
Vol.:(0123456789)

SN Computer Science (2021) 2:110

https://doi.org/10.1007/s42979-021-00507-w

SN Computer Science

ORIGINAL RESEARCH

Real-Time Detection of Dictionary DGA Network Traffic Using Deep
Learning

Kate Highnam1 · Domenic Puzio2 · Song Luo3 · Nicholas R. Jennings1

Received: 1 August 2020 / Accepted: 6 February 2021 / Published online: 22 February 2021

© The Author(s) 2021

Abstract

Botnets and malware continue to avoid detection by static rule engines when using domain generation algorithms (DGAs)

for callouts to unique, dynamically generated web addresses. Common DGA detection techniques fail to reliably detect

DGA variants that combine random dictionary words to create domain names that closely mirror legitimate domains. To

combat this, we created a novel hybrid neural network, Bilbo the “bagging” model, that analyses domains and scores the

likelihood they are generated by such algorithms and therefore are potentially malicious. Bilbo is the first parallel usage

of a convolutional neural network (CNN) and a long short-term memory (LSTM) network for DGA detection. Our unique

architecture is found to be the most consistent in performance in terms of AUC, F
1
 score, and accuracy when generalising

across different dictionary DGA classification tasks compared to current state-of-the-art deep learning architectures. We

validate using reverse-engineered dictionary DGA domains and detail our real-time implementation strategy for scoring

real-world network logs within a large enterprise. In 4 h of actual network traffic, the model discovered at least five potential

command-and-control networks that commercial vendor tools did not flag.

Keywords Domain generation algorithm · Deep learning · Malware · Botnets · Network security · Neural networks

Introduction

Malware continues to pose a serious threat to individuals

and corporations alike [1]. Typical attack methods such as

viruses, phishing emails, and worms attempt to retrieve pri-

vate user data, destroy systems, or start unwanted programs.

The majority of these attacks may be launched through the

network [2], posing a major threat to any Internet-facing

device. Some malware reaches out to a command and con-

trol (C&C) centre hosted behind domains generated by an

algorithm (DGA domains) after it infiltrates the target sys-

tem to receive further instructions. Identification of such

domains in network traffic allows for the detection of mal-

ware-infected machines.

A single active DGA has been seen generating up to a

few hundred domains per day [1]. At scale within a com-

pany, this is infeasible for a human analyst to triage amidst

the thousands of benign domains occurring simultaneously.

Automated detection systems are developing but the sight-

ings of DGAs in worms, botnets, and other malicious set-

tings is growing [3].

In addition, malware that employs DGAs intentionally

obfuscates its network communication by utilising ran-

dom seeds when generating their domains [1–5]. Most

known DGAs combine randomly-selected characters like

This work was done while working at Capital One in 2017–18 and

is based on public talks we gave in 2018.

 * Kate Highnam

 k.highnam19@imperial.ac.uk

 Domenic Puzio

 domenicvpuzio@gmail.com

 Song Luo

 luosong@gmail.com

 Nicholas R. Jennings

 n.jennings@imperial.ac.uk

1 Imperial College London, London, UK

2 Kensho Technologies, McLean, VA, USA

3 Tencent, Shenzhen, China

http://orcid.org/0000-0003-4752-9334
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00507-w&domain=pdf

 SN Computer Science (2021) 2:110110 Page 2 of 17

SN Computer Science

“myypqmvzkgnrf[.]com”, “otopshphtnhml[.]net”, and

“uqhucsontf[.]com”1.

However, DGAs that combine random words from a dic-

tionary like “milkdustbadliterally[.]com”, “couragenearest[.]

net”, and “boredlaptopattorney[.]ru” [6] are meaningfully

harder for humans to detect (see Table 1 for comparison).

In this paper, we will refer to this type of DGA as a diction-

ary DGA and focus on those using dictionaries composed

of English words.

Common defences against malicious DGA domains

include blacklists [7, 8], random forest classifiers [9–11],

and clustering techniques [12, 13]. When the lists are well

maintained and the features are chosen carefully, these meth-

ods have acceptable efficacy. However, both blacklists and

these models possess serious limitations: relying on hand-

picked features which are time-consuming to develop, lack-

ing the ability to generalise with the few manual features

implemented, and requiring continuous expert maintenance.

More comprehensive tactics are necessary to detect inces-

sant new DGAs stemming from network-based malware.

Recent innovations using deep learning have state-of-the-

art accuracy on DGA detection. Such models are highly flex-

ible with the proven success in complex language problems.

They do not require hand-crafted features that are time-

intensive to make and easy to evade. Woodbridge et al. [11]

were the first to present a long short-term memory (LSTM)

network for DGA classification. Other architectures were

later applied, such as further variations on an LSTM [10,

14–17], a convolutional neural network (CNN) [18, 19],

and a hybrid CNN-LSTM model [20]. Although success-

ful for random-character DGA domains, these classifiers

have largely been ineffective in identifying dictionary DGA

domains. These models also perform well on their various

testing sets but their performance can suffer when attempt-

ing to generalise to new DGA families or new versions of

previously seen families.

Against this background, we present a novel deep learning

model for dictionary DGA detection. This advances the state

of the art in the following ways. First, we present the first

usage of parallel CNN and LSTM hybrid for DGA detec-

tion, specifically applied to dictionary DGA detection. The

model is trained on standard large-scale datasets of reverse-

engineered dictionary DGA domains. It achieves the most

consistent success at dictionary DGA classification amongst

state-of-the-art deep learning architectures for classification,

generalisability, and time-based resiliency. Second, we detail

our insights into dictionary DGA domains’ inter-relation-

ships and their effect on generalisability of models as an

outcome. Third, we validate our model on live network traf-

fic in a large financial institution. In 4 h of logs, it discovered

five potential C&C networks that commercial vendor tools

did not flag. Finally, we detail our scalable implementation

strategy within the security context of a corporation for real-

time analysis.

Background

An ever-growing number of malware rely on communication

with C&C channels to receive instructions and system-spe-

cific code [1]. The destination (domain or IP address) of this

channel can be hard-coded in the malware itself, making its

location discoverable via reverse engineering or straightfor-

ward log aggregation techniques. Once known, this domain

or IP address can be blacklisted, rendering the malware inert.

To avoid this single point of failure, malware authors employ

domain fluxing, in which the destination of the C&C com-

munication changes systematically as the attacker registers

new domains to the C&C hub.

The key to malware domain fluxing is the use of unique

and likely unregistered domains that are known to the

attacker but can blend in to regular traffic. To accomplish

this, malware families employ domain generation algorithms

(DGAs) to create pseudo-random domains for use in com-

munication. These domains are used for short periods of

time and then phased out for newly-generated domains; this

quick turnover means that manual techniques are not effec-

tive. Additionally, reverse engineering these algorithms may

be slow or impossible if the malware is encrypted. For the

vast majority of malware samples, traffic related to malicious

activity is present in networks weeks or months before the

malware is analysed and blacklisted [7].

To prevent DGA-based malware from exfiltrating, disa-

bling, or tampering with assets, institutions must detect

malicious traffic as soon as possible. Throughout this paper,

we will discuss our solution while keeping in mind that it

Table 1 Examples of domains from our training data, comprised of

domains from the Alexa Top 1 Million list and domains generated by

dictionary-based DGA families (discovered through reverse engineer-

ing) from DGArchive

Legitimate Malicious

microsoft lookhurt

linkedin threetold

paypal threewear

steamcommunity pielivingbytes

dailymotion awardsbookcasio

stackoverflow blanketcontent

facebook degreeblindagent

soundcloud mistakelivegarage

1 For the rest of this paper, all domain URLs will be referred to with

[.] to prevent automatically assigning these domains as real URLs one

might click.

SN Computer Science (2021) 2:110 Page 3 of 17 110

SN Computer Science

must be practical, operating in real-time, enriching contex-

tual data within in true threat environments.

Domain Generation Algorithms (DGAs)

DGA usage spans a variety of cases, from benign resource

generation to phishing campaigns and the management of

botnets, groups of machines that have been infected by mal-

ware, such as Kraken [21], Conficker [22, 23], Murofet [24],

and others [25]. The goal of all DGAs is to generate domains

that do not already exist and, for malicious cases, will not be

flagged by vendor security tools or analysts. To accomplish

this, DGA authors typically use either character-based or

dictionary-based pseudo-random assembly process to form

domains.

Each method has benefits and downfalls. Character-based

DGA domains are more likely to not be registered. But to a

human security analyst, gibberish domains made from char-

acter-based DGAs stand out from human-crafted domains

due to their phonetic implausibility and lack of known words

within them. There is a visible unique pattern underlying

character DGA domains, such as “lrluiologistbikerepil”,

that dictionary DGA domains, like “recordkidneyestablish-

men”, do not follow. Dictionary DGA domains are more

challenging to detect when scanning logs because they are

pronounceable, contain known words, and mirror the char-

acter distribution of legitimate English domains [26]. See

similarities between known dictionary DGA domains and

benign domains in Table 1.

DGA detection systems have been implemented to assist

in highlighting DGA domains for further investigation.

These have largely been tailored towards character-based

DGAs. Character-based DGAs are more common: of 43

known reverse-engineered DGAs available in DGArchive

[6], 40 of them use a seed to pseudo-randomly assemble

characters or a word surrounded by random characters to

form a domain name. Most methods for generic DGA analy-

sis still struggle to identify dictionary-based DGA malware

families because they classify all DGAs rather than focusing

on specific algorithms.

This paper will focus on classifying the largest avail-

able sets of known dictionary DGA domains: gozi [27],

matsnu [28], and suppobox [29]. Each varies in the

dictionary-based domain generation tactic, the length of the

domain, and the dictionary corpus. These dictionary DGA

families are often undetected by methods proposed in prior

research aimed at general DGA detection because of the

large number of families available for other types of DGAs.

By targeting where others are weaker, our model can pro-

vide greater coverage when used in conjunction with generic

DGA models and other contextual information for increased

confidence in identification.

Much of prior DGA research has involved making

lookups into historical or related domain name server

(DNS) records. Such methods often rely on signals attained

from Non-Existent Domain (NXDomain) responses when

unregistered domains are queried. Since DGAs often gener-

ate hundreds of domains per day and at most only a few of

those domains are actually registered by the attacker, large

numbers of these requests result in NXDomains. Many

NXDomain responses from the same computer are unlikely

to result from expected user behaviour, and thus this pattern

of DNS traffic can be associated with DGA activity [12,

25, 30].

However, such queries within high-volume DNS log data

can be prohibitively slow and unsuitable for real-time deci-

sion-making needed to reduce the risk of compromise. It is

for this reason that our model considers limited data, only

the domain name, rather than all of the potential fields given

through standard network logging. We also only use open

source datasets rather than restricted NXDomain lists for

reproducibility and to provide an accessible starting point for

others looking to tailor this system to their own environment.

Related Work

Defensive tactics began analysing network logs with statis-

tical or manually selected features instead of static black-

listing or rules when it became overwhelming to maintain

them. Unsupervised probabilistic filtering [31] and random

forest models [9, 32] were some of the leading systems for

detecting DGAs.

Future techniques included more contextual information

which improved the longevity of detection systems. Cluster-

ing [5, 25, 33], Hidden Markov Models (HMMs) [12], ran-

dom forests models [34–36], and sequential hypothesis test-

ing [30] used data such as WHOIS or NXDomain responses

with the domain to identify DGAs. However, a number of

these techniques require batches of live data to maintain

relevancy or high volumes of data which are not typically

feasible in real-time environments.

Deep learning first addressed DGA detection with work

by Woodbridge et al. [11], an implementation of an LSTM

used for nonspecific DGA analysis. Their experiments

show that their deep learning approach, an LSTM network,

outperforms a character-level HMM and a random forest

model that utilise features such as the entropy of character

distribution. Their analysis and implementation led to a large

success for identifying most DGA families; however, their

LSTM did not score highly on suppobox or matsnu, dic-

tionary DGA families.

Since then others have joined the field, implementing a

variety of deep learning models. Several took the LSTM

model from Woodbridge et al. and provided improvements.

Tran et al. [14] took the native class imbalance of DGA data

 SN Computer Science (2021) 2:110110 Page 4 of 17

SN Computer Science

into account. Others updated the training data with other

known DGA datasets [10, 15] or added more contextual

information to the score [37]. Another altered the original

architecture of their LSTM to a bi-directional LSTM layer

[17], demonstrating the potential enhancements of changing

the model’s architecture.

When a CNN was applied to text classification [38–40]

and showed success over an LSTM on some tasks [19, 41],

it was eventually applied to malicious URL analysis [18].

Other approaches to this problem include a Generative

Adversarial Network (GAN), showing that the arms race

for DGA detection could advance on its own [26]. Recent

work combining CNN convolutions and LSTM temporal

processing into new sequential hybrid models have also

been brought to this problem [20, 42–44]. Other compara-

tive works have been published attempting to finalise which

model is the best for DGA detection [10, 20, 45–48]. Their

evaluations state deep learning maintains greater success

over random forest models trained using manually-selected

features, but do not consider the greater context of the

model’s deployment or implementation environment. Our

research picks up this work, systematically evaluating deep

learning architectures to specifically target where most DGA

detection systems consistently underperform: dictionary

DGAs.

Koh et al. were one of the first to train deep learning to

specifically target dictionary DGA domains [49]. Utilising

a pre-trained embedding for the words within the domain,

they trained an LSTM both on single-DGA and multiple-

DGA data sets. While their results set the bar for dictionary

DGA detection, their model had severe limitations from its

context-sensitive word embedding on what it could learn and

they did not use all available data during training and test-

ing. Another related work on dictionary DGA detection is

WordGraph from Pereira et al. [13]. They take large batches

of NXDomains and the longest common substring (LCS) of

every pair within the set, connecting any co-occurring LCS

within a single domain name to construct their WordGraph.

The dictionary DGA domains are shown to cluster whereas

benign domains have no discernible pattern and is shown to

generalise over changes to the DGA’s dictionary. A random

forest classifier is trained on the patterns between domains

to identify dictionary DGA patterns. This method shows

promise at adapting to different DGAs. However, it is too

computationally intensive for many systems to support for

only domain name analysis.

Real-Time Deployment Environment

Within a large corporation with thousands of employees,

security tools struggle to assist analysts attempting to

monitor corporate assets. Analysts investigating anomalous

activity use a variety of filters to limit the data they need to

consider before finalising a verdict on any given activity.

We assume other filters for response type, network proto-

col, NXDomain results, proxy labels, etc. are also included.

Scores from a model for dictionary DGA detection would

be added into the system for analysts to include whichever

additional information they deem necessary.

Much like the work by Kumar et al. [50] and Vinayaku-

mar et al. [16], we aim to not only address this cyber security

issue with text classification techniques, but also the greater

system in which the model would be deployed. Prior sys-

tems consider the various model performance metrics on

common data sets as well as the real-world generalisability,

response time, and scalability of their chosen model when

scoring domains in real time. We extend their work to new

controlled tests and describe deploying detection systems

within a corporate environment.

Bilbo the “Bagging” Hybrid Model

We present a new deep learning model to deploy for real-

time dictionary DGA classification. As mentioned before,

deep learning architectures are capable of learning variations

to dictionaries and DGAs, with the added benefit of training

quickly. There have been many deep learning architectures

published for this task for state-of-the-art comparison.

Since we can treat domains as sequences of characters,

LSTM models are a natural fit for classifying DGA domains.

LSTM nodes make decisions about one element in the

sequence based on what it has seen earlier in the sequence.

Thus, LSTM nodes learn parameters that are shared across

the elements of sequence. This parameter sharing allows

LSTMs to scale to handle much longer sequences than

would be practical for traditional feedforward neural net-

works [51]. For example, an LSTM neuron might recall that

it has seen seven vowels in a nine-character domain, making

it unlikely that the domain is made up of natural English

text. This sequential specialisation of LSTMs attracted us

initially, but we found it alone could not generalise to new

dictionary DGAs as well as other architectures.

Others have applied CNNs in various forms since used

for URL analysis by Saxe et al. [18]. Convolutional neural

networks (CNNs) were designed to handle information that

is in a grid format, such as pixels in an image matrix. By

treating text as a one-dimensional grid of letters, CNNs were

shown to have excellent results for natural language tasks

[39, 40]. We translate domain names to arrays of characters,

allowing the CNN to examine local relationships between

characters via a sliding window, thus grouping characters

together into words. For example, the domain “facebook”

can be broken down into four-character windows: “face”,

“aceb”, “cebo”, “eboo”, and “book”. By dividing character

SN Computer Science (2021) 2:110 Page 5 of 17 110

SN Computer Science

arrays into smaller, related parts in this manner, CNNs dem-

onstrated success on URL classification tasks [18].

When multiple models perform well on the same task,

many practitioners have combined models or model architec-

tures to enhance the various benefits they individually pro-

vide. The most common technique is to combine pre-trained

models to form an ensemble model, where each individual

model produces a score and these scores are combined in

some way to produce a new score. In this context we could

train a general DGA classifier that combines one model

trained to classify character DGA domains and another

trained to classify dictionary DGA domains. The benefit of

combining both models is dependent on how they are com-

bined and how it decides which model to “trust” for its final

decision without the context of how they were developed.

Hybrid models are similar to ensemble models, but rather

than taking the individual score from each component, a

hybrid model combines the architectures before the extracted

features are reduced to a single score. These models are

trained as a single end-to-end model. A hybrid architecture

allows the model to learn which combinations of features of

the input are significant indicators for accurate classifica-

tion. Most common hybrid models combine architectures

by stacking them in different ways. For instance, using a

CNN’s convolutional layer to extract features and then feed

them into an LSTM layer [20, 42–44, 52].

Our novel hybrid model, as seen in Fig. 1, processes

domain names via an LSTM layer and a CNN layer in par-

allel. The outputs of these two architectures are then aggre-

gated or “bagged” by a single-layer ANN. This “bagging” is

a vital opportunity for this model to discern which parts of

the captured information from the LSTM and CNN assists

the best when labelling dictionary DGA and benign domains.

Inserting an ANN instead of a single function increases the

potential optimisation of the “bagging”. Because of the

importance of this piece in the architecture, we named our

model Bilbo the “bagging” model. Unlike ensembles which

optimise its components prior to conjoining, hybrids opti-

mise over all the components. As demonstrated in our results

(“Results”), Bilbo successfully combines LSTM, CNN, and

ANN layers for dictionary DGA detection and is the best at

consistently classifying dictionary DGAs amongst state-of-

the-art deep learning models.

Data Analysis

To better understand the success and failures of the mod-

els used in our tests, we conducted a brief analysis of our

data set of known dictionary DGAs. The dictionary DGA

domains were selected from collections of related DGAs,

called DGA families, published on DGArchive [6], a trusted

database of domains extracted from reverse-engineered

DGA malware. From this source, several families of DGAs

were empirically identified as solely dictionary DGAs based

on the structure of the domain names generated by malware

samples. The families selected were suppobox, gozi, and

matsnu with domains collected over 2 years (2016–17)

by DGArchive. After removing duplicate domain names,

the resulting selection contained 137, 745 samples of sup-

pobox, 18, 539 samples of matsnu, and 20, 313 samples

of gozi.

The legitimate domains in the training set originate from

the Alexa Top 1 Million domains, measured in 2016 [53].

The Alexa list ranks domains by the number of times each

has been accessed. Since DGA-based malware tends to

use domains for short periods of time, we assume that top

Alexa domain names are human-generated and label them

Fig. 1 High-level architecture of Bilbo; the component models

are highlighted in blue. Raw domains are input and encoded into

sequences before being passed to the separate LSTM and CNN archi-

tectures. The features extracted by each of these component architec-

tures are sent to a single layer ANN or a hidden layer, which is then

flattened to produce the output, a single score

 SN Computer Science (2021) 2:110110 Page 6 of 17

SN Computer Science

as non-DGA. These popular domains, mostly containing

valid English words, encourage the model to learn charac-

teristics of legitimate combinations of English words. We

randomly sampled an equivalent number of domains from

Alexa to match the total number of dictionary DGA samples

available.

To further understand our data, we conducted several

comparisons:

1. By extracting the longest common substrings within

each family, compare the lists between families for dic-

tionary similarity. See Fig. 2 for a summary of those

results

2. Using the widely adapted Jaro–Winkler algorithm for

string similarity [54], we compared every domain in our

data set within their own families and with every other

family. The histogram in Fig. 3 shows us how similar

families are and how this could influence the results for

generalisability.

Longest Common Substring (LCS)

The application of this algorithm was inspired by Pereira

et al.’s technique for dictionary extraction [13]. We applied

this to each individual group (alexa, suppobox, gozi,

and matsnu) to generate a list of every LCS between

pairs of domains. These lists contain all possible dictionary

words used to generate the domains. By comparing the lists

between the families, we can see how learning one family’s

list could assist in identifying the other. Figure 2 visualises

the overlap between sets with a chord diagram.

The circumference is partitioned into four parts and is

labelled with the count for the number of times overlapping

substrings were seen as the LCS for a domain pair within its

family. For instance, look at the black vertical chord between

gozi and alexa. The colour black means that alexa, the

family assigned black, is the smaller portion of this relation-

ship, i.e. fewer of its LCS (approximately 10 million) are

within the overlap with gozi (approximately 100 million).

LCS overlapping between alexa and gozi also include

LCS from other overlaps. gozi’s large partition of the cir-

cumference while also being the smallest family means it

overlaps frequently with other groups. Overall matsnu and

gozi have the largest overlap, sharing 8.6% of their LCS

and 92% of their LCS when including the number of times

it was seen as the LCS of a pair. The longest LCS between

them was 14 characters; the average length for LCS was

4.238 characters. Therefore, there must be only a few very

common substrings between the families, which deep learn-

ing models could learn.

Fig. 2 Comparing the shared

largest common substrings from

within each domain family con-

sidered during our classification

(alexa, suppobox, gozi,

and matsnu). The circumfer-

ence is grouped by colour for

each family. The counts are for

the number of times the over-

lapping LCS was an LCS for a

domain pair within a given fam-

ily. Note that any overlap in the

centre has no meaning and the

counts contain overlap between

LCS shared between one pair of

families and any other

SN Computer Science (2021) 2:110 Page 7 of 17 110

SN Computer Science

Jaro–Winkler (JW) Score

To understand the similarity of an entire domain string

with any other domain, we used the JW score [54]. This

algorithm takes the ordering of the characters and the col-

lection of characters to develop a score between [0,1].

The closer the score is to one, the more similar the

domains are to one another. We compared every domain

to generate diagrams such as Fig. 3.

Most families follow the same distribution with a mean

of about 0.5 for JW score. However, notice the slight skew

in alexa and suppobox. Due to a large percentage of

their domains having little to no JW similarity, the average

score for alexa was 0.4023 and suppobox was 0.4901.

This slight difference is amplified when considering other

aspects of the family. Both suppobox and alexa have

the smallest average lengths of domains at 13 and 9 char-

acters, respectively. Both groups have a standard deviation

of approximately four characters and most frequent length

of about eight characters. With this, the low JW scores for

alexa and suppobox make sense with shorter domains.

The other sets, matsnu and gozi, are much longer in

comparison with most frequent lengths of 14 and 23 char-

acters, respectively. The dictionary for their DGAs seems to

select from shorter, 3–5-character words. Since there are less

possible combinations of valid short words, more overlap

between gozi and matsnu, which is also apparent in Fig. 2.

This exploratory data analysis helped us develop an intui-

tion around how different dictionary DGAs relate to each

other and gave us hope that models would pick up on these

relationships even though most of these families use differ-

ent dictionaries and generation algorithms. Also, this same

analysis should prove useful when comparing and expand-

ing the model with other dictionary DGA families as they

emerge.

Experimental Design

We frame the DGA detection problem as a binary text clas-

sification task on only the domain string. The score pro-

vided by our model can then be used independently or be

Fig. 3 Histogram of the Jaro–

Winkler scores of each diction-

ary DGA family and Alexa. A

distribution line was drawn over

it to assist in tracing the trends

of the scores

 SN Computer Science (2021) 2:110110 Page 8 of 17

SN Computer Science

enriched with additional security context. In this section,

tests are designed on known labelled data to demonstrate

the baseline performance of each model. These experiments

reflect practitioner concerns on model deployments within

real-world context:

1. Testing the model’s ability to do binary classification

with of benign and dictionary DGA domains

2. Evaluating the model’s generalisability for identifying

unseen dictionary DGAs

3. Examining the model’s scores as the dictionaries and

DGAs evolve over time, how well can the model classify

new dictionary DGA domains from known families

We compare Bilbo to four deep learning models: a single-

layer ANN, CNN, LSTM, and MIT’s CNN-LSTM Hybrid

[20, 52]. Each is based off of state-of-the-art models for

DGA classification; the implementation for each is described

below. Our results highlight the strengths and weaknesses of

each architecture in the different scenarios.

Testing

Each experiment uses data pulled from the Alexa Top 1 Mil-

lion list [53] and DGArchive [6]. The only three available

dictionary DGA families are considered: gozi, matsnu,

and suppobox. For model training and validation, the data

is always separated into three sets: training, testing, and

holdout. Training and testing are used at every epoch to see

if early stopping should occur, preventing overfitting. The

results for each metric, listed in “Results”, are from applying

the model to the holdout set.

Testing Classification

The first test evaluates how the model performs for binary

classification between benign (negatives) and dictionary

DGA domains (positives). With a balanced dataset, 80% was

used for training the model. The remaining 20% (approxi-

mately 60,000 domains) was randomly sampled to use for

testing and holdout: 50,000 domains for testing the model

at each epoch and 10,000 domains for validating the model

after training was completed. All training, testing, and vali-

dation data sets contained an approximately equal number

of positives and negatives.

Testing Generalisability

This test evaluates how the model generalises to unseen

dictionary DGAs. For this, three trials are created from the

data sorted by dictionary DGA family. Each trial takes two

of the families for training and splits the third over testing

and holdout. For example, one variant uses matsnu and

suppobox domains to train the model while evaluating the

model’s performance using gozi domains. This paper is the

first to test DGA detection models in this way.

Testing Time-Based Resiliency

DGAs have been found to evolve over time, varying their

generation algorithms slightly or using entirely new diction-

aries [50]. While our tests for generalisability highlight some

of the deep learning models’ ability to classify alterations

in the dictionary DGA, they are limited by our scope of

sampling in 2016-17.

To test detection system’s resiliency on future versions of

dictionary DGA domains, we evaluate our models trained

on data from 2016-17 with DGA samples from November

2019. Models trained on all three dictionary DGA families

are applied to this dataset.

Implementation of Deep Learning Models

Deep learning models take numerical sequences as input.

Thus, every domain string is encoded as an array of inte-

gers and then padded with zeros to ensure that all inputs are

of the same size. Each Unicode character is mapped to an

integer through a constructed list of 40 valid domain-name

characters. For example, “google” would be converted to

[7, 15, 15, 7, 12, 5] and padded with zeros at

the beginning to get all inputs up to our maximum length

of a domain string: 63 characters. Our final input is [0,

0, ..., 0, 7, 15, 15, 7, 12, 5]. During

initial iterations, we confirmed that padding the end of the

sequence made no difference when compared with pad-

ding the beginning of the sequence. Rather than a common

embedding for all deep learning models, the embedding is

learned by the model during training. The outputs from each

deep learning model is a score, a single float between zero

and one. This value indicates the model’s confidence that the

domain was generated by a dictionary DGA.

We compare our main model, Bilbo, against four models

adapted from state-of-the-art architectures: a single layer

ANN, a CNN, an LSTM, and MIT’s Hybrid [20, 52]. The

code for each model is in listed at the end. As mentioned in

“Related Work”, deep learning models have frequently been

shown to outperform feature-based approaches for DGA

detection and are capable of millisecond scoring speeds.

Because of these ideal characteristics for a dictionary DGA

detection system, Bilbo is only compared to other deep

learning architectures.

All models were built in Keras [55] using the Tensor-

Flow [56] backend on a MacBook Pro to convey the ease

for model retraining and that models can be deployed on

SN Computer Science (2021) 2:110 Page 9 of 17 110

SN Computer Science

smaller cloud servers. Each model is trained three times for

ten epochs with a batch size of 512.

Artificial Neural Network (ANN)

This fundamental model architecture underlies both the

CNN and LSTM. As a baseline for this study, similar to Yu

et al. [20], we include a single-layer ANN with 100 neurons

in its hidden layer during our testing and consideration. This

architecture is also included within Bilbo as the conjoin-

ing layer for the parallel CNN and the LSTM component

architectures.

Long Short-Term Memory (LSTM) Network

This architecture is a slight adaptation on the LSTM used by

Woodbridge et al. [11]. Because it was tuned for a slightly

different task, we re-evaluated some of its hyperparameters.

From our automated grid search of hyperparameters, as

shown in Fig. 4, it was clear that increasing LSTM layer

size improved our accuracy on the testing set for generic

binary classification. We found that an LSTM layer of 256

nodes provided us with the highest accuracy on the testing

dataset without loss to its performance in real-time deploy-

ments. The only alterations to the original model were the

input parameters to match our standard across models and

doubling the size of the LSTM layer. This is the same archi-

tecture implemented as a component within Bilbo.

Convolutional Neural Network (CNN)

We followed Saxe et al.’s parallel convolution structure [18]

to compare with state-of-the-art with a CNN. After testing a

variety of filter sizes individually, combinations of various

filters were also analysed to find the best architecture for

our task. Based LCS analysis for each family, the major-

ity of substrings within dictionary DGAs appeared to be

within the range of two to six characters. This model’s final

architecture includes five different sizes (2–6 characters) of

convolutions, 60 filters of each length with a stride of one

character, and pooling later concatenated to provide a vast

amount of information towards the final score. This archi-

tecture balances the model complexity against the prediction

accuracy on our training set.

Bilbo

Our initial results with the individual LSTM and CNN, as

seen in Table 2, indicated each model was learning relevant

but distinct characteristics for accurate identification of dic-

tionary DGAs. Bilbo’s architecture “bags” the extracted fea-

tures from the LSTM and CNN with a hidden layer of 100

nodes, from which a final prediction is rendered. This hybrid

model learns to balance the features extracted by both the

LSTM and CNN. The same architectures described previ-

ously for the individual ANN, LSTM, and CNN are com-

bined to form Bilbo. This model is the first parallel usage of

a CNN and LSTM hybrid for DGA detection.

MIT Hybrid Model

Based on the original encoder–decoder model presented

by MIT [52], several recent publications have adapted this

CNN-LSTM hybrid model to DGA classification [20, 44,

47]. Unlike our model, this uses the CNN convolutions to

feed inputs into an LSTM. The MIT hybrid architecture

adapted by Yu et al. [20] is another benchmark during test-

ing. Comparing Bilbo’s parallel usage of a CNN and an

Table 2 Samples of identified dictionary DGA domains with the top

50 scores from our holdout set from each component model (LSTM

and CNN) and our hybrid, Bilbo. Blue are domains seen initially in

the LSTM’s top 50 samples and then in Bilbo’s top 50 samples. Same

for the yellow domains, but seen in the CNN samples and then in

Bilbo’s samples. Orange is a domain that appeared in different ranks

within all three models

 SN Computer Science (2021) 2:110110 Page 10 of 17

SN Computer Science

LSTM to this model demonstrates the significance of our

parallel architecture in binary classification of dictionary

DGAs.

Their single convolutional layer consists of 128 one-

dimensional filters, each three characters long with a stride

of one. This is fed into a Max Pooling layer before a 64-node

LSTM. This model contains no drop out and relies on a sin-

gle sigmoid to flatten the results to a single score.

Metrics for Comparison

Considering real-world applications for DGA detection, a

balance between incorrect domains and lack of confidence

for true dictionary DGA domains must be found. To help

measure each model’s performance for this, three core met-

rics are calculated to summarise common metrics used in

machine learning research. The first is the area under the

receiver operating characteristic (ROC) curve (AUC), which

measures the model’s ability to detect true positives as a

function of the false positive rate. Maximising AUC means

improving labelling of both positive and negative samples.

The second is accuracy; how well the model scored positive

and negative labels our of all samples in the holdout set.

Finally, the F
1
 score is the harmonic mean of precision and

recall, giving insight to the context of true positive labels

within the holdout set.

Using abbreviations for true positive (TP), true negative

(TN), false positive (FP), false negative (FN), true-positive

rate (TPR), and false-positive rate (FPR), these are com-

puted in the following ways:

(1)Precision =

∑

TP
∑

TP +
∑

FP

(2)Recall =

∑

TP
∑

TP +
∑

FN

(3)F
1
= 2 ∗

Precision ∗ Recall

Precision + Recall

(4)Accuracy =

∑

TP +
∑

TN
∑

TP +
∑

FP +
∑

TN +
∑

FN

(5)TPR =

∑

TP
∑

TP +
∑

FN

Fig. 4 Graph of hyperparameter

grid search used to inform deci-

sions on the LSTM architec-

ture. The LSTM layer size and

optimiser are compared for

accuracy on the test set, demon-

strating improved performance

using larger networks and

either the adam or rmsprop

optimiser

SN Computer Science (2021) 2:110 Page 11 of 17 110

SN Computer Science

Consistency of the core metrics in every setting is key to

finding the best performer while evaluating models on

labelled data. To quantify this, the core metrics are treated

as assessment questions: one point of consistency is awarded

to each of the top three models within every core metric. The

model with the most points across testing classification and

generalisability is deemed the most consistent performing

model.

Results

In this section, we elaborate on the values of metrics from

each model resulting from each test. The threshold for a

label for every test was 0.5. Overall, the priority is to accu-

rately apply both positive and negative labels to the dataset.

From these tests, the model with the best consistency score

is viewed as the best for deploying into real world settings.

Results of Testing Classification

The values for the metrics from this test are provided in

Table 3. In this test, the ANN is significantly worse than the

specialised deep learning models in every metric, according

to a student t-test with 95% confidence on the all collected

results. The ANN’s FPR of 0.1953 is almost a whole mag-

nitude worse than MIT’s FPR, which was the best.

The CNN and LSTM are statistically similar in all metrics

with the LSTM outperforming the CNN in most precision,

TPR, and FPR. This is due to the imbalance between the

dictionary DGA families, with suppobox comprising of

about 78% of the malicious samples. During our substring

analysis, we found that suppobox contained the long-

est substrings, revealing that models which learn the long

sequence of suppobox’s dictionary words would have an

advantage when classifying the majority of dictionary DGA

domains. The LSTM is designed to learn sequential relation-

ships between characters rather than subsets of characters

(6)FPR =

∑

FP
∑

FP +
∑

TN
.

like the CNN. This is why the LSTM beats the CNN and, as

shown in Table 6, is a consistent leader in the core metrics.

Both MIT’s hybrid model and Bilbo perform the best

across all metrics. The difference between the two is insig-

nificant in all metrics, differing less than 0.01 for the F
1

score, Accuracy, and AUC. This near identical performance

is similar to the LSTM and CNN comparison earlier. There

is also a pattern in most of the metrics that when the CNN

is better than the LSTM, Bilbo is better than the MIT model

and vice versa. MIT’s parameters are mostly dedicated to the

LSTM layer, explaining the similar performance between

the two models.

Bilbo consistently performs between or better than its

component models in all metrics by regularising the perfor-

mance of the LSTM and CNN with an ANN, displaying the

expected results of our parallel architecture. In the empirical

analysis of the results, the top scoring domains from both the

CNN and LSTM were present in the final scoring of Bilbo

as expected.

The difference between the deep learning models, exclud-

ing the ANN, in this test is very small. Given a domain

name, they are all successful at labelling dictionary DGA

domains from benign domains after learning from three

diverse dictionary DGA families. The consistency scores

for this test place the LSTM model, the MIT model, and

Bilbo as the best performers.

Results of Testing Generalisability

As presented in Table 4, the metrics have been limited to

three core metrics to maximise for best overall performance.

A model’s AUC indicates the model’s likelihood of correctly

classifying a sample as a positive or negative. The F
1
 score

conveys how well the model correctly labels dictionary DGA

domains with regard to those that should be or were labelled.

Accuracy states how well the model labelled the data within

this particular holdout set.

The values for the core metrics were not expected to sur-

pass 0.9 due to the differences between each dictionary DGA

family. Analysis of each family’s LCS and the JW scores

between families not depicted in this paper stated some

families overlap more with one family than another. This

Table 3 (Testing classification)

Comparing the results of

five different deep learning

architectures for binary

dictionary-DGA classification

The labelled training and testing set are composed of a random selection from all three dictionary DGA

families. The best of each column is in bold

Model Recall Precision F
1
 Score TPR FPR AUC Accuracy

ANN 0.9077 0.8250 0.8644 0.8250 0.1953 0.9290 0.8566

CNN 0.9730 0.9473 0.9600 0.9473 0.0545 0.9919 0.9593

LSTM 0.9675 0.9627 0.9651 0.9627 0.0370 0.9932 0.9653

MIT 0.9583 0.9710 0.9646 0.9710 0.0282 0.9946 0.9651

Bilbo 0.9766 0.9557 0.9660 0.9557 0.0454 0.9944 0.9656

 SN Computer Science (2021) 2:110110 Page 12 of 17

SN Computer Science

dependence influences each model’s performance by limit-

ing its ability to generalise unless certain families have been

seen before. Hence the values across this table are lower

than in Table 3.

The ANN outperforms the other models in this task with

higher core metrics in two of the trials. However, it also only

surpasses the other models when matsnu or gozi are part

of the training set. Figure 2 depicts a large overlap in their

LCS. This could explain what the ANN is able to learn for

better performance on new DGAs when either matsnu or

gozi is in the training set and the other is in the testing set.

The next most consistent performer in this test is the

CNN. Its training on smaller character windows allows it

to excel when applied to new dictionary DGAs. Based on

earlier data analysis, the most frequent LCS in every family

were three to four characters and typically overlapped. The

large overlap in LCS between matsnu and gozi reinforce

these short substrings, explaining why the CNN outperforms

others when both matsnu and gozi are in the training set.

Results of Testing Time-Based Resiliency

The final test is on a single day’s worth of recent domain

samples from each of the dictionary DGA families already

considered. Listed are the ratios of true positives out of the

total number of samples for that dictionary DGA family.

Total samples for each family are as follows: 1325 from

gozi, 686 from matsnu, and 4257 from suppobox.

Using all of the trained models from the classification

test, the average scores are listed. The results are close

between all model architectures and, when averaged, are

close to the accuracy seen during testing. As for the relative

decrease in accuracy for matsnu and gozi, this is due to

the class imbalance between the dictionary DGA families in

the dataset. Regardless of which model selected for deploy-

ment, it will need to be updated frequently with new labelled

data whenever trusted and available to increase this accuracy

on future dictionary DGA domains (Table 5).

Throughout all of these tests, each state-of-the-art deep

learning model achieves top metrics. To determine which is Ta
b

le
 4

 (T

es
ti

n
g
 g

en
er

al
is

ab
il

it
y
)

C
o
m

p
ar

in
g
 t

h
e

re
su

lt
s

o
f

d
ee

p
 l

ea
rn

in
g
 a

rc
h
it

ec
tu

re
 f

o
r

g
en

er
al

is
ab

il
it

y
 o

f
d
ic

ti
o
n
ar

y
 D

G
A

 c
la

ss
ifi

ca
ti

o
n

A
s

d
o
cu

m
en

te
d

 f
o
r

ea
ch

 t
ri

al
,
th

e
to

p
 r

o
w

 l
is

ts
 t

h
e

tr
ai

n
in

g
 d

ic
ti

o
n
ar

y
 D

G
A

 f
am

il
ie

s
w

it
h
 a

n
 a

rr
o
w

 g
o
in

g
 t

o
 t

h
e

te
st

in
g
 f

am
il

y.
 T

h
e

b
es

t
o
f

ea
ch

 c
o
lu

m
n
 i

s
in

 b
o
ld

M
o
d
el

m
a
t
s
n
u

 +
 s
u
p
p
o
b
o
x

 →
 g
o
z
i

m
a
t
s
n
u

 +
 g
o
z
i

 →
 s
u
p
p
o
b
o
x

A
U

C

F
1

A
cc

u
ra

cy
A

U
C

F

1
A

cc
u
ra

cy

A
N

N
0
.8

3
4
7

0
.7

4
6
5

0
.7

5
1
4

0
.7

7
2
8

0
.5

8
5
8

0
.6

6
6
5

C
N

N
0
.9

1
2
9

0
.5

8
8
1

0
.6

9
5
4

0
.8

1
4
0

0
.5

9
0
9

0
.6

8
5
5

L
S

T
M

0
.8

7
9
7

0
.4

0
6
6

0
.6

1
4
9

0
.7

5
5
6

0
.6

0
1
0

0
.6

7
3
9

M
IT

0
.8

9
7
1

0
.3

9
2
3

0
.6

1
0
3

0
.7

6
1
6

0
.5

3
7
9

0
.6

6
1
2

B
il

b
o

0
.9

1
3
7

0
.5

3
5
7

0
.6

7
0
8

0
.8

0
3
2

0
.5

6
6
0

0
.6

7
2
9

M
o
d
el

g
o
z
i

 +
 s
u
p
p
o
b
o
x

 →
 m
a
t
s
n
u

A
U

C

F
1

A
cc

u
ra

cy

A
N

N
0
.7

8
0
5

0
.7

0
3
3

0
.7

2
3
0

C
N

N
0
.8

1
8
0

0
.5

0
3
8

0
.6

5
3
7

L
S

T
M

0
.8

4
1
4

0
.3

1
8
9

0
.5

8
6
2

M
IT

0
.8

4
3
9

0
.4

6
0
0

0
.6

3
3
6

B
il

b
o

0
.8

3
0
9

0
.4

2
1
8

0
.6

2
1
7

Table 5 (Testing time-based resiliency) Ratio correct at scoring dic-

tionary DGAs from each family within the sample from November

2019

The best of each column is in bold

Fully-trained

model

matsnu suppobox gozi

ANN 0.8746 0.9204 0.9517

CNN 0.8732 0.9962 0.9585

LSTM 0.8936 0.9522 0.9426

MIT 0.8790 0.9976 0.9386

Bilbo 0.9023 0.9962 0.9472

SN Computer Science (2021) 2:110 Page 13 of 17 110

SN Computer Science

the best, we consider the application environment the model

is to be deployed in and its need for a consistent well-per-

forming model. After aggregating the consistency points for

the top performers from every core metric in each test and

trial, presented in Table 6, Bilbo is found to be the most con-

sistent and capable model for deploying within real-world

dictionary DGA detection systems.

Real‑World Deployment

Once Bilbo was trained, tested, and validated using

open source data from the Alexa Top 1 Million [53] and

DGArchive [6], we evaluated performance in a live system.

We deployed the model on a cluster of servers to be queried

by a data pipeline and applied the model to live network

traffic from a large enterprise.

Implementation at the Corporate Level

Within corporate environments, a large security information

and event management (SIEM) system is typically used to

centralise and process relevant data sources. Security ana-

lysts use the SIEM for their daily work to investigate suspi-

cious activity within their environment. The data they view

is limited by a series of filters and joins they apply on vari-

ous datasets.

To productionise Bilbo in a high-throughput environment

generating hundreds of domains per second, we developed

a model as a service framework. This framework promotes

scalability, modularity, and ease of maintenance. Client sys-

tems processing domain names, such as the SIEM, make

requests of the model servers to receive scores on new

domains. This communication is performed using gRPC,

Google’s library for remote procedure calls [57], which was

selected for its speed over methods like REST (Represen-

tational State Transfer). The communication from client to

server is language-agnostic, allowing a client written in Java

or Scala to interface seamlessly with our Python model.

A load balancer manages traffic to the model servers and

only the load balancer endpoint is exposed to the client. This

allows multiple clients to reach out to a single location to

receive scores from the model. Any number of model serv-

ers can run behind the load balancer, but these details are

abstracted away from the clients, who only interface with

the load balancer endpoint. This allows us to increase and

decrease the size of the model server cluster in response to

changing without interrupting service; such scaling can be

configured to take place automatically in response to metrics

like CPU utilisation.

While our model does not learn inline, its predictions,

combined with a ground truth label provided by an analyst,

can be used to retrain the model, allowing it to learn from

mistakes and improve its predictive power. Thus, we need

to be able to deploy a retrained model frequently and with

low overhead. Since the model server cluster is behind a

load balancer, we can make this change without shutting

down the service. We simply put additional model servers

(running the newest model) behind the load balancer, and,

once they have been confirmed to run successfully, remove

the model servers running an outdated version. The model

update process can be seen in Fig. 5. Along with their scores,

the model servers return the version of the model that they

are running; this is helpful in evaluating our models over

time and in distinguishing between models during the brief

overlap period when two versions of the model are running

behind the load balancer.

Several key design decisions allow us to handle requests

to the service at very large scale. While gRPC minimises

network latency by allowing bi-directional streaming

between the client and server, the calls to our service are still

time-intensive, so we built in a bloom filter caching mecha-

nism on the client side to avoid this bottleneck. This more

intelligent client only reaches out to the server if it receives

a domain that it has not recently seen before. Our analysis of

domain traffic revealed that only 15% of domains are unique

in an hour of traffic; this optimisation dramatically reduces

the workload of our model server cluster.

We evaluated Bilbo based on its processing capacity and

its findings, as seen below. Our initial prototype consisted

of a single client reaching out to a load balancer with a sin-

gle server in the cloud. With an unoptimized compilation

of Tensorflow for our back end, the fastest scoring aver-

aged to approximately 10 ms per record, increasing linearly

Table 6 Consistency scores

from each of the tests

(1 = classification, 2 =

generalisability, 3 = time-based

resiliency) and the overall result

Calculated by counting the number of times each model was top three for a core metric. The best of each

column is in bold

Model Test 1 + Test 2 + Test 3 = Overall

ANN 0 6 0 6

CNN 0 8 1 9

LSTM 3 3 0 6

MIT 3 4 1 8

Bilbo 3 6 1 10

 SN Computer Science (2021) 2:110110 Page 14 of 17

SN Computer Science

with an increasing number of requests. If we anticipate 1000

domains per second, our model only needs to be hosted on

10 servers. On a Cloud service such as Amazon Web Ser-

vices, we can keep a ten-node cluster running for less than

fifty cents (USD) per hour.

Results in Enterprise Traffic

For further model performance testing, Bilbo is evaluated on

real-world network traffic. Randomly selecting one window

of traffic from August 14th, 2017, and another window of

traffic from November 15th, 20172. Each network sample

set contains domain names over a 2-h period. After parsing

the domain names from the URLs in the logs, the August

and November data contained 20,000 and 45,000 unique

domains, respectively.

Since we lack ground truth for the domains in our cap-

tured samples to validate our results, we pulled in additional

information for each domain. First, we included the action

decision of the proxy, which denies domains that are known

to be malicious. Second, we added scores from VirusTotal

[58], a site that aggregates blacklists to provide reputation

scores for domains and is commonly used by security ana-

lysts for evaluation of domains (accessed November, 2017).

Note that both the proxy and VirusTotal are imperfect since

they are unaware of malicious content related to a domain

until thorough analysis has been performed, which can take

many weeks [7]. We cross-referenced the high scores from

our model with the results from the proxy and VirusTotal to

perform a basic investigation.

Feeding our model only the domain names, we discovered

a series of domains with similar naming patterns:

– cot.attacksspaghetti[.]com/affs

– kqw.rediscussedcudgels[.]com/affs

– psl.substratumfilter[.]com/affs

– dot.masticationlamest[.]com/affs

At a glance, these domains follow an algorithmic pattern of

three characters, two words, and the “/affs” ending, mak-

ing them strong candidate dictionary-based DGA domains.

Upon further examination, all of these domains were queried

by the same machine, which, prior to our discovery, had

been deactivated due to complaints of incredibly sluggish

performance. This is highly suggestive of malware activity

using a dictionary DGA network.

Fig. 5 Three stages of the updating process for our Model as a Ser-

vice (MAAS) Architecture for model deployments to be accessible

to SIEM and other client systems. The first stage shows clients inter-

acting through the load balancer with old model servers. To update

the servers, we spin up new model servers with the latest version

and confirm production readiness before attaching them to the load

balancer. Finally, the old model servers are deleted, leaving the new

model servers in their place. At no point during this process will the

clients be unable to receive scores from our models

2 These were recent dates when the model was initially developed for

dictionary DGA detection.

SN Computer Science (2021) 2:110 Page 15 of 17 110

SN Computer Science

Additionally, we found four domains, each representing

distinct suspicious networks matching the expected pattern

for dictionary-based DGA C&C hubs:

– boilingbeetle

– silkenthreadiness

– mountaintail

– nervoussummer

Each of these networks, when visualised by ThreatCrowd,

a crowd-sourced network analysis “system for finding and

researching artefacts relating to cyber threats” [59], are

shown to be comprised of domains that are made up of

two or more unrelated words, all resolving to the same

IP address, in the pattern of a domain-fluxing dictionary

DGA. The “boilingbeetle” network is shown in Fig. 6.

These domains and their related networks were not flagged

by the online blacklists used by VirusTotal; only some

of the domains within each network were blocked by the

proxy.

Further investigation noted that these networks are for

advertisement traffic, indicating that dictionary DGA tech-

niques are being used to bypass ad-blocker mechanisms.

Although not apparently malicious, these five discoveries

of dictionary-based DGA from potential malware, found in

only a few hours of proxy log data, demonstrates that our

solution is able to flag relevant results in live traffic.

Conclusions and Future Work

In this paper, we present a parallel hybrid architecture

named Bilbo, composed of an LSTM, a CNN, and an

ANN, for dictionary DGA detection. Dictionary DGAs

bypass most general, manually defined DGA defences

and are harder to detect due to their natural language

Fig. 6 (Created December 2017) ThreatCrowd network graph of

the domain “boilingbeetle” discovered in enterprise proxy traffic

by the ensemble model. This domain is connected through select IP

addresses to other domains of similar structure, in the pattern of a

command and control network

 SN Computer Science (2021) 2:110110 Page 16 of 17

SN Computer Science

characteristics. Bilbo is compared to state-of-the-art deep

learning models adapted for dictionary DGA classification

and evaluated on consistency over AUC, Accuracy, and F
1

score. Overall, Bilbo is the most consistent and capable

model available.

Bilbo was then applied to a large financial corporation’s

SIEM, providing inline predictions within a scalable frame-

work to handle high-throughput network traffic. During

investigations, our model’s scores were used to filter data

and flag suspicious activity for further analysis.

When applied to several hours of live network logs, Bilbo

successfully classified traffic matching the expected network

pattern: a single IP address hosting several domain names

that make no semantic sense and follow a trend of English

words put together. Although the identified domains from

the network logs were not botnets or worms reaching out

to a C&C, which are very rare, Bilbo was able to identify

dictionary DGAs used by advertisement networks and other

applications with potential malicious intent.

Later improvements include the continued reduction of

false positives and applying natural language processing

(NLP) techniques. One method to reduce false positives

would be to consider layering a generative model to deter-

mine if the input domain is similar to any data Bilbo has

seen before. This could increase or decrease the score, or

add another filter to alter a user’s confidence in the score.

Applicable NLP techniques detect anomalous word combi-

nations in domains by scoring the likelihood words would

be collocated. This could prove fruitful for DGA detection

but heavily depends on the corpus for parsing out words and

gathering initial collocation information to understand for a

baseline of what is normal.

Acknowledgements Thank you to Capital One for the incredible

opportunity to deploy a machine learning model developed for research

into a live environment for evaluation. To Jason Trost, your mentorship

and intellectual curiosity inspires everyone around you. We appreciate

your and Capital One’s support to publish our work as an academic

paper after our talks in industry. To the reviewers at our last attempted

venues, thank you for the incredible feedback that greatly improved

our analysis.

Funding Not applicable.

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of

interest.

Data availability The training and testing data were acquired from

DGArchive [6] and may be requested from the distributors. The appli-

cation data for enterprise traffic are owned by Capital One Bank and

we are unable to share it.

Code availability The model architectures can be found at the follow-

ing Github repository: https ://githu b.com/jinxm irror 13/bilbo -baggi

ng-hybri d.

Open Access This article is licensed under a Creative Commons Attri-

bution 4.0 International License, which permits use, sharing, adapta-

tion, distribution and reproduction in any medium or format, as long

as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons licence, and indicate if changes

were made. The images or other third party material in this article are

included in the article’s Creative Commons licence, unless indicated

otherwise in a credit line to the material. If material is not included in

the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will

need to obtain permission directly from the copyright holder. To view a

copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. Plohmann D, Yakdan K, Klatt M, Bader J, Gerhards-Padilla

E. A comprehensive measurement study of domain generating

malware. 2016

 2. Oprea A, Li Z, Yen T-F, Chin SH, Alrwais S . Detection of

early-stage enterprise infection by mining large-scale log data.

2015

 3. Unit 42. Threat brief: understanding domain generation algo-

rithms (dga). 2019

 4. Lever C, Walls R, Nadji Y, Dagon D, McDaniel P, Antonakakis

M. Domain-z: 28 registrations later; measuring the exploitation

of residual trust in domains. 2016

 5. Yadav S, Krishna Reddy AK, Reddy AL, Ranjan S. Detecting

algorithmically generated malicious domain names. 2010

 6. Fraunhofer FKIE. Dgarchive. 2017

 7. Chaz L, Platon K, Davide B, Juan C, Antonakakis M. A lustrum

of malware network communication: evolution and insights.

2017

 8. Marc K, Christian R, Holz T. Paint it black: evaluating the effec-

tiveness of malware blacklists. 2014

 9. Ahluwalia A, Traore I, Ganame K, Agarwal N. Detecting broad

length algorithmically generated domains. 2017

 10. Yu B, Gray DL, Pan J, Cock MD, Nascimento ACA. Inline dga

detection with deep networks. 2017

 11. Woodbridge J, Anderson HS, Ahuja A, Grant D. Predicting

domain generation algorithms with long short-term memory

networks. 2016

 12. Manos A, Roberto P, Yacin N, Nikolaos V, Saeed A-N, Wenke

L, Dagon D. From throw-away traffic to bots: detecting the rise

of dga-based malware. 2012

 13. Pereira M, Coleman S, Yu B, DeCock M, Nascimento A. Dic-

tionary extraction and detection of algorithmically generated

domain names in passive dns traffic. 2018

 14. Tran D, Mac H, Tong V, Tran HA, Nguyen LG. A lstm based

framework for handling multiclass imbalance in dga botnet

detection. 2018

 15. Akarsh S, Sriram S, Poornachandran P, Menon VK, Soman KP.

Deep learning framework for domain generation algorithms pre-

diction using long short-term memory. 2019

 16. Vinayakumar R, Soman KP, Poornachandran P. Detecting mali-

cious domain names using deep learning approaches at scale. 2018

 17. Lison P, Mavroeidis V. Automatic detection of malware-gener-

ated domains with recurrent neural models. 2017

 18. Saxe J, Berlin K. Expose: a character-level convolutional neural

network with embeddings for detecting malicious urls, file paths

and registry keys. 2017

 19. Shaofang Z, Lanfen L, Yuan J, Wang F, Ling Z, Cui J. Cnn-

based dga detection with high coverage. 2019.

 20. Yu B, Pan J, Hu J, Nascimento A, Cock MD. Character level

based detection of dga domain names, 2018.

https://github.com/jinxmirror13/bilbo-bagging-hybrid
https://github.com/jinxmirror13/bilbo-bagging-hybrid
http://creativecommons.org/licenses/by/4.0/

SN Computer Science (2021) 2:110 Page 17 of 17 110

SN Computer Science

 21. Royal P. Analysis of the kraken botnet. 2008.

 22. Porras P, Saidi H, Yegneswaran V. An analysis of conficker’s

logic and rendezvous points. 2009.

 23. Porras P. Inside risks reflections on conficker. 2009.

 24. Sergei S. Domain name generator for murofet. 2010.

 25. Yadav S, Krishna Reddy AK, Reddy ALN, Ranjan S. Detecting

algorithmically generated domain-flux attacks with dns traffic

analysis. 2012.

 26. Anderson HS, Woodbridge J, Filar B. Deepdga: Adversarially-

tuned domain generation and detection. 2016.

 27. Bitdefender Labs. Tracking rovnix. 2014.

 28. Skuratovich S. Matsnu technical report. 2015.

 29. Geffner J. End-to-end analysis of a domain generating algorithm

malware family. 2013.

 30. Srinivas K, Teryl T, Fabian M, McHugh J. Crossing the threshold:

Detecting network malfeasance via sequential hypothesis testing.

2013

 31. Raghuram J, Miller DJ, Kesidis G. Unsupervised, low latency

anomaly detection of algorithmically generated domain names

by generative probabilistic modeling. 2014.

 32. Schiavoni S, Maggi F, Cavallaro L, Zanero S. Phoenix: Dga-based

botnet tracking and intelligence. 2014.

 33. Zhou Y, Li QS, Miao Q, Yim K. Dga-based botnet detection using

dns traffic. 2013.

 34. Samuel S, Dominik T, Patrick H, Meyer U. Fanci: Feature-based

automated nxdomain classification and intelligence. 2018.

 35. Verma R, Dyer K. On the character of phishing urls: accurate and

robust statistical learning classifiers. 2015.

 36. Yang L, Liu G, Zhai J, Dai Y, Yan Z, Zou Y, Huang W. A novel

detection method for word-based dga. 2018.

 37. Curtin RR, Gardner AB, Grzonkowski S, Kleymenov A, Mos-

quera A. Detecting dga domains with recurrent neural networks

and side information. 2019.

 38. Johnson R, Zhang T. Effective use of word order for text catego-

rization with convolutional neural networks. 2014.

 39. Kim Y. Convolutional neural networks for sentence classification.

2014.

 40. Zhang X, Zhao J, LeCun Y. Character-level convolutional net-

works for text classification. 2015.

 41. Yin W, Kann K, Yu M, Schutze H. Comparative study of cnn and

rnn for natural language processing. 2017.

 42. Chen G, Ye D, Cambria E, Chen J, Xing Z. Ensemble application

of convolutional and recurrent neural networks for multi-label text

categorization. 2017.

 43. Kim Y, Jernite Y, Sontag D, Rush AM. Character-aware neural

language models. 2016.

 44. Mohan VS, Kp VRS, Poornachandran P. S.p.o.o.f net: Syntactic

patterns for identification of ominous online factors. May 2018.

 45. Mac H, Tran D, Tong V, Nguyen LG, Tran HA. Dga botnet detec-

tion using supervised learning methods. 2017.

 46. Berman DS, Buczak AL, Chavis JS, Corbett CL. A survey of deep

learning methods for cyber security. 2019.

 47. Raaghavi S, Choudhary C, Yu B, Tymchenko V, Nascimento A,

De Cock M. An evaluation of dga classifiers. 2018.

 48. Feng, Shuo C, Xiaochuan W. Classification for dga-based mali-

cious domain names with deep learning architectures. 2017.

 49. J Koh, Rhodes B. Inline detection of domain generation algo-

rithms with context-sensitive word embeddings. 2018.

 50. Kumar AD, Thodupunoori H, Vinayakumar R, Soman KP,

Poornachandran P, Alazab M, Venkatraman S. Enhanced domain

generating algorithm detection based on deep neural networks.

2019.

 51. Goodfellow I, Bengio Y, Courville A. Deep learning. 2016.

 52. Vosoughi S, Vijayaraghavan P, Roy D. Tweet2vec: Learning tweet

embeddings using character-level cnn-lstm encoder-decoder.

2016.

 53. Alexa A. Csv with alexa top 1 million sites, directly from the

server. 2013.

 54. Gomaa WH, Fahmy AA. A survey of text similarity approaches.

2013.

 55. KERAS Development Team. Keras: deep learning library for

theano and tensorflow. 2016.

 56. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Cor-

rado GS, Davis A, Dean J, Devin M, t al. Tensorflow: Large-scale

machine learning on heterogeneous distributed systems. 2016.

 57. gRPC Authors. grpc. 2013.

 58. Chronicle Security. Virustotal—free online virus, malware, and

url scanner. 2017.

 59. AlienVault. Threatcrowd—a search engine for threats. 2017.

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

	Real-Time Detection of Dictionary DGA Network Traffic Using Deep Learning
	Abstract
	Introduction
	Background
	Domain Generation Algorithms (DGAs)
	Related Work
	Real-Time Deployment Environment

	Bilbo the “Bagging” Hybrid Model
	Data Analysis
	Longest Common Substring (LCS)
	Jaro–Winkler (JW) Score

	Experimental Design
	Testing
	Testing Classification
	Testing Generalisability
	Testing Time-Based Resiliency

	Implementation of Deep Learning Models
	Artificial Neural Network (ANN)
	Long Short-Term Memory (LSTM) Network
	Convolutional Neural Network (CNN)
	Bilbo
	MIT Hybrid Model

	Metrics for Comparison

	Results
	Results of Testing Classification
	Results of Testing Generalisability
	Results of Testing Time-Based Resiliency

	Real-World Deployment
	Implementation at the Corporate Level
	Results in Enterprise Traffic

	Conclusions and Future Work
	Acknowledgements
	References

