manually by experts.

2) IMAGE ANNOTATION

Image annotation is a vital step of which the objective is

to label the positions and classes of object spots in the dis-

eased images. For this stage, an algorithm that provides a

frame selection function is developed in Python. With this

algorithm and knowledge that is provided by experts in the

field of agriculture, the diseased areas of an image can be

selected and labeled with the corresponding classes. All the

disease images in the dataset have been annotated. After

the annotation step, the program will generate XML files

for each annotated image that contain information such as

the coordinate values of each lesion’s bounding boxes and

the classes of the diseases.

FIGURE 3. Annotation of the apple leaf disease dataset. (a) Annotated
image. (b) XML document.

Considering a rust-infected leaf as an example, Figure 3(a)

shows an annotated image. The red and blue boxes indicate

the infected areas of the diseased apple leaf. Figure 3(b)

shows the corresponding description of the image, which is

in the form of an XML document.

3) DATA AUGMENTATION

The overfitting problem in the training stage of CNNs can

be overcome via data augmentation. The overfitting problem

occurs when random noise or errors, rather than the under-

lying relationship, are described [27]. With more images

after expansion via data augmentation techniques, the model

can learn as many irrelevant patterns as possible during the

training process, thereby avoiding overfitting and realizing

higher performance.

In this step, several techniques are used for data augmen-

tation operations, including rotation transformations, hori-

zontal and vertical flips, and intensity disturbance, which

include disturbances of brightness, sharpness and contrast.

A Gaussian noise processing operation is also applied. Via

the above operations, 12 new diseased images are generated

from each image, as shown in Figure 4.

III. DETECTION MODEL OF APPLE LEAF DISEASES

Inspired by the SSD, a new real-time detection model,

namely, INAR-SSD, is proposed. It consists of two parts,
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FIGURE 4. Data augmentation of apple leaf disease images: (a) Original
image; (b) Low brightness; (c) High brightness; (d) Low contrast; (e) High
contrast; (f) Vertical flip; (g) Horizontal flip; (h) Low sharpness; (i) High
sharpness; (j) Gaussian noise; (k) 90◦ rotation; (l) 180◦ rotation; and
(m) 270◦ rotation.

namely, a basic pre-network and a feature extraction and

fusion structure, as illustrated in Figure 5. To increase

network’s adaptability to various scales of apple leaf dis-

ease spots, conv4_1 and conv4_2 of VGGNet [25] are

replaced with two GoogLeNet Inception modules. Via this

approach, the capability of multi-scale feature extraction can

be improved. The feature extraction and fusion structure is

designed by applying the Rainbow concatenation method to

improve the feature fusion performance. Pooling and decon-

volution are performed simultaneously to create feature maps

among layers so that when the detection is performed, all

the cases are considered, regardless of whether the size of

the object is appropriate for the specified scale or not. This

improved SSD model implements multi-angle feature fusion

by utilizing the Inception module to extract features of vari-

ous sizes and Rainbow concatenation to enhance contextual

connections among layers, with the objective of improving

the detection performance for small apple leaf disease spots.

A. SINGLE-SHOT MULTI-BOX DETECTOR

SSD [24] is a one-stage object detection method that can

predict the types of objects and the coordinates of the corre-

sponding bounding boxes directly, without generating region

proposals. The SSD model combines several feature maps

with various resolutions to process objects of various sizes.

The detection speed of SSD is much faster than that of

Faster R-CNN [28], [29], while the detection accuracies of

the two methods are approximately the same. Thus, the SSD

algorithm is used as the basic object detection algorithm and

improved with multi-angle feature fusion.

B. STRUCTURE OF THE INCEPTION MODULE

The most straightforward way to improve the feature extrac-

tion capability of deep neural networks is to increase the

depth or the width of the model. However, this may result

in two problems: One problem is that a deeper or wider

model typically has more parameters, thereby making the

enlarged network prone to overfitting. The other problem

is a substantial increase in computing resource consump-

tion. To overcome these problems and extract features more

effectively, the Inception module utilizes parallel layers of

various convolution kernel sizes and concatenates their out-

puts at the end of the module to realize the integration of

features and enhance the adaptability of the network to var-

ious scales [30]. Inception has been improved by replacing

a single 5x5 convolution layer with two cascaded 3 × 3

convolution layers [31], which not onlymaintains the range of

perceptive fields but also reduces the number of parameters.

As illustrated in Figure 6, the Inception module consists of

parallel 1×1 convolution layers, 3×3 convolution layers and

two cascaded 3× 3 convolution layers that are beside a max-

pooling layer, which can abstract a vast variety of features

in parallel. In addition, 1 × 1 convolution layers are inserted

before or after the parallel convolution layers to reduce the

number of weights and the feature map dimensions.

Considering the above features of Inception, two Inception

modules, as illustrated in Figure 6, are added to VGG-16

to improve the multi-scale feature extraction ability of the

new network, namely, VGG-INCEP, to solve the problem of

detecting disease spots of various sizes on the same leaf.

C. VGG-INCEP NETWORK MODEL

Since VGGNet [25] is often used for migration learning,

the model is highly portable. In addition, according to the

results that are listed in Table 4, among conventional con-

volution neural networks, VGGNet has a higher accuracy

in identifying apple leaf diseases. Therefore, VGGNet is

selected as the basic pre-network model.

FIGURE 5. Overall structure of INAR-SSD.
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FIGURE 6. Inception module.

TABLE 1. Related parameters of the VGG-INCEP model.

Detailed parameters of the adjusted VGGNet, which is

named the VGG-INCEP network, are listed in Table 1. The

first few layers of a convolutional neural network typically

extract the color and corner features [32], [33] and it is

of little value to utilize Inception to extract these features.

Hence, the Conv1_1 to Pool3 layers of the VGGNet are

preserved and subsequent layers Conv4_1 and Conv4_2 of

VGGNet are replaced with two Inception modules, as dis-

cussed above, to enhance the multi-scale feature extraction

ability of the network. Then, layers Conv4_3 to Pool5 are

set behind the Inception modules without modification. For

Conv6 to Conv8, to overcome the input size limitation of the

network, the full connection layers of VGGNet are replaced

with 1x1 convolution layers. The final layer is a five-way

Softmax layer.

D. RAINBOW CONCATENATION

The original SSD algorithm has two main drawbacks: One

is that the same object can be detected in multiple scales

of feature maps because each layer in the feature pyramid

is used independently as an input to the classifier network.

The other is that the performance of SSD in detecting small

objects is limited. Thus, an algorithm that is dedicated to

solving these two problems, namely, R-SSD, is proposed,

which applies Rainbow concatenation to the SSD algorithm.

FIGURE 7. Three types of feature concatenation. (a) Pooling.
(b) Deconvolution. (c) Both pooling and deconvolution (Rainbow
concatenation).

The methodology of Rainbow concatenation, which is imple-

mented in R-SSD [26], is applied to further improve the

detection accuracy for small objects that correspond to apple

leaf diseases. Figure 7 presents three approaches to increasing

the number of feature maps to take advantage of the relation-

ships among the layers in the feature pyramid. In Figure 7(a),

feature maps in the lower layers are concatenated to those

of the upper layers via pooling, while in Figure 7(b), feature

maps in the upper layers are concatenated to those of the

lower layers via deconvolution. However, using pooling or

deconvolution separately only allows the contextual informa-

tion to flow in one direction. Therefore, in R-SSD, these two

methods are both applied to produce an explicit relationship

of feature maps among layers. By using Rainbow concatena-

tion, the detection precision of small objects is substantially

improved.

IV. EXPERIMENTAL EVALUATION

In this section, the experimental setup is introduced. Then,

details of the experimental platform and benchmarks are

provided. Finally, the experimental results are analyzed and

discussed.

A. EXPERIMENTAL SETUP

This experiment was performed on an Ubuntu server with an

Intel R© Xeon(R) CPU E5-2650 v3 @ 2.30 GHz ×40 that

was accelerated by an NVIDIA GTX1080Ti GPU. NVIDIA

GTX1080Ti has 3,584 CUDA cores and 11 GBmemory. The

core frequency is up to 1480 MHz and the floating-point

performance is 10.5 TFLOPS. The CNN-based model was

implemented in the Caffe deep learning framework. Addi-

tional configuration parameters are listed in Table 2.
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TABLE 2. Hardware and software environment.

TABLE 3. Apple leaf disease dataset.

B. DATASET

The proposed model has been evaluated on the collected

ALDD, which contains images of 5 common apple leaf dis-

eases that were captured in the laboratory and in the field.

By applying an image processing technique, a total of 26,377

disease images were generated. To perform the experiment,

75% of the dataset is used for training and the other 25% for

testing; the ratio of the size of the training dataset to that of the

validation dataset is 4:1. Table 3 lists the numbers of training

sets and testing sets for the apple leaf diseases.

C. EXPERIMENTAL RESULTS AND ANALYSES

1) COMPARISON OF PRE-NETWORK

RECOGNITION ACCURACY

Object detection algorithms such as SSD, DSSD and R-SSD

can be regarded as consisting of two parts: The first part is the

pre-network model, which is used as a basic feature extractor.

The other is an auxiliary structure that utilizes multi-scale

feature maps for detection.

In this section, several deep convolution networks –

AlexNet [34], GoogLeNet [30], InceptionV3 [31],

ResNet-101, ResNet-50, ResNet-34, ResNet-18 [35] and

VGGNet-16 [25] – are trained and tested to compare the

recognition performances of traditional networks with that

of our proposed VGG-INCEP on ALDD. During training,

the stochastic gradient descent (SGD) algorithm is applied to

learn the set of weights and biases of the neural network that

minimize the loss function. The SGD algorithm randomly

selects a small number of training sets, which is referred to

as the batch size. The batch size is set to 32 and the learning

rate is set to 0.001, which is small but leads to more precise

results. To determine how fast the SGD algorithm converges

to the optimum point, the momentum, which serves as an

additional factor, is set to 0.9.

As shown in Figure 8, the accuracy curve is plotted

with the number of training iterations on the X-axis and

the corresponding training accuracy on the Y-axis. In this

comparison experiment, the test accuracies of various pre-

networks are listed in Table 4 and the accuracy curves are

FIGURE 8. Comparison in terms of convergence speed and training
accuracy.

TABLE 4. Test accuracies of nine pre-networks.

plotted in Figure 8. AlexNet, VGGNet-16, GoogLeNet, and

InceprionV3 outperform ResNet. Meanwhile, on the ALDD,

it is not the case that the more layers of the convolutional

neural network, the higher the recognition accuracy. In con-

trast with ResNet-34, ResNet-50 and ResNet-101 [35] con-

tain 50 and 101 layers, respectively, but both networks have

lower convergence speed and recognition accuracy when

applied to ALDD. In addition, by combining VGGNet-16

and InceptionV3, the proposed model, namely, VGG-INCEP,

realizes the top performances in terms of both the final

accuracy and the convergence speed in this comparative

experiment.

2) CONFUSION MATRIX

Classifiers can be confused when faced with multiple classes

of similar shape. Infected apple leaf images at different stages

or against different backgrounds may also lead to high com-

plexity of the patterns that are displayed in the same class,

which results in lower performance. A confusion matrix can

be used to visually estimate the classification accuracy of a

model.

Figure 9 shows the confusionmatrix of the final test results.

The deeper the color in the visualization results, the higher

the prediction accuracy of the model in the corresponding

class. All correct predictions are on the diagonal and all

incorrect predictions are off the diagonal; hence, the classes

have confused the detecting system can be conveniently and

intuitively identified.

Based on these results, the performance of the classifier

can be visually evaluated. These results can also enable us to

study how to better avoid confusion among classes to improve

the performance of the model. According to the analysis of
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FIGURE 9. Confusion matrix of the ALDD recognition results.

the above five diseases, the features of Mosaic and Brown

spot diseases differ substantially from those of other diseases

and reach recognition rates of 99.26% and 98.09%, respec-

tively. According to the confusion matrix, compared with

other classes, the detection is more prone to confusion in dis-

tinguishing Alternaria leaf spot and Grey spot: 27 Alternaria

leaf spot images, out of a total of 1,335 images in the testing

set, were incorrectly identified as Grey spot. This is due to

the similarity in geometric features between the two diseases.

Nevertheless, other classes are well differentiated. The con-

fusion matrix provides an explanation for the low recognition

accuracies on several classes in our experiment.

3) RESULT COMPARISON OF VARIOUS

DETECTION ALGORITHMS

To compare the performances of various detection algo-

rithms, INAR-SSD, Faster R-CNN, SSD and other object

detection algorithms are applied to detect apple leaf diseases.

In the evaluation of the object detection algorithms,

the mean average accuracy (mAP) is the main evaluation

indicator in this paper [36]. With the same input size of

512 × 512, our proposed model reaches 78.80% mAP and

outperforms SSD-VGGNet on all classes, with a higher total

accuracy by 2.98%. At the same time, our model has the

highest accuracy in the detection of two types of diseases:

Alternaria leaf spot and Grey spot.

During the experiment, R-SSD and DSSD [37] are also

applied to evaluate the recognition performances of other

improved versions of SSD onALDD. The results demonstrate

that there have been enhancements in RSSD. Compared to

SSD-VGGNet, with input images of the same size, the two

versions of RSSD-VGGNet improved the total accuracy by

1.74% and 1.72%, respectively. Meanwhile, the performance

of DSSD is barely satisfactory in terms of total accuracy.

However, DSSD has the highest test accuracy for Brown spot

and Rust, while it has almost the lowest test accuracy for all

other classes.

To determinewhether using deeper networks also improves

our performance, two base networks, namely, VGGNet [25]

and ResNet-101 [35], are used as feature extractors for SSD.

The experimental results demonstrate that ResNet-101 does

not result in an improvement; it yields similar results to the

pre-network experiments. Hence, the deep ResNet network

is not suitable for our dataset. The recognition accuracies of

SSD300 and SSD512 decreased by 2.07% and 1.00%, respec-

tively. Using the same feature extractor, namely, VGGNet,

the total accuracy of Faster R-CNN is close to that of SSD

and that of the latter is slightly higher. Furthermore, SSD per-

forms better at distinguishing between Alternaria leaf spot

and Grey spot, while on Mosaic it underperforms Faster

R-CNN in terms of recognition accuracy.

In the experiment, Alternaria leaf spot, Grey spot and

Mosaic are regarded as the most complex classes. This is due

to their large within-class differences: colors can be light or

dark and spots can be large or small for all three diseases.

Moreover, the high similarity between Alternaria leaf spot

and Grey spot renders them more difficult to distinguish.

Meanwhile, the Rust’s recognition accuracy for all models

was stable at approximately 90% because there is little vari-

ation among the lesions’ patterns from rust-infected leaves

and the shape of the lesions differs substantially from those

of other classes and, hence, can be easily distinguished even

by visual observation.

4) DATA AUGMENTATION COMPARISON EXPERIMENTS

To prevent overfitting, in this paper, various methods have

been utilized. First, the diseased apple leaves were captured in

various environments and under various weather conditions.

Most diseased apple images with complex backgrounds were

collected in the apple orchard, while a few other diseased

images with uniform backgrounds were captured in a lab

environment. By selecting various shooting backgrounds,

the generalization of the proposed model can be ensured,

which reduces the occurrence of overfitting. Second, vari-

ous digital image processing technologies such as rotation

transformations, mirror symmetry and intensity disturbance

were applied to the natural training images to simulate the

real acquisition environment and increase the diversity and

quantity of the apple leaf training images, which can prevent

overfitting and improve the generalization performance of the

proposed model during the training process.

FIGURE 10. Influence of the expanded dataset. (a) Training loss. (b) Test
accuracy.

Data augmentation is a satisfactory option when the train-

ing dataset is insufficient or to prevent overfitting to make

the model more robust. This paper performed two sets of

experiments to estimate the performance of the dataset for

the proposed model, which was trained separately before and

after the expansion of the dataset. As shown in Figure 10,
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FIGURE 11. Activation visualization results. (a) Grey spot. (b) Brown spot. (c) Rust. (d) Mosaic. (e) Alternaria leaf spot.

TABLE 5. Test results for various detection models.

without data augmentation, the training process has high

loss and low accuracy and finally reaches 71.89% mAP.

However, the proposed model with data augmentation real-

izes 78.80% mAP, which corresponds to a detection preci-

sion improvement of 6.91% over the dataset without data

augmentation.

5) FEATURE VISUALIZATION PROCESS

The weak explanatory ability of the CNN makes it a ‘‘black

box’’ model. Other factors, such as its multi-layer hidden

structure and massive number of parameters, also defy under-

standing. To determine how CNNs learn features for distin-

guishing among classes, visualization techniques are used to

reveal CNN feature maps. Through this experiment, the dif-

ferences among the feature maps that are extracted from

various diseased apple images can be better understood.

According to the visualization results that are shown

in Figure 11, all the disease spots are clearly separated

from the background images; hence, the proposed model

has excellent discrimination performance for apple leaf dis-

eases. The visualization result for Mosaic that is shown

in Figure 11(d) has substantial differences with those of

other diseases because its lesion diffuses throughout the

whole leaves. Brown spot is typically large and the bound-

aries are not clear, as shown in Figure 11(b). For Rust,

the spots are separated into two laps in Figure 11(c) and

the inner lap is the aecidium. Moreover, in Figure 11(a)

and Figure 11(e), though Grey spot and Alternaria leaf spot

are similar, they can still be classified according to their

differences. Alternaria leaf spot is rounder and smaller than

Grey spot. In this experiment, the activation visualization

results for various apple leaf diseases demonstrate the strong

performance of the proposed model in detecting diseases and

clarify how CNNs learn features for distinguishing among

classes.

6) ACCURACY VS. SPEED

The detection speed is another important indicator of the

object detection algorithm, which has a crucial effect on

real-time detection. In our experiments, Faster R-CNN, SSD,

DSSD, RSSD and our proposed model have been eval-

uated in terms of detection speed. The detailed data are

listed in Table 6. Faster R-CNN has high precision in the

two-stage detection algorithm. However, the running speed

of Faster R-CNN is slow, thereby weakening the real-time

detection performance. The conventional SSD is one of the

most advanced object detection algorithms at present in

terms of both accuracy and speed. For SSD300 or SSD512

with VGGNet as the basic pre-network, the testing results

are 74.33% mAP with 47.35 FPS and 75.82% mAP with

28.95 FPS, respectively. For R-SSD, although its speed

decreased to 37.88 FPS and 23.01 FPS, it realized 1.74% and

1.72% accuracy gains compared to conventional SSD.
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TABLE 6. Accuracy vs speed for various models.

FIGURE 12. Types of detection results. (a) Single object of a single class. (b) Multiple objects of a single class. (c) Multiple
objects of multiple classes.

In the experiments, INAR-SSD realizes 78.80% mAP and

23.13 FPS, which corresponds to 2.98% mAP improvement,

although with a slower speed compared to conventional SSD.

Compared to R-SSD, our proposed algorithm realizes higher

accuracy and faster detection speed.

7) DETECTION VISUALIZATION AND FAILURE ANALYSIS

Images of detection results are shown in Figure 12. The

proposed method can not only detect a single object of

single class but also multiple objects of a single class and

multiple objects of multiple classes, which demonstrates its

formidable detection performance.

Although our method exhibits excellent performance in

this case, detection failures are observed. Figure 13(a) shows

an example of an erroneous identification of Alternaria leaf

spot and Grey spot. According to the confusion matrix, these

two diseases are easily confused, which leads to a low recog-

nition accuracy for both of them. The accuracy reduction
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FIGURE 13. Incorrect detection: (a) Identifying an Alternaria leaf spot as a Grey spot; (b) Identifying background as Mosaic; (c) Identifying
background as Rust; (d) Identifying nothing when there is a Grey spot object.

is due to the similar characteristics of the diseases. The

recognition accuracy is also affected by environmental factors

such as complex background, lighting, and blur. As shown

in Figure 13(b), due to the dark background and overly clear

leaf meridians, the background is mistaken for Mosaic by the

detection algorithm.Moreover, as a result of the bright orange

color of Rust, a piece of the background is recognized as Rust

in Figure 13(c). In addition, the lesion’s small size is one of

the factors that leads to an increase in detection failures. If the

leaf or the diseased area occupies only a tiny proportion of

the image, the extraction and detection of the feature will be

difficult. As shown in Figure 13(d), the detection algorithm

cannot identify an extremely small object as a Grey spot.

V. RELATED WORK

Plant diseases are a major threat to plant growth and crop

yield and many researchers have expended substantial efforts

on detecting plant diseases. Traditionally, visual examination

by experts has been carried out to diagnose plant diseases

and biological examination is the second option, if necessary.

In recent years, through the development of computer tech-

nology, machine learning has been widely utilized to train

and detect plant diseases and is a satisfactory alternative for

the detection of plant diseases.

In [5], Zhang et al. proposed an apple leaf disease recog-

nition method that is based on image processing techniques

and pattern recognition methods. In the experiment, on an

image database of diseased apple leaves that contained 90 dis-

ease images (including classes: healthy apple leaf, pow-

dery mildew leaf, mosaic leaf and rust leaf), this approach

realized a recognition accuracy of more than 90%. In [8],

Bashish et al. provided a fast, automatic, cheap and accu-

rate image-based solution for the identification of leaf dis-

eases. The proposed solution is composed of four main

phases: a color transformation structure, image segmenta-

tion via the K-means clustering technique, calculation of

the texture features and, finally, a pre-trained neural net-

work for transmitting the extracted features. The experimen-

tal results demonstrated that the scheme could successfully

detect and classify diseases with an accuracy rate of approx-

imately 93%. In [38], Waghmare et al. proposed a method

for identifying plant diseases via leaf texture analysis and

pattern recognition. The system took a plant image as an input

and the segmented leaf image was analyzed by using a high-

pass filter to detect the diseased part of the leaf. In the exper-

imental part, common downy mildew, black rot and other

diseases of grape plants were classified systematically and the

accuracy rate was 96.6%. In [6], Arivazhagan et al. proposed

an algorithm for classifying plant leaf diseases according

to texture features. In the processing scheme, images were

subjected to a color conversion structure and a segmenta-

tion mechanism. Finally, the extracted features were passed

through a support vector machine classifier. The algorithm

effectively detected and classified the examined diseases with

an accuracy of 94%. However, traditional machine learning

approaches require complicated image preprocessing, feature

extraction and classification steps [39], [40]; it is easier to

realize higher accuracy by using a deep learning approach that

is based on convolution neural networks.

In recent years, several researchers have studied plant dis-

ease recognition based on deep learning approaches. In [18],

Mohanty et al. trained a deep convolutional neural network

to identify 14 crop species and 26 diseases using a pub-

lic dataset of 54,306 images. The trained model realized

an accuracy of 99.35%. When tested on a set of images

from online sources instead of the images that were used

for training, the model still realized an accuracy of 31.4%.

In [41], Ferentinos trained multiple CNN architectures, such

as AlexNet, VGG and GoogLeNet, using an open database

that contained 58 combinations of plants or diseases. The

experimental results demonstrated that the most successful

model architecture was the VGG convolution neural network,

which realized a success rate of 99.53%. In [22], Liu et al.

designed a new architecture of deep convolutional neural

networks that was based on AlexNet for detecting apple leaf

diseases. On a dataset that contained Mosaic, Rust, Brown

spot, and Alternaria leaf spot, a recognition accuracy of

97.62% was realized. In [42], Ramcharan et al. applied trans-

fer learning to train CNNs to identify three diseases and two

types of pest damage and the best model realized an overall

accuracy of 93%. The main drawback of these studies is the

use of image recognition technology that can only identify a

single object at a time. Moreover, the requirements for real-

time monitoring of multiple diseases in a complex context
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have been ignored, which are of significance for practical

applications.

Therefore, researchers have begun to study the applica-

tion of object detection to plant disease detection. In [43],

Johannes et al. proposed a novel image processing algo-

rithm that is based on candidate hot-spot detection and

detected three European endemic wheat diseases– septoria,

rust and tan spot. The results revealed area under the receiver

operating characteristic–ROC–curve (AuC) metrics of higher

than 0.80. In [19], Fuentes et al. proposed a deep learning

method for detecting tomato pests and diseases. A compar-

ative experiment was conducted in which three networks,

namely, faster R-CNN, SSD and R-FCN, were used to detect

9 tomato diseases. The experimental results demonstrate that

this method can effectively detect tomato diseases and can

handle complex backgrounds. In [20], Lu et al. proposed

an on-site automatic diagnosis system for wheat diseases

that is based on a weak supervised deep learning frame-

work. They also collected a new image dataset for wheat

diseases, namely, WDD2017, which was used to evaluate the

performance of the system. Using two architectures, namely,

VGG-FCN-VD16 and VGG-FCN-S, the average recognition

accuracy reached 97.95% and 95.12%, respectively, and the

recognition accuracy was higher than those of the traditional

CNN architectures.

According to these studies, convolution neural networks

have been used extensively in the field of crop disease iden-

tification and satisfactory results have been obtained. How-

ever, object detection has not been applied to the real-time

monitoring of apple leaf diseases, which is of high practical

value for agricultural applications. Another shortcoming is

that the application-oriented object detection algorithm is

seldom improved. Therefore, in our work, an object detection

model for the detection of apple leaf diseases is proposed.

VI. CONCLUSION

This paper has proposed a real-time detection approach that

is based on improved convolutional neural networks for

apple leaf diseases. The deep-learning-based approach can

automatically extract the discriminative features of the dis-

eased apple images and detect the five common types of

apple leaf diseases with high accuracy in real time. In this

study, to ensure satisfactory generalization performance of

the proposed model and a sufficient apple disease image

dataset, a total of 26,377 images with uniform and complex

backgrounds were collected in the laboratory and in a real

apple field and generated via data augmentation technol-

ogy. Furthermore, the new deep convolution neural network

model, namely, INAR-SSD, was designed by introducing

the GoogLeNet Inception module and integrating the Rain-

bow concatenation to enhance the multi-scale disease object

detection and small diseased object detection performances.

The new deep-learning-based approach was implemented

in the Caffe framework on the GPU platform. Using a dataset

of 26,377 images of diseased leaves, the proposed model,

namely, INAR-SSD, was trained to detect apple leaf diseases.

The comprehensive detection performance reaches

78.80% mAP. Meanwhile, the detection speed of the model

reaches 23.13 FPS. Hence, the proposed model is fully

capable of real-time detection of apple leaf diseases. The

results demonstrate that the proposed INAR-SSD model can

detect the five common types of apple leaf diseases with high

accuracy in real time and provides a feasible solution for the

real-time detection of apple leaf diseases.

REFERENCES

[1] M. Dutot, L. M. Nelson, and R. C. Tyson, ‘‘Predicting the spread of

postharvest disease in stored fruit, with application to apples,’’ Postharvest

Biol. Technol., vol. 85, pp. 45–56, Nov. 2013.

[2] A.-K. Mahlein et al., ‘‘Development of spectral indices for detecting and

identifying plant diseases,’’ Remote Sens. Environ., vol. 128, pp. 21–30,

Jan. 2013.

[3] L. Yuan, Y. Huang, R. W. Loraamm, C. Nie, J. Wang, and J. Zhang,

‘‘Spectral analysis of winter wheat leaves for detection and differentiation

of diseases and insects,’’ Field Crops Res., vol. 156, no. 2, pp. 199–207,

Feb. 2014.

[4] F. Qin, D. Liu, B. Sun, L. Ruan, Z. Ma, and H. Wang, ‘‘Identification

of alfalfa leaf diseases using image recognition technology,’’ PLoS ONE,

vol. 11, no. 12, 2016, Art. no. e0168274.

[5] Z. Chuanlei, Z. Shanwen, Y. Jucheng, S. Yancui, and C. Jia, ‘‘Apple leaf

disease identification using genetic algorithm and correlation based feature

selection method,’’ Int. J. Agricult. Biol. Eng., vol. 10, no. 2, pp. 74–83,

2017.

[6] S. Arivazhagan, R. N. Shebiah, S. Ananthi, and S. V. Varthini, ‘‘Detec-

tion of unhealthy region of plant leaves and classification of plant leaf

diseases using texture features,’’ Agricult. Eng. Int., CIGR J., vol. 15, no. 1,

pp. 211–217, 2013.

[7] S. B. Dhaygude and N. P. Kumbhar, ‘‘Agricultural plant leaf disease detec-

tion using image processing,’’ Int. J. Adv. Res. Elect., Electron. Instrum.

Eng., vol. 2, no. 1, pp. 599–602, 2013.

[8] D. Al Bashish, M. Braik, and S. Bani-Ahmad, ‘‘Detection and classi-

fication of leaf diseases using k-means-based segmentation and neural-

networks-based classification,’’ Inf. Technol. J., vol. 10, no. 2, pp. 267–275,

2011.

[9] P. Rajan, B. Radhakrishnan, and L. P. Suresh, ‘‘Detection and classification

of pests from crop images using support vector machine,’’ in Proc. Int.

Conf. Emerg. Technol. Trends, Oct. 2017, pp. 1–6.

[10] T. Rumpf, A.-K. Mahlein, U. Steiner, E.-C. Oerke, H.-W. Dehne, and

L. Plümer, ‘‘Early detection and classification of plant diseases with

support vector machines based on hyperspectral reflectance,’’ Comput.

Electron. Agricult., vol. 74, no. 1, pp. 91–99, 2010.

[11] M. Islam, A. Dinh, K. Wahid, and P. Bhowmik, ‘‘Detection of potato dis-

eases using image segmentation and multiclass support vector machine,’’

in Proc. IEEE 30th Can. Conf. Elect. Comput. Eng., Apr./May 2017,

pp. 1–4.

[12] C. Wu, C. Luo, N. Xiong, W. Zhang, and T. Kim, ‘‘A greedy deep

learning method for medical disease analysis,’’ IEEE Access, vol. 6,

pp. 20021–20030, 2018.

[13] H. Lu, Y. Li, M. Chen, H. Kim, and S. Serikawa, ‘‘Brain intelligence:

Go beyond artificial intelligence,’’ Mobile Netw. Appl., vol. 23, no. 2,

pp. 368–375, Apr. 2018.

[14] J. Li, N.Wang, Z.-H.Wang, H. Li, C.-C. Chang, and H.Wang, ‘‘New secret

sharing scheme based on faster R-CNNs image retrieval,’’ IEEE Access,

vol. 6, pp. 49348–49357, 2018.

[15] A. Caglayan and A. B. Can, ‘‘Volumetric object recognition using 3-D

CNNs on depth data,’’ IEEE Access, vol. 6, pp. 20058–20066, 2018.

[16] H. Lu, Y. Li, T. Uemura, H. Kim, and S. Serikawa, ‘‘Low illumination

underwater light field images reconstruction using deep convolutional

neural networks,’’ Future Gener. Comput. Syst., vol. 82, pp. 142–148,

May 2018.

[17] C. DeChant et al., ‘‘Automated identification of northern leaf blight-

infected maize plants from field imagery using deep learning,’’ Phy-

topathology, vol. 107, no. 11, pp. 1426–1432, 2017.

[18] S. P. Mohanty, D. P. Hughes, and M. Salathé, ‘‘Using deep learning for

image-based plant disease detection,’’ Frontiers Plant Sci., vol. 7, p. 1419,

Sep. 2016.

VOLUME 7, 2019 59079



P. Jiang et al.: Real-Time Detection of Apple Leaf Diseases Using Deep-Learning Approach Based on Improved CNNs

[19] A. Fuentes, S. Yoon, S. C. Kim, and D. S. Park, ‘‘A robust deep-learning-

based detector for real-time tomato plant diseases and pests recognition,’’

Sensors, vol. 17, no. 9, p. 2022, 2017.

[20] J. Lu, J. Hu, G. Zhao, F. Mei, and C. Zhang, ‘‘An in-field automatic

wheat disease diagnosis system,’’ Comput. Electron. Agricult., vol. 142,

pp. 369–379, Nov. 2017.

[21] Y. Lu, S. Yi, N. Zeng, Y. Liu, and Y. Zhang, ‘‘Identification of Rice diseases

using deep convolutional neural networks,’’ Neurocomputing, vol. 267,

pp. 378–384, Dec. 2017.

[22] B. Liu, Y. Zhang, D. J. He, and Y. Li, ‘‘Identification of apple leaf diseases

based on deep convolutional neural networks,’’ Symmetry, vol. 10, no. 1,

pp. 1–16, 2017.

[23] X. Zhang, Y. Qiao, F. Meng, C. Fan, and M. Zhang, ‘‘Identification of

maize leaf diseases using improved deep convolutional neural networks,’’

IEEE Access, vol. 6, pp. 30370–30377, 2018.

[24] W. Liu et al., ‘‘SSD: Single shot multibox detector,’’ in Proc. Eur. Conf.

Comput. Vis., 2016, pp. 21–37.

[25] K. Simonyan and A. Zisserman. (2014). ‘‘Very deep convolutional net-

works for large-scale image recognition.’’ [Online]. Available: https://

arxiv.org/abs/1409.1556

[26] J. Jeong, H. Park, and N. Kwak. (2017). ‘‘Enhancement of SSD by

concatenating feature maps for object detection.’’ [Online]. Available:

https://arxiv.org/abs/1705.09587

[27] S. Heisel and T. Kovačević, ‘‘Variable selection and training set design

for particle classification using a linear and a non-linear classifier,’’ Chem.

Eng. Sci., vol. 173, pp. 131–144, Dec. 2017.

[28] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-

time object detection with region proposal networks,’’ IEEE Trans. Pattern

Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017.

[29] H. Lu et al. (2019). ‘‘CONet: A cognitive ocean network.’’ [Online].

Available: https://arxiv.org/abs/1901.06253

[30] C. Szegedy et al., ‘‘Going deeper with convolutions,’’ in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit., Jun. 2015, pp. 1–9.

[31] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, ‘‘Rethinking

the inception architecture for computer vision,’’ in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit., Jun. 2016, pp. 2818–2826.

[32] M. D. Zeiler and R. Fergus, ‘‘Visualizing and understanding convolutional

networks,’’ in Proc. Eur. Conf. Comput. Vis., 2014, pp. 818–833.

[33] H. Lu et al., ‘‘Wound intensity correction and segmentation with convo-

lutional neural networks,’’ Concurrency Comput., Pract. Exper., vol. 29,

no. 6, 2017, Art. no. e3927.

[34] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification

with deep convolutional neural networks,’’ in Proc. 25th Int. Conf. Neural

Inf. Process. Syst., 2012, pp. 1097–1105.

[35] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for

image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,

Jun. 2016, pp. 770–778.

[36] M. Everingham, L. VanGool, C. K. I.Williams, J.Winn, andA. Zisserman,

‘‘The Pascal visual object classes (VOC) challenge,’’ Int. J. Comput. Vis.,

vol. 88, no. 2, pp. 303–338, Sep. 2009.

[37] C. Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg. (2017). ‘‘DSSD:

Deconvolutional single shot detector.’’ [Online]. Available: https://arxiv.

org/abs/1701.06659

[38] H.Waghmare, R. Kokare, and Y. Dandawate, ‘‘Detection and classification

of diseases of grape plant using opposite colour local binary pattern feature

andmachine learning for automated decision support system,’’ in Proc. 3rd

Int. Conf. Signal Process. Integr. Netw., Feb. 2016, pp. 513–518.

[39] M. Kulin, T. Kazaz, I. Moerman, and E. De Poorter, ‘‘End-to-end learn-

ing from spectrum data: A deep learning approach for wireless signal

identification in spectrum monitoring applications,’’ IEEE Access, vol. 6,

pp. 18484–18501, 2018.

[40] Y. Zhang, R. Gravina, H. Lu, M. Villari, and G. Fortino, ‘‘Pea: Paral-

lel electrocardiogram-based authentication for smart healthcare systems,’’

J. Netw. Comput. Appl., vol. 117, pp. 10–16, Sep. 2018.

[41] K. P. Ferentinos, ‘‘Deep learning models for plant disease detection

and diagnosis,’’ Comput. Electron. Agricult., vol. 145, pp. 311–318,

Feb. 2018.

[42] A. Ramcharan, K. Baranowski, P. McCloskey, B. Ahmed, J. Legg, and

D. P. Hughes, ‘‘Deep learning for image-based cassava disease detection,’’

Frontiers Plant Sci., vol. 8, p. 1852, Oct. 2017.

[43] A. Johannes et al., ‘‘Automatic plant disease diagnosis using mobile cap-

ture devices, applied on a wheat use case,’’ Comput. Electron. Agricult.,

vol. 138, pp. 200–209, Jun. 2017.

PENG JIANG was born in Zhejiang, in 1997.

He is currently pursuing the B.S. degree in elec-

tronic commerce fromNorthwest A&FUniversity,

China. His research interests include computer

vision, object detection, and deep learning.

YUEHAN CHEN was born in Guangdong,

in 1997. He is currently pursuing the B.S. degree

in electronic commerce from Northwest A&F

University, China. His research interests include

deep learning and computer vision.

BIN LIU was born in Shaanxi, in 1981.

He received the B.S. degree in computer science

and technology from the Shaanxi University of

Science and Technology, China, in 2004, theM.Sc.

degree in technology with a major in parallel

computing and cloud computing from Yunnan

University, China, in 2010, and the Ph.D. degree in

electronic and information engineering fromXi’an

Jiaotong University, China, in 2014.

Since 2018, he has been an Associate Professor

with the College of Information Engineering, Northwest A&F University,

China, where he is currently a Postdoctoral Fellow with the College of

Mechanical and Electronic Engineering. His research interests include deep

learning and computer vision. He currently serves as a Reviewer for the

IEEE ACCESS, the IEEE TRANSACTIONS ON COMPUTERS, and The Journal of

Supercomputing, among other journals.

DONGJIAN HE received the B.E., M.E., and

D.E. degrees in agricultural engineering from

Northwest A&F University, in 1982, 1985,

and 1998, respectively. He was a Lecturer with

the College of Mechanical and Electronic Engi-

neering, Northwest A&F University, from 1987

to 1992, and an Associate Professor, from 1992

to 1999, where he is currently a Professor. His

research interests include computer graphics,

image analysis, and machine vision. He is a mem-

ber of the China Computer Federation, the Chairman of the Shaanxi Society

of Image and Graphics, the Vice Chairman of the Electrical Information

and Automation Committee of CSAE, and a member of the Council of the

Chinese Society for Agricultural Machinery.

CHUNQUAN LIANG received the B.S. degree in

computer science and technology and the M.S.

degree in computer software and theory from

Northwestern Polytechnical University, China,

in 2003 and 2006, respectively, and the Ph.D.

degree in technology of computer application from

Northwest A&F University, in 2014. From 2006

to 2014, he was a Lecturer with the College of

Information Engineering, Northwest A&FUniver-

sity. In 2015, he was with the Database Manage-

ment Group, UNSW, Australia, as an Visiting Academic. Since 2016, he has

been an Associate Professor with the College of Information Engineering,

Northwest A&F University. He has published many papers in journals and

conferences. His research interests include database management and data

mining, massive data analysis, and uncertain data mining.

59080 VOLUME 7, 2019


	INTRODUCTION
	GENERATING THE APPLE LEAF DISEASE DATASET
	OVERVIEW
	APPLE LEAF DISEASE DATASET (ALDD)
	DATA COLLECTION
	IMAGE ANNOTATION
	DATA AUGMENTATION


	DETECTION MODEL OF APPLE LEAF DISEASES
	SINGLE-SHOT MULTI-BOX DETECTOR
	STRUCTURE OF THE INCEPTION MODULE
	VGG-INCEP NETWORK MODEL
	RAINBOW CONCATENATION

	EXPERIMENTAL EVALUATION
	EXPERIMENTAL SETUP
	DATASET
	EXPERIMENTAL RESULTS AND ANALYSES
	COMPARISON OF PRE-NETWORK RECOGNITION ACCURACY
	CONFUSION MATRIX
	RESULT COMPARISON OF VARIOUS DETECTION ALGORITHMS
	DATA AUGMENTATION COMPARISON EXPERIMENTS
	FEATURE VISUALIZATION PROCESS
	ACCURACY VS. SPEED
	DETECTION VISUALIZATION AND FAILURE ANALYSIS


	RELATED WORK
	CONCLUSION
	REFERENCES
	Biographies
	PENG JIANG
	YUEHAN CHEN
	BIN LIU
	DONGJIAN HE
	CHUNQUAN LIANG


