
Real time detection of cache-based side-channel attacks using

Hardware Performance Counters

Marco Chiappetta
Faculty of Engineering and

Natural Sciences

Sabanci University

Istanbul, Turkey

Email: marcoc@sabanciuniv.edu

Erkay Savas
Faculty of Engineering and

Natural Sciences

Sabanci University

Istanbul, Turkey

Email: erkays@sabanciuniv.edu

Cemal Yilmaz
Faculty of Engineering and

Natural Sciences

Sabanci University

Istanbul, Turkey

Email: cyilmaz@sabanciuniv.edu

Abstract—In this paper we analyze three methods to detect

cache-based side-channel attacks in real time, preventing or

limiting the amount of leaked information. Two of the three

methods are based on machine learning techniques and all the

three of them can successfully detect an attacker in about one

fifth of the time required to complete the attack. There were

no false positives in our test environment. Moreover we could

not measure a change in the execution time of the processes

involved in the attack, meaning there is no perceivable over-

head. We also analyze how the detection systems behave with

a modified version of one of the spy processes. With some

optimization we are confident these systems can be used in

real world scenarios.

1. Introduction

Side-channel attacks are a particular class of attacks,
usually targeting cryptographic algorithms, which do not
exploit a flaw in the design of the algorithms themselves
but rather in their implementation.

Cache-based side-channel attacks represent a subset
whose purpose is to retrieve sensitive information from
a system just by exploiting the shared cache memory in
modern CPUs [1]. Moreover such attacks can be conducted
between virtually isolated environments such as virtual ma-
chines or Linux containers.

As described in the next section a class of cache-based
attacks rely on the presence of a userland assembly in-
struction to partially or fully manipulate the state of the
shared cache (in the case of Intel CPUs the instruction is
CLFLUSH) and the presence of a feature, such as KSM [2]
or TPS [3], which allows processes to share identical pages
in memory.

To prevent such attacks between processes or virtual ma-
chines we would either need to switch to a CPU architecture
that prevents the usage of the aforementioned instruction
or to disable any memory optimization feature. In the first
case it would be necessary to recompile any incompatible
program for the new architecture (e.g. ARM) while in the
second case there would be a loss of performance given by

the fact that processes would be unable to share identical
pages, therefore increasing memory consumption.

With regard to virtual machines another problem is colo-
cation. That is, to carry out the attack it is necessary that the
attacker’s virtual machine and the victim’s virtual machine
run on the same physical hardware, therefore sharing the
main memory and the cache. Such problem was partially
solved by Ristenpart et al. [4] who were able to colocate
two virtual machines on the Amazon EC2 cloud computing
service with a probability of 40%.

The first practical implementation of a cache-based at-
tack was presented by Tsunoo et al. in [5] and targeted the
DES algorithm. In [6] Osvik et al. devised two techniques
(EVICT+PRIME and the more efficient PRIME+PROBE)
to attack AES by evicting everything in the cache and
measuring the time for an encryption. More recent cache
attacks include [7], by Yarom and Falkner, that uses the
FLUSH+RELOAD technique to retrieve the private exponent
used in GNU Privacy Guard (GPG)’s implementation of
RSA, [8] by Yarom and Benger where the same technique
is used against the ECDSA implementation in OpenSSL

and [9], by Irazoqui et al., and [10], by Gulmezoglu et al.,
where FLUSH+RELOAD is used to detect the key used in
the last round of an AES encryption.

The problem we address is to detect such attacks in
time, before they are complete, to be able take the proper
countermeasures, i.e. to kill the suspicious process, in a
same-OS scenario, or relocate the virtual machine, in a
cross-VM scenario.

In this paper we present three methods, of which two
are based on machine learning techniques, that can be
combined or used separately to detect cache-based side-
channel attacks at runtime, with a particular focus on those
using the FLUSH+RELOAD technique [7]. Our methods
do not require any modification to the operating system and
run as normal user-level processes. The only requirement
is the availability of hardware performance counters, quite
common on most modern CPUs [20].

The paper is organized as follows: in Section 2 we
present necessary background information on cache-based
side-channel attacks and hardware performance counters

followed by an analysis of three attacks against RSA, AES
and ECDSA. In Section 3 we describe our methods and
their advantages and shortcomings. In Section 4 we show
our results and how it is possible to detect an attack in time
to take the proper countermeasures; we did not experience
any change in the execution time of the processes involved
in the attack both while and while not using our detection
methods showing that our tools are able to detect an attack
with virtually no overhead. Section 5 presents an improved
version of one of the attacks that is able to deceive the
first (and simplest) detection method while still being able
to complete an attack, although in more time. We believe
this might trigger interest in further research on how to
deceive, and therefore improve, detection systems for this
kind of attacks. Sections 6 and 7 present a discussion about
our results, and their implications, and the feasibility of
employing such detection systems in real world scenarios.

2. Background

2.1. Cache-based side-channel attacks

Numerous attacks based on shared hardware and soft-
ware resources have been carried in the past.

Recently those based on CPU’s cache memory turned
out to be very effective, easy to implement and fast. This pa-
per focuses on a particular class of cache-based side-channel
attacks that utilize a technique named FLUSH+RELOAD
[7].

The entities involved in this attack are usually two pro-
cesses: a victim and a spy. The victim performs some kind
of cryptographic operation (i.e. encryption, decryption or
signature) where some secret data, likely a key, is being used
while the spy attempts to capture such data by analyzing the
victim’s behavior.

The success of the attack mainly depends on three
factors: the ability of the spy to synchronize with the vic-
tim (that is, start the attack as soon as the cryptographic
operation starts), the presence of a user-level instruction to
evict a specific area of the CPU’s cache and the presence
of mechanisms like Transparent Page Sharing (TPS) [3] or
Kernel Same-page Merging (KSM) [2].

KSM was implemented for the first time in Linux
2.6.32 as a technique to augment memory density and it
is enabled by default. It allows processes to transparently
share identical pages by mapping addresses which belong
to different virtual addresses to the same physical address.
Two downsides of KSM are the high CPU load needed to
regularly run the merging process [12] and the fact that it
makes attacks like FLUSH+RELOAD feasible.

TPS is, instead, a proprietary technology of VMWare
whose purpose is to make virtual machines share identical
pages with the hypervisor taking care of looking for and
merging them. The feature is enabled by default in both
their cloud and desktop solutions until the latest version
(6.0 at the time of writing) [13] where it has to be manually
enabled because of security concerns [14].

Since two merged pages are mapped to the same physi-
cal address, in the main memory, different processes that try
to retrieve a shared page cause the MMU to access the same
physical address. Furthermore the cache is mapped onto the
same address space and content that is evicted from it will
be evicted for all processes that share it in the main memory.

Another important requirement for the attack to be
feasible is the existence of a user level instruction that
allows to evict a specific address from the CPU’s cache.
On most modern Intel processors (mainly Core i3, i5, i7 and
Xeon) such instruction exists under the assembly mnemonic
CLFLUSH [15].

Calling CLFLUSH with a single address causes the
whole cache line, which includes the content from that
address, to be evicted. Furthermore, on Intel CPUs, cache
levels form an inclusive hierarchy: the L3 cache includes
the L2 cache content and the L2 cache includes the L1
cache content. For this reason evicting a line from the LLC
(L3) propagates the eviction to the lower levels as well. The
algorithm roughly works as in Example 1.

Example 1. Algorithm for a generic FLUSH+RELOAD
attack.

Assume 0xABC to be a physical address in a page

shared by the spy and the victim.

Repeat until victim terminates:

1. Victim accesses 0xABC.

2. Spy evicts 0xABC from the LLC and sleeps

for a few clock cycles (to be determined

according to the victim process).

3. Victim may or may not access 0xABC.

4. Spy loads 0xABC and keeps track of how

long it takes.

5. If it takes longer than a specific threshold

it means the victim did not access 0xABC and

therefore it was not in the cache.

Else the victim accessed 0xABC and it was

put in cache.

The original FLUSH+RELOAD attack [7], by Yarom et
al., focused on guessing which instructions are being exe-
cuted by the victim. In fact, by knowing which instructions
are or are not executed while performing a cryptographic
operation it is often possible to retrieve information that can
be used to reconstruct the secret used during the process,
such as encryption keys.

In particular the first attack of this kind was used to de-
termine the bits of the key used in GPG when performing a
decryption with RSA, thanks to a vulnerable implementation
of the square multiply algorithm.

To address the concern that this attack would only
work on non-constant-time implementations (that is, im-
plementations whose execution time highly depends on the
input, especially sensitive input like encryption keys, that
determine which instructions are executed) a second version
of the attack was released, this time aimed at breaking
the supposedly robust implementation of the point scalar
multiplication algorithm based on the Montgomery ladder
used in OpenSSL’s ECDSA [8].

A variant of such technique [9], i.e. the third type of
attack, by Irazoqui et al. was able to retrieve all the key
bits by observing a few seconds to a minute worth of AES
encryptions or decryptions, although the amount of time
required to complete an attack makes it more prone to be
detected as demonstrated by our experiments.

In our work we aimed at detecting the second and third
types of attack, the first being a simpler version of the
second.

2.2. Attacking RSA

While performing a signature or a decryption with RSA
there is the need to compute mdmodn where m is the
plaintext, d is the private exponent and n is the product of
two large prime. One algorithm to perform such computation
is square multiply, also known as binary exponentiation,
described in Algorithm 1.

Algorithm 1 Square multiply

1: procedure SQUARE-MULTIPLY(m, d, n)
2: x = 1
3: for i in bin(d) do
4: x = x2

5: x = x mod n
6: if i == 1 then
7: x = x ∗m
8: x = x mod n
9: end if

10: end for
11: return x
12: end procedure

Given the non-constant time nature of the algorithm
its implementations are vulnerable to different kinds of
side-channel attacks, including those based on timing and
power analysis [16]. In particular the operations performed
according to the value of each bit leak valuable information
that can be used to reconstruct them.

In [7] Yarom et al. exploited the implementation of
the square multiply algorithm inside GNU Privacy Guard
(GPG). By reverse engineering the OpenSSL binary it is
possible to retrieve the memory addresses of lines 7 or 8,
from Algorithm 1, in the GPG binary and use them to carry
the attack described in Algorithm 2.

The attack briefly works as follows: the spy starts exe-
cuting a loop in which it first flushes the targeted address,
in line 4, then waits an empirically determined number
of cycles before reloading the address, in line 6. When
the spy reloads the address there exist two possibilities
corresponding to the two branches of the conditional at line
7: if the victim accessed its content the loading time will
be lower than a predefined threshold, which means the bit
was likely 1, otherwise it will be higher, which means the
bit was likely 0.

In [7] the authors reported that, on average, the percent-
age of the private exponent’s bits that can be recovered is

Algorithm 2 FLUSH+RELOAD attack on RSA

1: procedure FLUSH-RELOAD-RSA(addr)
2: bits = []
3: while True do
4: flush(addr)
5: sleep(ncycles) ⊲ ncycles empirical value
6: t = reload(addr) ⊲ t1 = time
7: if t1 < threshold then
8: bits.append(1)
9: else

10: bits.append(0)
11: end if
12: end while
13: return bits
14: end procedure

96.7% with a worst case of 90%, in a cross-VM scenario,
and 98.7% with a worst case of 95% on the same operating
system.

2.3. Attacking AES

Irazoqui et al. devised an algorithm to fully recover the
scheduled key used in the last round of AES in a matter of
seconds to minutes [9]. Their algorithm is a variant of the
more generic FLUSH+RELOAD that focuses on guessing
which values of the AES lookup tables were accessed and
uses this information to reconstruct the key.

The lookup tables in AES allow to speed up the Sub-
Bytes, ShiftRows and, except for the last round, Mix-
Columns steps turning them into a single lookup operation
plus a XOR operation to obtain the final ciphertext. In a
byte-oriented implementation of AES the i-th ciphertext byte
is therefore produced as follows:

Ci = T [Si] XOR Ki.

where T is the lookup table, Si is the i-th byte of the
current state, used as an index for T , and Ki is the i-th byte
of the key.

C00 = 0x35, 0x87, 0x65,0xfa
C01 = 0x21, 0x10,0xfa, 0x61
C02 = 0xfa, 0xa1, 0xa9, 0x45
C03 = 0x01,0xfa, 0xc4, 0xf5

Figure 1. Combinations of ciphertext and T-table bytes that highlight the
last round’s key used in AES, 0xfa in this case.

Without loss of generality let us analyze the first table
T0. For AES-128 each table entry holds 4 bytes, hence
T0 = {T00, T01, T02, T03}. Therefore it can produce 4
possible values for the first byte of the ciphertext, hence
C0 = {C00, C01, C02, C03}. By performing a XOR opera-
tion between all possible pairs of Tij and Cij we obtain
4 sets of 4 bytes each. These 4 sets will have a value in
common, as shown in Figure 1, which will be the value of
the first byte of the round key.

Assuming a cache line holds all 4 bytes of T0 we can
monitor such line and check whether the table was accessed,
in which case we can perform the aforementioned operations
to discover the key.

2.4. Attacking ECDSA

A message signed with ECDSA consists of a triple
(m, r, s) where m is the message and r and s are computed
as in Algorithm 3. We assume a group of order n and that G
is a generator of such group. Specifically the curve used in
the attack is sect571r1 whose parameters are described
in [17].

The ephemeral key k used in the signature algorithm
can be exploited to retrieve the private key d since d =
(sk − z)r−1 and s, z and r are known (see Algorithm 3).

Attacking an implementation of the signature algorithm
means, indeed, attacking the step where the point (x, y)
is computed, as shown in Step 4 of Algorithm 3. In fact
the implementation of the point multiplication algorithm
used for the computation can lead to some data leakage
that provides information for an attacker to reconstruct the
ephemeral key.

Algorithm 3 ECDSA signature

1: procedure SIGNMESSAGE(m,G) ⊲ m = message
2: z = truncate(hash(m), Ln)
3: k = random(1, n− 1)
4: (x, y) = k ∗G ⊲ G = generator
5: r = x mod n
6: s = k−1 ∗ (z + r ∗ d) mod n ⊲ d = private key
7: return (m, r, s)
8: end procedure

A simple implementation of the point multiplication
algorithm, called double-and-add, is provided in Algorithm
4. Such implementation could be exploited with the same
process shown in the previous section.

Algorithm 4 Double-and-add point scalar multiplication

1: procedure DOUBLE-AND-ADD(k, P)
2: Q = P
3: for i in bin(k) do
4: double(Q) ⊲ Q = 2Q
5: if i == 0 then
6: add(Q,P) ⊲ Q = Q+ P
7: end if
8: end for
9: return Q

10: end procedure

In fact it can be noticed that by using a simple attack
based on FLUSH+RELOAD we can guess when a bit is 0 or
1 by monitoring the cache line corresponding to the function
called at Step 6 in Algorithm 4. Whenever the bit is 0 the
line will be loaded in cache by the victim and the loading
time in the spy will be shorter otherwise it is be fair to
assume the bit is 1.

To avoid this kind of attacks OpenSSL uses a different
implementation based on the Montgomery ladder [18]. Al-
gorithm 5 provides an example. The Montgomery ladder
relies on the same functions being called regardless of
whether the bit is clear or set. The only change between
the two cases is in the order of the arguments passed to the
functions.

Algorithm 5 Montgomery ladder point scalar mulitplication

1: procedure MONTGOMERY-LADDER(k, P)
2: R0 = 0
3: R1 = P
4: for i in bin(k) do
5: if i == 0 then
6: add(R1, R0) ⊲ R1 = R0 +R1

7: double(R0) ⊲ R0 = 2R0

8: else
9: add(R0, R1) ⊲ R1 = R0 +R1

10: double(R1) ⊲ R1 = 2R1

11: end if
12: end for
13: return R0

14: end procedure

OpenSSL’s implementation was broken by Yarom et al.
[8] proving that FLUSH+RELOAD can be used even when
the algorithm is supposed to resist against timing attacks.
The target of the attack is the code contained in function
ec_GF2m_montgomery_point_multiply, a sample
of which is shown in 2.

To perform the point scalar multiplication using the
Montgomery ladder the scalar k is read bit by bit in a loop.
According to the value of each bit a different conditional
branch is taken and the functions to add and double the
point, gf2m_Madd and gf2m_Mdouble, are called with
the arguments in a different order. The principle behind this
design is that since the same functions are called regardless
of the state of the current bit, an attack based on timing
would fail.

With some reverse engineering on the OpenSSL binary
it is possible to retrieve the memory addresses of the lines of
interest: 275, 276, 280 and 281. Because of spatial prefetch-
ing it is necessary to probe addresses that are as distant as
possible from each other in memory (and consequently in
the cache).

Specifically lines 275 and 281 of Figure 2, whose mem-
ory addresses are passed as arguments addr1 and addr2 in
Algorithm 6, are suitable for the attack since they lie at the
very beginning and the very end of the main conditional
branch of line 273. The attack proceeds by flushing and
reloading these addresses to understand which ones were
accessed.

Assuming the victim starts executing the loop and at the
same time the spy starts the main loop in Algorithm 5 the
two processes are perfectly synchronized and the attack has
the highest likelihood of success.

It is necessary, for the spy, to sleep for a certain amount
of CPU cycles (ncycles in Algorithm 6) equal to the average

268 for (; i >= 0; i--)

269 {

270 word = scalar->d[i];

271 while (mask)

272 {

273 if (word & mask)

274 {

275 if (!gf2m_Madd(

group, &point->X, x1, z1,

x2, z2,

ctx))

goto err;

276 if (!gf2m_Mdouble(group,

x2, z2,

ctx))

goto err;

277 }

278 else

279 {

280 if (!gf2m_Madd

(group, &point->X, x2, z2,

x1, z1,

ctx))

goto err;

281 if (!gf2m_Mdouble(group,

x1, z1,

ctx))

goto err;

282 }

283 mask >>= 1;

284 }

285 mask = BN_TBIT;

286 }

Figure 2. Main loop of the Montgomery ladder implementation in OpenSSL

number of cycles needed for the victim to complete a loop.
The actual time is not always constant but depends on how
the process is scheduled. For example the spy might be
scheduled such that its loop is executed twice even though
the victim’s is executed only once, in which case the second
measurement would be ignored and the spy would wait for
the next iteration.

In line 10 of Algorithm 6 other than just checking
whether t1 < τ we also check whether t2 > τ . That
is, we make sure that addr1 was not loaded in memory
because of spatial prefetching [19]. With spatial prefetching
if two addresses belong to the same set of lines loaded
from the main memory it is impossible to understand which
one was intentionally loaded by a process and which one
was retrieved because of this feature. In this case we want
to make sure that addr1 was not loaded in the cache just
because addr2 was (and viceversa in line 12).

Another issue arises when the spy has to terminate. If it
terminates too soon it will miss some of the last bits so the
best course of action would be to keep executing the loop

Algorithm 6 FLUSH+RELOAD attack on ECDSA

1: procedure FLUSH-RELOAD-ECDSA(addr1, addr2)
2: bits = []
3: τ = getthreshold()
4: while True do
5: flush(addr1)
6: flush(addr2)
7: sleep(ncycles) ⊲ wait for a loop to complete
8: t1 = reload(addr1) ⊲ t1 = time
9: t2 = reload(addr2) ⊲ t2 = time

10: if t1 < τ and t2 > τ then
11: bits.append(1)
12: else if t2 < τ and t1 > τ then
13: bits.append(0)
14: end if
15: end while
16: return bits
17: end procedure

until a certain number of bits equal to 0 (i.e. both t1 and t2
are above the threshold) is reached.

At the end of the attack some (or all) of the bits of the
ephemeral key are recovered and it is possible to reconstruct
the private key. In the worst case the attack is known to miss
34 bits but the actual value of the scalar k can be restored, by
using the baby step giant step algorithm, in less than one
second of computation and using just 10 MB of memory
[8].

2.5. Hardware Performance Counters

Modern microprocessors are equipped with special pur-
pose registers used to store data about a wide range of CPU
related events: clock cycles, cache hits, cache misses, branch
misses etc. Such registers, called Hardware Performance
Counters (in short HPCs), are commonly used to profile
the behavior of a program and understand what to optimize
in order to increase its performance [20]. In this paper we
describe an alternative usage of such feature that allows us
to collect predictive data about one or more processes with
little overhead.

Similar alternative usages are described in [24] where
the timing function of a particular time based cache attack is
replaced with data coming from HPCs, [25] where exploits
are detected by constructing a dynamic signature of the
processes involved and [26] which briefly mentions how it
would be possible to mitigate the cache-based side-channel
attacks described in this paper through the use of HPCs.

The Linux kernel, assuming the target CPU supports
them, provides an interactive interface to the HPCs via a
command-line tool named perf [21]. The tool allows to
collect, visualize, filter and aggregate data gathered through
the HPCs on a system-wide, process or even thread basis.

The most interesting sub-command, for the purposes
of our experiments, is perf-stat. Using this utility it
is possible to specify which events to monitor, a target
process or thread, the output format and the interval of time

$ perf stat make -j

Performance counter stats for ’make -j’:

8117.370256 task clock ticks

678 context switches

133 CPU migrations

235724 pagefaults

24821162526 CPU cycles

18687303457 instructions

172158895 cache references

27075259 cache misses

Wall-clock time elapsed: 719.554352 msecs

Figure 3. Sample output of the perf-stat utility

between two consecutive reports. An example report from
perf-stat, while monitoring the execution of the tool
make, is shown in Figure 3.

An important shortcoming of perf-stat is its limited
resolution; perf-stat gives the opportunity to sample
HPCs multiple times in a second but the minimum interval
between two consecutive samples is 100 ms.

During the experiments we observed that the average
time to perform a signature with OpenSSL, using the
ECDSA algorithm with curve sect571r1, is 6 ms on the
testing system. Since one of our aims is to be able to detect
even the fastest implementation of the FLUSH+RELOAD
attack (which only needs a single signature round to suc-
ceed) it becomes obvious that the resolution of perf-stat
was insufficient.

We developed a custom utility, called quickhpc [33]
that offers a subset of the features of perf-stat but with
some improvements.

The tool quickhpc can be run as a normal user level
process and requires the privileges used by the process that
should be monitored (e.g. if the process to monitor was run
as root quickhpc has to be run as root as well). When
running quickhpc the required arguments are the PID of
the process to monitor and the list of events to be monitored.
Optionally it is possible to specify the maximum number
of samples and the interval in microseconds between two
samples.

The library used for probing HPCs is PAPI (Perfor-
mance Application Programming Interface) [22]. The main
reason why quickhpc uses PAPI is because of its reso-
lution. After a thorough optimization quickhpc reaches a
maximum resolution (i.e. the time between two samples)
of 3 microseconds, more than 30000 times faster than
perf-stat.

Events monitored by PAPI starts with the prefix PAPI_,
for example PAPI_L3_TCA counts the total number of L3
cache accesses thus far; for periodic sampling it is sufficient
to reset the counter of the event between two samples.

It is worth noting that the resolution of quickhpc is
not fixed but is influenced by the workload on the system,
the scheduling policy, the process monitored and so on. Also

the number of collected samples, for the same process, may
vary each time since it is not possible to start the monitored
process and quickhpc at exactly the same instant; it
all depends on the scheduling policy set in the operating
system.

2.6. Anomaly detection

Anomaly detection is used to find outliers, or anoma-
lies, in an unlabeled dataset. Some examples of real world
problems, where anomaly detection plays an important role,
are detection of faulty products in factories and detection of
fraudulent transactions.

The assumption is that there exists a set of features,
for each instance, or sample, in the dataset, that can let us
determine whether the instance belongs to a specific model
(e.g. ”legitimate transactions”) or not. Let us indicate with

x
(i)
j the j-th feature of the i-th instance in the dataset.

The aim is to retrieve a good number of samples con-
sidered ”good” and find a probabilistic model that fits them.
A usual assumption is that each feature xj fits a Gaussian
distribution with mean and variance relative to that feature’s
values across all samples.

Therefore finding a model for feature xj means finding
µj and σ2

j such that xj ∼ N (µj , σ
2
j). Once these values

are found the model can be tested by computing the distri-
bution’s density function for a new sample (i.e. probability
that the given value x belongs to a Gaussian distribution
with the given mean and variance):

p(xj ;µ, σ
2) = 1

√

2πσ
exp(− (xj−µ)2

2σ2)

The value returned by this function has to be compared
to a threshold which can be determined, in turn, by testing
the model on a dataset that contains known anomalies. This
allows to find a threshold that clearly separates the anoma-
lies from the normal samples, very similarly the purpose of
a classifier in the domain of supervised learning explained
in the next section. For each new sample this probability is
computed for each feature. The total probability is computed
as follows:

p(x(i)) = p(x
(i)
1 ;µ1, σ

2
1)p(x

(i)
2 ;µ2, σ

2
2)...p(x

(i)
n ;µn, σ

2
n)

In our experiments we tried to fit a model for each
kind of spy process implementation and considered all other
(benign) processes as anomalies. The reason for not acting
in the opposite way is that it is usually impossible to fit a
model for all kinds of processes running on a system.

2.7. Supervised Learning and

Neural Networks

The purpose of supervised learning is to construct mod-
els (classifiers) that are able to make predictions based on
labeled data that were previously collected. Unlike unsu-
pervised learning (where the purpose is to find patterns in
non-labeled data) a datum, or sample, fed to a classifier,
for the training phase, contains a vector of values named

Figure 4. Representation of a simple neural network

features (or independent variables) and a label whose value
is a function of them (dependent variable).

The classifier is then trained by using a relatively large
number of samples, aggregated in what is called the train-
ing set. Upon completion of each training phase a cross-
validation and a test set, consisting of data not present in
the training set, can be used to assess the effectiveness of
the classifier.

Once the training phase is complete it is possible to
feed the classifier with a single vector of features, omitting a
label, and it should be able to predict which class of entities
the vector of features belongs to (the confidence of the
prediction being dependent on a wide range of parameters).
The hardest task in supervised learning is to find features
that well characterize a certain class.

Although the principles behind supervised learning are
similar to the ones behind anomaly detection there are a
few key differences. In anomaly detection the classes are
naturally skewed since the number of positives, i.e. anoma-
lies, and negatives differ by several orders of magnitude (e.g.
1000 normal samples and 10 anomalies) where in supervised
learning the more balance, between samples of different
classes, the better; furthermore an anomaly detection mech-
anism does not distinguish between two or more classes but
is only able to tell whether a sample belongs to the main
class or not. In this paper we explored both options, taking
into account their advantages and disadvantages.

Neural networks are intended to represent a set of clas-
sifiers inspired by how neurons collaborate in a brain to
accomplish some tasks, hence the name. A commonly used
model is the feedforward network.

As shown in Figure 4 such a network is formed by mul-
tiple layers. Each layer contains a certain number of neurons
(or units), that hold a numerical value, called weight, and
neurons of adjacent layers are connected to each other.

The vector of features is distributed among the neurons
in the input layer and, after executing a feedforward prop-
agation, the neurons in the output layer contain a vector of
values whose maximum determines the class, i.e. its index
in the vector, that the features supposedly belong to.

To train a neural network the feedforward propagation is
followed by a backpropagation [29] step. In this step an error
on the prediction is computed. Such error is then utilized,
through the gradient descent algorithm, to adjust the weights
of the neurons in the hidden layers to improve the accuracy
of future predictions.

A common problem with supervised learning is overfit-
ting. That is, the neural network precisely fits the training
set but performs poorly on new, unlabeled samples. Such
problem is partially solved by applying a technique named
regularization [30] during the training phase.

The metric we used to assess how well both the neural
network and the anomaly detection system performed is
their F-score [28]. This metric is more reliable than merely
measuring accuracy (i.e. right predictions over all predic-
tions) since it is not influenced by datasets where some
classes contain a larger number of samples than others,
called skewed classes.

Thanks to neural networks we are able to devise a more
sophisticated mechanism for detecting a spy process, com-
pared to correlation and anomaly detection, that decreases
the chances of incurring in false positives and serves as an
initial attempt to detect spy processes that employ strategies
to avoid being uncovered.

3. Detecting a spy process

In this section we present three methods for detecting
spy processes that exploit the FLUSH+RELOAD technique
to perform cache-based side-channel attacks.

All detection methods can successfully detect a spy
before the attack is complete, therefore allowing to take
appropriate countermeasures in time to prevent a leakage.

The first method is based on finding a correlation be-
tween the victim and the spy by analyzing the data collected
by quickhpc. The intuition is that in all the attacks
we analyzed, both the spy and the victim process behave
approximately the same way: they execute a loop in which
the same operations are performed. In our experiments we
empirically established that a good indicator of correlation
is the number of total L3 cache accesses over time.

In our experiments we tried to trigger false positives by
simulating realistic workloads. Different kinds of operations,
with different degrees of concurrency, are generated to stress
an instance of the Apache web server while serving three
different types of content: a small HTML file, a 1 MB JPG
image and the result of a PHP script that calls functions that
print information about the system. This choice was dictated
by the fact that this kind of attacks mainly targets servers.

Although our experiments did not show any false pos-
itive we devised two more methods, based on machine
learning techniques, that operate in a more fine-grained
manner and therefore can be used to detect a spy with more
confidence.

The second method makes use of an interesting machine
learning technique: neural networks. Although computa-
tionally more expensive to train, they usually give better
results than other supervised learning techniques [23] and

Figure 5. Total L3 cache accesses of spy and victim of the attack to
ECDSA. The similarities are visible between samples 200 and 550 when
the Montgomery ladder loop is executed.

do not require the data to be preprocessed (e.g. apply feature
scaling and mean normalization).

Even though there exist many other supervised learning
techniques, the good results yielded by our neural network
convinced us to explore an option based on unsupervised
learning instead of iterating over multiple supervised learn-
ing models.

The third method is based on treating the data samples
coming from the spy process as ”normal” and data samples
coming from any other process as anomalies or outliers. For
such purpose we employed anomaly detection, an unsuper-
vised learning technique. We were then able to determine
whether a process is benign if it is recognized as an anomaly.

The downside of using anomaly detection or supervised
learning is that there has to exist data that profiles a sample
spy process, similarly to anti-virus applications that require
a sample of the malware to be able to recognize it.

3.1. Correlation-based approach

The intuition is that both processes spend most of
their time in a loop where there is a regular access to
potentially cached data. Without loss of generality, with
regard to the other attacks, let us analyze the Montgomery
ladder implementation, in the point scalar multiplication
function ec_GF2m_montgomery_point_multiply

of OpenSSL exploited in the second version of Yarom’s
FLUSH+RELOAD implementation [7].

The function contains a for loop, shown in Figure 2,
in which the ephemeral key (the scalar used in the mul-
tiplication) is scanned bit by bit. Depending on the value
of this bit a different conditional branch is evaluated at
each iteration where the same two functions (gf2m_Madd
and gf2m_Mdouble) are called with the arguments in a
different order. This constant-time implementation should

Figure 6. Total L3 cache accesses of the spy and the victim of the attack
to AES.

Figure 7. Total L3 cache accesses of the Apache webserver serving a 211
byte HTML file 1000 times with 100 concurrent clients and the victim of
the attack to ECDSA.

ensure that no useful information leaks through time while
executing such function.

The spy, though, in this case is able to time the access
to the first function in the first branch and to the second
function in the second branch. This allows to guess, with
high probability, which branch was chosen and, therefore,
the value of the last bit of the word.

Since the loop is executed a large number of times it
is fair to presume that its instructions will be loaded in the
CPU’s cache. In fact, as shown in Figure 5, between samples
200 and 550, the number of L3 cache accesses over time,
while executing the main loop of the Montgomery ladder,
is a value oscillating between approximately 0 and 25. The
same kind of behavior can be observed, with regard to the
AES spy and victim processes, in Figure 6 where the L3

Figure 8. Total L3 cache accesses of the Apache webserver serving a 1
MB JPG file 1000 times with 100 concurrent clients and the victim of the
attack to ECDSA.

Figure 9. Total L3 cache accesses of the Apache webserver serving the
output of a PHP script calling php_info 1000 times with 100 concurrent
clients and the victim of the attack to ECDSA.

cache accesses over time for the two processes, after sample
50, almost overlap.

It is important to note that even though a piece of data
is not present in the CPU’s cache, each access to it will be
registered as an access to the LLC. The MMU (Memory
Management Unit) will then take care of triggering a cache
miss, stall the process and eventually load the necessary
data from the main memory into the cache and resume its
execution.

Not surprisingly the spy process follows a similar pat-
tern. The core of the computation lies in a loop where the
process continuously flushes and reloads specific addresses
from and into the cache. In this case the addresses of
interest are the ones of the functions gf2m_Madd and

gf2m_Mdouble.

This regularity is a requirement for the attack to work.
In fact, as mentioned in the previous section, the spy has
to synchronize with the victim to maximize the chances of
success.

Algorithm 7 Detect a spy process through correlation

1: procedure DETECT-CORR(victimPID, processPID)
2: s1 = [] ⊲ s = samples
3: s2 = []
4: pipe(quickhpc(victimPID), s1)
5: pipe(quickhpc(processPID), s2)
6: while True do
7: if correlation(s1, s2) > threshold then
8: processPID is likely a spy!
9: break

10: end if
11: end while
12: end procedure

Such behavior can be exploited by monitoring both the
victim and the spy at the same time and check how similar
the number of LLC accesses over time is, as shown in
Algorithm 7. In a real scenario it is often impossible to
know when an attack of this sort is in progress therefore
it is mandatory to continuously monitor a potential victim
process and, separately, each new process spawned by the
system.

The variant of the attack by Irazoqui et al., targeting
AES, uses a similar mechanism to determine the key used in
the last round of an encryption. The substantial difference is
that their implementation uses a client-server architecture to
trigger the encryptions and repeats the operation thousands
of times.

Thanks to the high number of iterations the spy is, in
this case, able to retrieve 100% of the bits of the last round’s
key. A major drawback of this approach is that it is easy
to detect even by using lower resolution tools like perf-stat.
In fact, given the 100 ms minimum resolution of perf-stat
and assuming an execution time of 5 seconds, we are able
to collect 50 samples, sufficient to determine whether there
is correlation or not.

Since only a few milliseconds are sufficient to deter-
mine, with high accuracy, whether there exists a correlation
between two processes, the monitoring phase does not affect
their overall performance. Furthermore, while performing
the experiments, it was noticed that the overhead caused by
the monitoring tool is negligible.

Figures 5 and 6 show how visible this correlation is in
both variants while Figures 7, 8 and 9 show how the number
of L3 accesses over time differs significantly between the
tested benign processes and the victim.

3.2. Based on anomaly detection

The reason why methods based on machine learning
techniques might be needed is the potential presence of

Figure 10. In this example different circles representing distinct values of
epsilon, the threshold for the density estimation function, visually show
how anomalies are flagged according to the value picked.

false positives (that is, there might exist processes that are
benign but behave in a similar manner to a spy and would
erroneously be flagged as malicious) and of a more sophis-
ticated spy process which might find a way to escape the
detection system based on correlation by creating noise, on
purpose, to confuse the detection mechanism (such scenario
is discussed further in Section 5). Utilizing machine learning
techniques allows to profile this behavior as well, increasing
the confidence of the detection.

In both methods based on machine learning we chose
the following events monitored by quickhpc as features:
total instructions, total CPU cycles, L2 cache hits, L3 cache
misses, L3 cache total accesses. These events were empir-
ically selected after various trials by analyzing the F-score
reached for each feature set.

By using anomaly detection we can treat the data sam-
ples coming from the spy as normal and the data samples
coming from other processes as anomalies. Like in super-
vised learning there is a ”training” phase where the system
is given some samples from the spy process. The training
consists of three phases that are repeated until an optimal
threshold ǫ is found:

1) Find µj and σ2
j for each feature j.

2) Compute p(x) for each sample x and find a value
ǫ such that if x is an anomaly p(x) < ǫ.

3) Test p(x) on a dataset that contains anomalies and
verify that such anomalies are recognized.

Figure 10 shows how a small ǫ increases chances of
recognizing a normal sample as an anomaly while a big
value yields the opposite result. The optimal value of epsilon
is chosen according to the F-score reached on the cross-
validation set at each iteration.

Once this phase is complete the system can be used on
new data.

3.3. Based on supervised learning

Another way of detecting a spy process, by analyzing
its behavior at runtime, is to profile it in order to construct
some kind of ”signature” that can be used to identify it with
a certain confidence, similarly to what anti-virus software
does with static signatures.

In the context of supervised learning the profiling phase
translates into a training phase for the classifier (in this case
a neural network). The raw data collected by quickhpc

is first processed by a set of scripts, merged together in a
single dataset and fed to the neural network.

The output neurons represent the two classes of interest:
malicious process and benign process. The victim process
is labeled as benign in the training set. The presence of
samples from the victim is useful to make the network
differentiate between two processes that have a very sim-
ilar behavior (as shown by their correlation) but belong to
different classes.

4. Experiments and results

All our experiments were performed on an HP Z400
workstation with a Intel Xeon W3670 CPU, operating at a
manually fixed clock of 3.2 Ghz, and 20 GB of RAM. The
operating system used was Ubuntu 14.04 LTS with kernel
Linux 3.13.0-46-generic.

Algorithm 8 Compute correlation coefficient between two
datasets

1: procedure CORRELATION(data1, data2)
2: samples = min(data1.size, data2.size)
3: diff = data1 − data2
4: cv = cov(diff)
5: confidence = samples ∗ (1/cv)
6: return confidence
7: end procedure

For each type of attack we performed 100 iterations
where we monitored the spy, the victim and a benign process
operating in different contexts. Each iteration is divided into
the following phases:

1) Execution and monitoring of the victim process
2) Execution and monitoring of the spy process
3) Execution and monitoring of the benign process
4) Data analysis and prediction

All processes are launched at the same time. Once the
spy successfully completes an attack all monitored processes
are terminated and the analysis phase begins. During this
phase we feed the data to three scripts: one that implements
the correlation system, one that implements the anomaly
detection system and one that implements the neural net-
work. Each script reports the number of samples used, the
confidence of the detection and the time it took to complete
it.

TABLE 1. BENCHMARKS OF THE DETECTION METHOD BASED ON CORRELATION

Correlated processes
(100 iterations)

Min confidence (samples) Max confidence (samples)

AES spy with AES victim 0.094715 (42) 5.4 (522)

ECDSA spy with ECDSA victim 0.001565 (21) 1.66 (744)

Apache (HTML file) with AES victim 0.000002 (42) 0.000008 (157)

Apache (JPG file) with AES victim 0.000028 (42) 0.000398 (862)

Apache (PHP file) with AES victim 0.000004 (42) 0.000163 (862)

Apache (HTML file) with ECDSA victim 0.000001 (36) 0.000008 (157)

Apache (JPG file) with ECDSA victim 0.000007 (11) 0.000566 (1422)

Apache (PHP file) with ECDSA victim 0.000002 (29) 0.000295 (1422)

Time to find correlation over 500 samples 0.35 ms

TABLE 2. BENCHMARKS OF VARIOUS OPERATIONS

Time

ECDSA signature
Montgomery Ladder loop
(OpenSSL, curve sect571r1)

2.8 ms (default compilation flags)
9.5 ms (with debug symbols enabled)

ECDSA signature
Total time
(OpenSSL, curve sect571r1)

6 ms (signed 1 B file)
9 ms (signed 1 MB file)

ECDSA spy
Minimum time needed

2.8 ms (the time it takes to complete a
single Montgomery ladder loop)

AES spy
Minimum time needed

5 s (same OS scenario)

Maximum quickhpc resolution 3 µs (measured with {clock gettime()})

TABLE 3. BENCHMARKS OF THE DETECTION METHODS BASED ON MACHINE LEARNING TECHNIQUES

Method Max F-score
Time for prediction
(over 100 samples)

Anomaly detection (AES) 0.509091 0.2 ms

Anomaly detection (ECDSA) 1.0 0.2 ms

Neural network (AES) 0.932331 0.64 ms

Neural network (ECDSA) 1.0 0.64 ms

The correlation coefficient is computed as in Algorithm
8. The confidence that a correlation exists is given by the
following formula:

confidence = samples ∗ (1/variance).

Table 1 below gives a quantitative insight on how such
value changes according to the type of attack we try to
detect. With respect to the spy process used while attacking
AES the range of confidence varies from a minimum of
0.095 to a maximum of 5.4 but when attacking ECDSA the
minimum and maximum confidence values drop to around
0.002 and 1.66 respectively. It is clear that this value is
influenced by the number of samples quickhpc was able
to process and the higher the number of samples the higher
the chance of getting a good level of confidence (as shown
in Figure 11).

For what concerns the benign processes the range de-
creases significantly with a minimum of 10−6 and a max-
imum of 5.66 ∗ 10−4 which ensure the absence of false
positives since the latter value is roughly one order of
magnitude lower than the minimum confidence given by
any spy process.

The execution time for both the AES and ECDSA victim
processes is reported below in Table 2 where the fastest

operation is the execution of the Montgomery Ladder loop,
shown in Figure 2, that takes a maximum of 2.8 ms.

On our system the time to execute Algorithm 8 over a
dataset of 500 samples is 0.35 ms on average. Considering
the fastest implementation of the attack has a minimum ex-
ecution time of 2.8 ms (i.e. the duration of the Montgomery
ladder loop in OpenSSL) there are still 2.45 ms that can be
used to take appropriate countermeasures.

The performance of the neural network is a little worse
but good enough for our purposes. Within 0.64 milliseconds
the network completes the feedforward propagation over 100
samples and returns the predicted class (spy or not). In this
case the confidence is measured as follows:

confidence = predictionsspy/predictionstotal

On the other hand the anomaly detection system, for a
prediction over 100 samples, only takes 0.2 ms on average
making it the fastest one. Unfortunately it is also the one that
suffers the most from noisy data making it perform poorly
on certain datasets as shown in the next section. Even in this
case the confidence is computed with the aforementioned
formula.

F-scores for both the anomaly detection system and the
neural network are reported in Table 3 together with the

time it takes to perform a prediction (i.e. to classify) over
100 samples.

4.1. Overhead

In our methods we consider the case where quickhpc
can be arbitrarily attached to any running process and collect
samples for as long as it is needed (the minimum number
of samples needed for detection varies according to the type
of spy process as shown in the next sections).

Such approach is applicable only if the overhead
caused by quickhpc is negligible. To determine the over-
head caused by quickhpc we performed 1000 OpenSSL
ECDSA signatures with curve sect571r1 while the vic-
tim process was being monitored and while it was not. The
average execution time was 6 ms in both cases.

To make sure the parallelism offered by a multi-core
architecture was not responsible for such low overhead (i.e.
because the crypto process and quickhpc were being
executed on different cores) we ”pinned” all of the processes
to a single core by using the utility taskset [32].

4.2. Detecting AES spy process

As described in [9] finding the last round’s key
in an AES encryption, by using a variant of the
FLUSH+RELOAD technique, takes a varying amount of
time in the order of seconds to minutes.

The execution time depends on the scenario in which the
attack is carried out. If both the spy and victim processes are
being executed within the same operating system the attacks
takes a few seconds; 5 on average on our test system while
still being able to recover all the bytes of the key. If the spy
and the victim are on separate virtual machines, although
share the same CPU, as it often happens with virtualization
services like Digital Ocean [27] or Amazon EC2 [31], the
execution takes approximately one minute.

Given how long the spy needs to execute, for a success-
ful attack, quickhpc is able to collect a very large number
of samples in a short amount of time. In our experiment we
let the spy and the victim run for 50 ms, 100 times less than
the average time needed to complete the attack.

Figure 11 shows the confidence of the detection accord-
ing to the number of samples collected. As expected the
more the samples the higher the confidence with the min-
imum (0.095) reached with 42 samples and the maximum
(5.4) reached with 522 samples.

The minimum confidence with regard to the benign
processes reached a maximum value of 0.0005, two orders
of magnitude less than the minimum confidence with regard
to the spy, effectively eliminating the chance of incurring in
false positives.

The methods based on machine learning performed very
differently in this case. The anomaly detection system per-
formed poorly with a maximum F-score of 0.51 while the
neural network reached instead an F-score of 0.93.

Figure 11. Relationship between the number of samples collected during
an attack to AES and the confidence of the prediction based on correlation.
Even though the relationship is not linear (since the confidence is influenced
by noise caused by other processes, scheduling policies etc.) the general
trend is that the higher the number of samples the higher the confidence.

4.3. Detecting ECDSA spy process

A complete signature of a 1 byte file, using ECDSA with
OpenSSL, takes 6 ms on average while using a 1 Megabyte
file increases this time by 3 ms for a total of 9 ms.

The main loop used in the Montgomery ladder imple-
mentation lasts 2.8 ms on average which means that, since
both detection methods take approximately 0.2 to 0.64 ms,
there are around 2-2.5 ms left to take countermeasures,
assuming a successful attack is complete once all the bits
of the ephemeral key have been scanned.

Considering a resolution of 10 µs, for quickhpc, we
could obtain, in 2.8 ms, roughly 280 samples. The resolution
varies according to how the system is performing (i.e. how
many processes are running, how the scheduler acts with
regard to quickhpc and the monitored process etc.) so
the number of samples obtained, and thus the sampling
resolution, might be more or less than this theoretical value.

The minimum confidence reached by determining a
correlation between the victim and the actual spy was of
approximately 0.0016 with 21 samples while the maximum
was 1.66 with 744 samples.

Even in this case the maximum confidence for the corre-
lation between a benign process and the victim was almost
one order of magnitude less than the minimum confidence
for the correlation between the spy and the victim.

Both machine learning methods, though, performed well
with an F-score of 1. Since the time to perform a prediction
over 100 samples does not change according to the samples
themselves even in this case it took 0.2 and 0.64 ms on
average respectively for the anomaly detection system and
the neural network.

TABLE 4. CONFIDENCE VALUES AND EXECUTION TIME FOR THE THREE VARIANTS OF THE MODIFIED VERSION OF THE AES SPY PROCESS. EACH

VARIANT SETS A DIFFERENT VALUE FOR THE MAXIMUM NUMBER OF ADDRESSES THAT ARE PROBED FOR EACH ITERATION.

Number of random accesses Min confidence Max confidence Max time to complete an attack

10 0.063545 3.197853 19s

100 0.159697 1.229513 43s

1000 0.003177 0.355517 96s

Figure 12. Relationship between the total LLC accesses of the AES victim
process and the modified version of the spy process.

5. A smarter spy process

The purpose for building a more sophisticated version
of a spy process is to evade one or more of the detection
systems presented in the previous sections.

We were able to decrease the confidence range given by
the first system, based on correlation, by slightly changing
the behavior of the spy so that it would take more time to
complete an attack but act in a more clever way. We chose
to modify the spy for AES by Irazoqui et al. [9] because of
its already long execution time (i.e. minimum 17s on our
system).

Since the correlation is established only by the total
number of cache accesses, the modified spy, similarly to
what happens in the actual attack, can start accessing a
random number of addresses generating, therefore, a random
number of cache hits or misses: accesses nonetheless. Al-
though these random accesses, performed for each iteration
of the main loop of the spy, cause the total execution time to
increase, the success of the attack is in no way influenced.
Figure 12 shows the relationship between the total cache
accesses of the AES victim and the AES modified spy; a
very different pattern than the one previously seen in Figure
6 with the original spy process.

We modified the spy to access up to 10, 100 and 1000
addresses for each iteration of the main loop. In all cases
the key was correctly retrieved, proving the attack can still
be completed, even though the execution time increased
dramatically, up to 96 s, in the last case. On the other hand

the confidence range noticeably decreased. The minimum
value went from 0.095, for the original spy, to 0.003 for the
modified version while the maximum dropped from 5.4 to
0.35. This proves that it is possible to partially circumvent
the detection system based on correlation while still being
able to successfully complete an attack.

Table 4 shows how the confidence range depends on
the number of random addresses used. The data have been
collected over 100 attacks for each number of random
addresses.

We experienced the opposite trend when trying to catch
such process by using the neural network and anomaly
detection system. In the first case the maximum F-score
was 0.98 while in the second case the value dropped to
0.79, similarly to the unmodified AES spy process. The
new behavior clearly makes the process stand out more,
rendering the detection even easier when using techniques
based on machine learning.

6. Discussion

Our results show that it is possible to catch a process
that uses the FLUSH+RELOAD technique before the attack
can be successfully completed. The fact that our detection
system can run as a process in userspace makes it convenient
to use both on a same-OS scenario and on virtual machines.

In the second scenario the choice would be to either
integrate the system into the hypervisor or preinstall the
software on any new virtual machine, as it happens with
VMWare tools.

In a same-OS scenario the time left between the com-
pletion of the detection and the completion of the attack, in
the case of the fastest spy where there are 2.6 to 2.2 ms left,
allows for a variety of countermeasures, the simplest being
killing the suspicious process and prevent further access to
any file or socket opened by it. In case of a cross-VM
attack it would be enough, for the hypervisor, to suspend
the virtual machine where the spy is running and relocate
the one where the victim is running since co-location is the
first requirement for this kind of attacks to work.

The creation of a smarter spy process proved that the
detection based on correlation can be partially circumvented
opening the doors to further research on how to implement
a more advanced variant of the aforementioned attacks.
Deceiving the other detection systems, based on machine
learning techniques, proved to be a harder task, although
the assumption that there exist training data might not
always be correct when encountering new variants that work
in unexpected ways (which often happens with antivirus
software).

The low footprint generated by our system and its ability
to run as yet another userspace process, together with the
fact that most systems are not regularly patched against such
attacks, make it a good tool for cloud services providers. We
think the best way to employ our detection system would be
to integrate it with the process responsible for the creation
of all other processes (e.g. init in Unix-like operating
systems). It would be enough to attach quickhpc to each
new process, monitor them for a predefined amount of time,
run one (or all) of the detection algorithms on the collected
data and decide whether to terminate the process or simply
detach quickhpc and let the process run.

7. Conclusion and future work

In this paper we introduce three methods to detect a
spy process that is performing a cache-based side-channel
attack based on techniques like FLUSH+RELOAD (in general
any technique where the attacker is required to periodically
access the CPU shared cache).

While each of the methods has its own strengths and
weaknesses we proved that it is definitely feasible to detect
and prevent an attack, from being completed, in a relatively
short time. Furthermore we did so without altering any of
the components of the system (e.g. the kernel) and without
decreasing its performances, simply by running our detec-
tion system as a user space process.

We are confident that such system might be easily inte-
grated in a physical or virtual cloud environment (such as
DigitalOcean or Amazon EC2) either as a separate process
(similarly to an anti-virus) or as a plugin for the hypervisor.

On the other hand we also demonstrated how, with just
some tweaks, it is possible to deceive one (the simplest)
of the detection methods. This, we hope, will fuel more
research on increasingly ”smarter” detection systems and,
consequently, attacks.

Acknowledgments

We would like to thank the authors of [7], [8] and [9]
for sharing, and assisting us with, the source code of their
projects.

References

[1] Tian Tian, Chiu-Pi Shih. Software Techniques for Shared-Cache Multi-

Core Systems. Intel Developer Zone. 2012.

[2] Andrea Arcangeli, Izik Eidus, Chris Wright. Increasing memory den-

sity by using KSM. Red Hat, Inc. 2009.

[3] Ganesh Venkitachalam, Michael Cohen (VMWare, Inc.). Transparent

page sharing on commodity operating systems. Patent US7500048 B1.
2009.

[4] Ristenpart, Thomas, et al. Hey, you, get off of my cloud: exploring

information leakage in third-party compute clouds.. Proceedings of
the 16th ACM conference on Computer and communications security.
ACM, 2009.

[5] Tsunoo, Yukiyasu, et al. Cryptanalysis of DES implemented on com-

puters with cache. Cryptographic Hardware and Embedded Systems-
CHES. 2003.

[6] Osvik, Dag Arne, Adi Shamir, and Eran Tromer. Cache attacks and

countermeasures: the case of AES. Topics in CryptologyCT-RSA.
2006.

[7] Yarom, Yuval, and Katrina E. Falkner. Flush+ Reload: a High Reso-

lution, Low Noise, L3 Cache Side-Channel Attack. IACR Cryptology
ePrint Archive. 2013.

[8] Yarom, Yuval, and Naomi Benger. Recovering OpenSSL ECDSA

Nonces Using the FLUSH+ RELOAD Cache Side-channel Attack.

IACR Cryptology ePrint Archive. 2014.

[9] Irazoqui, Gorka, et al. Wait a minute! A fast, Cross-VM attack on AES.

Research in Attacks, Intrusions and Defenses. Springer International
Publishing. 2014. 299-319.

[10] Glmezoglu Berk, Mehmet Sinan Inci, Gorka Irazoqui, Thomas Eisen-
barth, and Berk Sunar. A Faster and More Realistic Flush+ Reload

Attack on AES.. 2015.

[11] Sprunt, Brinkley. The basics of performance-monitoring hardware.

IEEE Micro 4 pp. 64-71. 2002.

[12] Jonathan Corbet. KSM tries again. LWN. 2009.

[13] Fei Guo. Understanding Memory Resource Management in VMware

vSphere 5.0. VMWare Performance Study. 2011.

[14] Anonymous. Security considerations and disallowing inter-Virtual

Machine Transparent Page Sharing (2080735) . VMWare knowledge
base. 2015.

[15] Salvador Palanca, Stephen A. Fischer, Subramaniam Maiyuran (Intel
Corp.). CLFLUSH micro-architectural implementation method and

system. Patent US6546462 B1. 2003.

[16] Messerges, Thomas S., Ezzy A. Dabbish, and Robert H. Sloan. Power

analysis attacks of modular exponentiation in smartcards. Crypto-
graphic Hardware and Embedded Systems. Springer Berlin Heidelberg,
1999.

[17] Brown, D. SEC 2: Recommended Elliptic Curve Domain Parameters.
2010.

[18] Joye M., Yen S. M. The Montgomery powering ladder. In Crypto-
graphic Hardware and Embedded Systems-CHES (pp. 291-302). 2002.

[19] Uht, Augustus K., Vijay Sindagi, and Kelley Hall. Disjoint eager

execution: An optimal form of speculative execution. Proceedings of
the 28th annual international symposium on Microarchitecture. IEEE
Computer Society Press, 1995.

[20] Ammons, Glenn, Thomas Ball, and James R. Larus. Exploiting hard-

ware performance counters with flow and context sensitive profiling.
ACM Sigplan Notices 32 pp. 85-96. 1997.

[21] de Melo, Arnaldo Carvalho. The new linux perf ools. In Slides from
Linux Kongress. 2010.

[22] Mucci, Philip J., Shirley Browne, Christine Deane, and George Ho.
PAPI: A portable interface to hardware performance counters. In
Proceedings of the Department of Defense HPCMP Users Group
Conference, pp. 7-10. 1999.

[23] Caruana, Rich, and Alexandru Niculescu-Mizil. An empirical com-

parison of supervised learning algorithms. In Proceedings of the 23rd
international conference on Machine learning, pp. 161-168. ACM,
2006.

[24] Uhsadel L., Georges A., Verbauwhede I.. Exploiting Hardware Per-

formance Counters. 5th Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC). 2008.

[25] Adrian T. et al. Unsupervised Anomaly-based Malware Detection

using Hardware Features. 17th International Symposium on Research
in Attacks, Intrusions and Defenses (RAID). 2014.

[26] Nishad Herath, Anders Fogh. These are Not Your Grand Daddy’s

CPU Performance Counters. Black Hat USA. 2015.

[27] Digital Ocean. https://www.digitalocean.com/. Last retrieved: August
2015.

[28] Van Rijsbergen, C. J. Information Retrieval (2nd ed.). Butterworth.
1979.

[29] Werbos, P.J. Beyond Regression: New Tools for Prediction and Anal-

ysis in the Behavioral Sciences.. 1975.

[30] Christopher M. Bishop. Pattern Recognition and Machine Learning,

pp. 256-269. 2007.

[31] Amazon EC2. https://aws.amazon.com/ec2/. Last retrieved: August
2015.

[32] Taskset. http://linuxcommand.org/man pages/taskset1. Last retrieved:
August 2015.

[33] QuickHPC. https://github.com/lambdacomplete/quickhpc. Last re-
trieved: August 2015.

