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Abstract

Botnets and malware continue to avoid detection by static rule engines when using domain generation algorithms (DGAs) 

for callouts to unique, dynamically generated web addresses. Common DGA detection techniques fail to reliably detect 

DGA variants that combine random dictionary words to create domain names that closely mirror legitimate domains. To 

combat this, we created a novel hybrid neural network, Bilbo the “bagging” model, that analyses domains and scores the 

likelihood they are generated by such algorithms and therefore are potentially malicious. Bilbo is the first parallel usage 

of a convolutional neural network (CNN) and a long short-term memory (LSTM) network for DGA detection. Our unique 

architecture is found to be the most consistent in performance in terms of AUC, F
1
 score, and accuracy when generalising 

across different dictionary DGA classification tasks compared to current state-of-the-art deep learning architectures. We 

validate using reverse-engineered dictionary DGA domains and detail our real-time implementation strategy for scoring 

real-world network logs within a large enterprise. In 4 h of actual network traffic, the model discovered at least five potential 

command-and-control networks that commercial vendor tools did not flag.

Keywords Domain generation algorithm · Deep learning · Malware · Botnets · Network security · Neural networks

Introduction

Malware continues to pose a serious threat to individuals 

and corporations alike [1]. Typical attack methods such as 

viruses, phishing emails, and worms attempt to retrieve pri-

vate user data, destroy systems, or start unwanted programs. 

The majority of these attacks may be launched through the 

network [2], posing a major threat to any Internet-facing 

device. Some malware reaches out to a command and con-

trol (C&C) centre hosted behind domains generated by an 

algorithm (DGA domains) after it infiltrates the target sys-

tem to receive further instructions. Identification of such 

domains in network traffic allows for the detection of mal-

ware-infected machines.

A single active DGA has been seen generating up to a 

few hundred domains per day [1]. At scale within a com-

pany, this is infeasible for a human analyst to triage amidst 

the thousands of benign domains occurring simultaneously. 

Automated detection systems are developing but the sight-

ings of DGAs in worms, botnets, and other malicious set-

tings is growing [3].

In addition, malware that employs DGAs intentionally 

obfuscates its network communication by utilising ran-

dom seeds when generating their domains [1–5]. Most 

known DGAs combine randomly-selected characters like 
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“myypqmvzkgnrf[.]com”, “otopshphtnhml[.]net”, and 

“uqhucsontf[.]com”1.

However, DGAs that combine random words from a dic-

tionary like “milkdustbadliterally[.]com”, “couragenearest[.]

net”, and “boredlaptopattorney[.]ru” [6] are meaningfully 

harder for humans to detect (see Table 1 for comparison). 

In this paper, we will refer to this type of DGA as a diction-

ary DGA and focus on those using dictionaries composed 

of English words.

Common defences against malicious DGA domains 

include blacklists [7, 8], random forest classifiers [9–11], 

and clustering techniques [12, 13]. When the lists are well 

maintained and the features are chosen carefully, these meth-

ods have acceptable efficacy. However, both blacklists and 

these models possess serious limitations: relying on hand-

picked features which are time-consuming to develop, lack-

ing the ability to generalise with the few manual features 

implemented, and requiring continuous expert maintenance. 

More comprehensive tactics are necessary to detect inces-

sant new DGAs stemming from network-based malware.

Recent innovations using deep learning have state-of-the-

art accuracy on DGA detection. Such models are highly flex-

ible with the proven success in complex language problems. 

They do not require hand-crafted features that are time-

intensive to make and easy to evade. Woodbridge et al. [11] 

were the first to present a long short-term memory (LSTM) 

network for DGA classification. Other architectures were 

later applied, such as further variations on an LSTM [10, 

14–17], a convolutional neural network (CNN) [18, 19], 

and a hybrid CNN-LSTM model [20]. Although success-

ful for random-character DGA domains, these classifiers 

have largely been ineffective in identifying dictionary DGA 

domains. These models also perform well on their various 

testing sets but their performance can suffer when attempt-

ing to generalise to new DGA families or new versions of 

previously seen families.

Against this background, we present a novel deep learning 

model for dictionary DGA detection. This advances the state 

of the art in the following ways. First, we present the first 

usage of parallel CNN and LSTM hybrid for DGA detec-

tion, specifically applied to dictionary DGA detection. The 

model is trained on standard large-scale datasets of reverse-

engineered dictionary DGA domains. It achieves the most 

consistent success at dictionary DGA classification amongst 

state-of-the-art deep learning architectures for classification, 

generalisability, and time-based resiliency. Second, we detail 

our insights into dictionary DGA domains’ inter-relation-

ships and their effect on generalisability of models as an 

outcome. Third, we validate our model on live network traf-

fic in a large financial institution. In 4 h of logs, it discovered 

five potential C&C networks that commercial vendor tools 

did not flag. Finally, we detail our scalable implementation 

strategy within the security context of a corporation for real-

time analysis.

Background

An ever-growing number of malware rely on communication 

with C&C channels to receive instructions and system-spe-

cific code [1]. The destination (domain or IP address) of this 

channel can be hard-coded in the malware itself, making its 

location discoverable via reverse engineering or straightfor-

ward log aggregation techniques. Once known, this domain 

or IP address can be blacklisted, rendering the malware inert. 

To avoid this single point of failure, malware authors employ 

domain fluxing, in which the destination of the C&C com-

munication changes systematically as the attacker registers 

new domains to the C&C hub.

The key to malware domain fluxing is the use of unique 

and likely unregistered domains that are known to the 

attacker but can blend in to regular traffic. To accomplish 

this, malware families employ domain generation algorithms 

(DGAs) to create pseudo-random domains for use in com-

munication. These domains are used for short periods of 

time and then phased out for newly-generated domains; this 

quick turnover means that manual techniques are not effec-

tive. Additionally, reverse engineering these algorithms may 

be slow or impossible if the malware is encrypted. For the 

vast majority of malware samples, traffic related to malicious 

activity is present in networks weeks or months before the 

malware is analysed and blacklisted [7].

To prevent DGA-based malware from exfiltrating, disa-

bling, or tampering with assets, institutions must detect 

malicious traffic as soon as possible. Throughout this paper, 

we will discuss our solution while keeping in mind that it 

Table 1  Examples of domains from our training data, comprised of 

domains from the Alexa Top 1 Million list and domains generated by 

dictionary-based DGA families (discovered through reverse engineer-

ing) from DGArchive

Legitimate Malicious

microsoft lookhurt

linkedin threetold

paypal threewear

steamcommunity pielivingbytes

dailymotion awardsbookcasio

stackoverflow blanketcontent

facebook degreeblindagent

soundcloud mistakelivegarage

1 For the rest of this paper, all domain URLs will be referred to with 

[.] to prevent automatically assigning these domains as real URLs one 

might click.
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must be practical, operating in real-time, enriching contex-

tual data within in true threat environments.

Domain Generation Algorithms (DGAs)

DGA usage spans a variety of cases, from benign resource 

generation to phishing campaigns and the management of 

botnets, groups of machines that have been infected by mal-

ware, such as Kraken [21], Conficker [22, 23], Murofet [24], 

and others [25]. The goal of all DGAs is to generate domains 

that do not already exist and, for malicious cases, will not be 

flagged by vendor security tools or analysts. To accomplish 

this, DGA authors typically use either character-based or 

dictionary-based pseudo-random assembly process to form 

domains.

Each method has benefits and downfalls. Character-based 

DGA domains are more likely to not be registered. But to a 

human security analyst, gibberish domains made from char-

acter-based DGAs stand out from human-crafted domains 

due to their phonetic implausibility and lack of known words 

within them. There is a visible unique pattern underlying 

character DGA domains, such as “lrluiologistbikerepil”, 

that dictionary DGA domains, like “recordkidneyestablish-

men”, do not follow. Dictionary DGA domains are more 

challenging to detect when scanning logs because they are 

pronounceable, contain known words, and mirror the char-

acter distribution of legitimate English domains [26]. See 

similarities between known dictionary DGA domains and 

benign domains in Table 1.

DGA detection systems have been implemented to assist 

in highlighting DGA domains for further investigation. 

These have largely been tailored towards character-based 

DGAs. Character-based DGAs are more common: of 43 

known reverse-engineered DGAs available in DGArchive 

[6], 40 of them use a seed to pseudo-randomly assemble 

characters or a word surrounded by random characters to 

form a domain name. Most methods for generic DGA analy-

sis still struggle to identify dictionary-based DGA malware 

families because they classify all DGAs rather than focusing 

on specific algorithms.

This paper will focus on classifying the largest avail-

able sets of known dictionary DGA domains: gozi [27], 

matsnu [28], and suppobox [29]. Each varies in the 

dictionary-based domain generation tactic, the length of the 

domain, and the dictionary corpus. These dictionary DGA 

families are often undetected by methods proposed in prior 

research aimed at general DGA detection because of the 

large number of families available for other types of DGAs. 

By targeting where others are weaker, our model can pro-

vide greater coverage when used in conjunction with generic 

DGA models and other contextual information for increased 

confidence in identification.

Much of prior DGA research has involved making 

lookups into historical or related domain name server 

(DNS) records. Such methods often rely on signals attained 

from Non-Existent Domain (NXDomain) responses when 

unregistered domains are queried. Since DGAs often gener-

ate hundreds of domains per day and at most only a few of 

those domains are actually registered by the attacker, large 

numbers of these requests result in NXDomains. Many 

NXDomain responses from the same computer are unlikely 

to result from expected user behaviour, and thus this pattern 

of DNS traffic can be associated with DGA activity [12, 

25, 30].

However, such queries within high-volume DNS log data 

can be prohibitively slow and unsuitable for real-time deci-

sion-making needed to reduce the risk of compromise. It is 

for this reason that our model considers limited data, only 

the domain name, rather than all of the potential fields given 

through standard network logging. We also only use open 

source datasets rather than restricted NXDomain lists for 

reproducibility and to provide an accessible starting point for 

others looking to tailor this system to their own environment.

Related Work

Defensive tactics began analysing network logs with statis-

tical or manually selected features instead of static black-

listing or rules when it became overwhelming to maintain 

them. Unsupervised probabilistic filtering [31] and random 

forest models [9, 32] were some of the leading systems for 

detecting DGAs.

Future techniques included more contextual information 

which improved the longevity of detection systems. Cluster-

ing [5, 25, 33], Hidden Markov Models (HMMs) [12], ran-

dom forests models [34–36], and sequential hypothesis test-

ing [30] used data such as WHOIS or NXDomain responses 

with the domain to identify DGAs. However, a number of 

these techniques require batches of live data to maintain 

relevancy or high volumes of data which are not typically 

feasible in real-time environments.

Deep learning first addressed DGA detection with work 

by Woodbridge et al. [11], an implementation of an LSTM 

used for nonspecific DGA analysis. Their experiments 

show that their deep learning approach, an LSTM network, 

outperforms a character-level HMM and a random forest 

model that utilise features such as the entropy of character 

distribution. Their analysis and implementation led to a large 

success for identifying most DGA families; however, their 

LSTM did not score highly on suppobox or matsnu, dic-

tionary DGA families.

Since then others have joined the field, implementing a 

variety of deep learning models. Several took the LSTM 

model from Woodbridge et al. and provided improvements. 

Tran et al. [14] took the native class imbalance of DGA data 
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into account. Others updated the training data with other 

known DGA datasets [10, 15] or added more contextual 

information to the score [37]. Another altered the original 

architecture of their LSTM to a bi-directional LSTM layer 

[17], demonstrating the potential enhancements of changing 

the model’s architecture.

When a CNN was applied to text classification [38–40] 

and showed success over an LSTM on some tasks [19, 41], 

it was eventually applied to malicious URL analysis [18]. 

Other approaches to this problem include a Generative 

Adversarial Network (GAN), showing that the arms race 

for DGA detection could advance on its own [26]. Recent 

work combining CNN convolutions and LSTM temporal 

processing into new sequential hybrid models have also 

been brought to this problem [20, 42–44]. Other compara-

tive works have been published attempting to finalise which 

model is the best for DGA detection [10, 20, 45–48]. Their 

evaluations state deep learning maintains greater success 

over random forest models trained using manually-selected 

features, but do not consider the greater context of the 

model’s deployment or implementation environment. Our 

research picks up this work, systematically evaluating deep 

learning architectures to specifically target where most DGA 

detection systems consistently underperform: dictionary 

DGAs.

Koh et al. were one of the first to train deep learning to 

specifically target dictionary DGA domains [49]. Utilising 

a pre-trained embedding for the words within the domain, 

they trained an LSTM both on single-DGA and multiple-

DGA data sets. While their results set the bar for dictionary 

DGA detection, their model had severe limitations from its 

context-sensitive word embedding on what it could learn and 

they did not use all available data during training and test-

ing. Another related work on dictionary DGA detection is 

WordGraph from Pereira et al. [13]. They take large batches 

of NXDomains and the longest common substring (LCS) of 

every pair within the set, connecting any co-occurring LCS 

within a single domain name to construct their WordGraph. 

The dictionary DGA domains are shown to cluster whereas 

benign domains have no discernible pattern and is shown to 

generalise over changes to the DGA’s dictionary. A random 

forest classifier is trained on the patterns between domains 

to identify dictionary DGA patterns. This method shows 

promise at adapting to different DGAs. However, it is too 

computationally intensive for many systems to support for 

only domain name analysis.

Real-Time Deployment Environment

Within a large corporation with thousands of employees, 

security tools struggle to assist analysts attempting to 

monitor corporate assets. Analysts investigating anomalous 

activity use a variety of filters to limit the data they need to 

consider before finalising a verdict on any given activity. 

We assume other filters for response type, network proto-

col, NXDomain results, proxy labels, etc. are also included. 

Scores from a model for dictionary DGA detection would 

be added into the system for analysts to include whichever 

additional information they deem necessary.

Much like the work by Kumar et al. [50] and Vinayaku-

mar et al. [16], we aim to not only address this cyber security 

issue with text classification techniques, but also the greater 

system in which the model would be deployed. Prior sys-

tems consider the various model performance metrics on 

common data sets as well as the real-world generalisability, 

response time, and scalability of their chosen model when 

scoring domains in real time. We extend their work to new 

controlled tests and describe deploying detection systems 

within a corporate environment.

Bilbo the “Bagging” Hybrid Model

We present a new deep learning model to deploy for real-

time dictionary DGA classification. As mentioned before, 

deep learning architectures are capable of learning variations 

to dictionaries and DGAs, with the added benefit of training 

quickly. There have been many deep learning architectures 

published for this task for state-of-the-art comparison.

Since we can treat domains as sequences of characters, 

LSTM models are a natural fit for classifying DGA domains. 

LSTM nodes make decisions about one element in the 

sequence based on what it has seen earlier in the sequence. 

Thus, LSTM nodes learn parameters that are shared across 

the elements of sequence. This parameter sharing allows 

LSTMs to scale to handle much longer sequences than 

would be practical for traditional feedforward neural net-

works [51]. For example, an LSTM neuron might recall that 

it has seen seven vowels in a nine-character domain, making 

it unlikely that the domain is made up of natural English 

text. This sequential specialisation of LSTMs attracted us 

initially, but we found it alone could not generalise to new 

dictionary DGAs as well as other architectures.

Others have applied CNNs in various forms since used 

for URL analysis by Saxe et al. [18]. Convolutional neural 

networks (CNNs) were designed to handle information that 

is in a grid format, such as pixels in an image matrix. By 

treating text as a one-dimensional grid of letters, CNNs were 

shown to have excellent results for natural language tasks 

[39, 40]. We translate domain names to arrays of characters, 

allowing the CNN to examine local relationships between 

characters via a sliding window, thus grouping characters 

together into words. For example, the domain “facebook” 

can be broken down into four-character windows: “face”, 

“aceb”, “cebo”, “eboo”, and “book”. By dividing character 
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arrays into smaller, related parts in this manner, CNNs dem-

onstrated success on URL classification tasks [18].

When multiple models perform well on the same task, 

many practitioners have combined models or model architec-

tures to enhance the various benefits they individually pro-

vide. The most common technique is to combine pre-trained 

models to form an ensemble model, where each individual 

model produces a score and these scores are combined in 

some way to produce a new score. In this context we could 

train a general DGA classifier that combines one model 

trained to classify character DGA domains and another 

trained to classify dictionary DGA domains. The benefit of 

combining both models is dependent on how they are com-

bined and how it decides which model to “trust” for its final 

decision without the context of how they were developed.

Hybrid models are similar to ensemble models, but rather 

than taking the individual score from each component, a 

hybrid model combines the architectures before the extracted 

features are reduced to a single score. These models are 

trained as a single end-to-end model. A hybrid architecture 

allows the model to learn which combinations of features of 

the input are significant indicators for accurate classifica-

tion. Most common hybrid models combine architectures 

by stacking them in different ways. For instance, using a 

CNN’s convolutional layer to extract features and then feed 

them into an LSTM layer [20, 42–44, 52].

Our novel hybrid model, as seen in Fig. 1, processes 

domain names via an LSTM layer and a CNN layer in par-

allel. The outputs of these two architectures are then aggre-

gated or “bagged” by a single-layer ANN. This “bagging” is 

a vital opportunity for this model to discern which parts of 

the captured information from the LSTM and CNN assists 

the best when labelling dictionary DGA and benign domains. 

Inserting an ANN instead of a single function increases the 

potential optimisation of the “bagging”. Because of the 

importance of this piece in the architecture, we named our 

model Bilbo the “bagging” model. Unlike ensembles which 

optimise its components prior to conjoining, hybrids opti-

mise over all the components. As demonstrated in our results 

(“Results”), Bilbo successfully combines LSTM, CNN, and 

ANN layers for dictionary DGA detection and is the best at 

consistently classifying dictionary DGAs amongst state-of-

the-art deep learning models.

Data Analysis

To better understand the success and failures of the mod-

els used in our tests, we conducted a brief analysis of our 

data set of known dictionary DGAs. The dictionary DGA 

domains were selected from collections of related DGAs, 

called DGA families, published on DGArchive [6], a trusted 

database of domains extracted from reverse-engineered 

DGA malware. From this source, several families of DGAs 

were empirically identified as solely dictionary DGAs based 

on the structure of the domain names generated by malware 

samples. The families selected were suppobox, gozi, and 

matsnu with domains collected over 2 years (2016–17) 

by DGArchive. After removing duplicate domain names, 

the resulting selection contained 137, 745 samples of sup-

pobox, 18, 539 samples of matsnu, and 20, 313 samples 

of gozi.

The legitimate domains in the training set originate from 

the Alexa Top 1 Million domains, measured in 2016 [53]. 

The Alexa list ranks domains by the number of times each 

has been accessed. Since DGA-based malware tends to 

use domains for short periods of time, we assume that top 

Alexa domain names are human-generated and label them 

Fig. 1  High-level architecture of Bilbo; the component models 

are highlighted in blue. Raw domains are input and encoded into 

sequences before being passed to the separate LSTM and CNN archi-

tectures. The features extracted by each of these component architec-

tures are sent to a single layer ANN or a hidden layer, which is then 

flattened to produce the output, a single score
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as non-DGA. These popular domains, mostly containing 

valid English words, encourage the model to learn charac-

teristics of legitimate combinations of English words. We 

randomly sampled an equivalent number of domains from 

Alexa to match the total number of dictionary DGA samples 

available.

To further understand our data, we conducted several 

comparisons: 

1. By extracting the longest common substrings within 

each family, compare the lists between families for dic-

tionary similarity. See Fig. 2 for a summary of those 

results

2. Using the widely adapted Jaro–Winkler algorithm for 

string similarity [54], we compared every domain in our 

data set within their own families and with every other 

family. The histogram in Fig. 3 shows us how similar 

families are and how this could influence the results for 

generalisability.

Longest Common Substring (LCS)

The application of this algorithm was inspired by Pereira 

et al.’s technique for dictionary extraction [13]. We applied 

this to each individual group (alexa, suppobox, gozi, 

and matsnu) to generate a list of every LCS between 

pairs of domains. These lists contain all possible dictionary 

words used to generate the domains. By comparing the lists 

between the families, we can see how learning one family’s 

list could assist in identifying the other. Figure 2 visualises 

the overlap between sets with a chord diagram.

The circumference is partitioned into four parts and is 

labelled with the count for the number of times overlapping 

substrings were seen as the LCS for a domain pair within its 

family. For instance, look at the black vertical chord between 

gozi and alexa. The colour black means that alexa, the 

family assigned black, is the smaller portion of this relation-

ship, i.e. fewer of its LCS (approximately 10 million) are 

within the overlap with gozi (approximately 100 million).

LCS overlapping between alexa and gozi also include 

LCS from other overlaps. gozi’s large partition of the cir-

cumference while also being the smallest family means it 

overlaps frequently with other groups. Overall matsnu and 

gozi have the largest overlap, sharing 8.6% of their LCS 

and 92% of their LCS when including the number of times 

it was seen as the LCS of a pair. The longest LCS between 

them was 14 characters; the average length for LCS was 

4.238 characters. Therefore, there must be only a few very 

common substrings between the families, which deep learn-

ing models could learn.

Fig. 2  Comparing the shared 

largest common substrings from 

within each domain family con-

sidered during our classification 

(alexa, suppobox, gozi, 

and matsnu). The circumfer-

ence is grouped by colour for 

each family. The counts are for 

the number of times the over-

lapping LCS was an LCS for a 

domain pair within a given fam-

ily. Note that any overlap in the 

centre has no meaning and the 

counts contain overlap between 

LCS shared between one pair of 

families and any other
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Jaro–Winkler (JW) Score

To understand the similarity of an entire domain string 

with any other domain, we used the JW score [54]. This 

algorithm takes the ordering of the characters and the col-

lection of characters to develop a score between [0,1]. 

The closer the score is to one, the more similar the 

domains are to one another. We compared every domain 

to generate diagrams such as Fig. 3.

Most families follow the same distribution with a mean 

of about 0.5 for JW score. However, notice the slight skew 

in alexa and suppobox. Due to a large percentage of 

their domains having little to no JW similarity, the average 

score for alexa was 0.4023 and suppobox was 0.4901. 

This slight difference is amplified when considering other 

aspects of the family. Both suppobox and alexa have 

the smallest average lengths of domains at 13 and 9 char-

acters, respectively. Both groups have a standard deviation 

of approximately four characters and most frequent length 

of about eight characters. With this, the low JW scores for 

alexa and suppobox make sense with shorter domains.

The other sets, matsnu and gozi, are much longer in 

comparison with most frequent lengths of 14 and 23 char-

acters, respectively. The dictionary for their DGAs seems to 

select from shorter, 3–5-character words. Since there are less 

possible combinations of valid short words, more overlap 

between gozi and matsnu, which is also apparent in Fig. 2.

This exploratory data analysis helped us develop an intui-

tion around how different dictionary DGAs relate to each 

other and gave us hope that models would pick up on these 

relationships even though most of these families use differ-

ent dictionaries and generation algorithms. Also, this same 

analysis should prove useful when comparing and expand-

ing the model with other dictionary DGA families as they 

emerge.

Experimental Design

We frame the DGA detection problem as a binary text clas-

sification task on only the domain string. The score pro-

vided by our model can then be used independently or be 

Fig. 3  Histogram of the Jaro–

Winkler scores of each diction-

ary DGA family and Alexa. A 

distribution line was drawn over 

it to assist in tracing the trends 

of the scores
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enriched with additional security context. In this section, 

tests are designed on known labelled data to demonstrate 

the baseline performance of each model. These experiments 

reflect practitioner concerns on model deployments within 

real-world context: 

1. Testing the model’s ability to do binary classification 

with of benign and dictionary DGA domains

2. Evaluating the model’s generalisability for identifying 

unseen dictionary DGAs

3. Examining the model’s scores as the dictionaries and 

DGAs evolve over time, how well can the model classify 

new dictionary DGA domains from known families

We compare Bilbo to four deep learning models: a single-

layer ANN, CNN, LSTM, and MIT’s CNN-LSTM Hybrid 

[20, 52]. Each is based off of state-of-the-art models for 

DGA classification; the implementation for each is described 

below. Our results highlight the strengths and weaknesses of 

each architecture in the different scenarios.

Testing

Each experiment uses data pulled from the Alexa Top 1 Mil-

lion list [53] and DGArchive [6]. The only three available 

dictionary DGA families are considered: gozi, matsnu, 

and suppobox. For model training and validation, the data 

is always separated into three sets: training, testing, and 

holdout. Training and testing are used at every epoch to see 

if early stopping should occur, preventing overfitting. The 

results for each metric, listed in “Results”, are from applying 

the model to the holdout set.

Testing Classification

The first test evaluates how the model performs for binary 

classification between benign (negatives) and dictionary 

DGA domains (positives). With a balanced dataset, 80% was 

used for training the model. The remaining 20% (approxi-

mately 60,000 domains) was randomly sampled to use for 

testing and holdout: 50,000 domains for testing the model 

at each epoch and 10,000 domains for validating the model 

after training was completed. All training, testing, and vali-

dation data sets contained an approximately equal number 

of positives and negatives.

Testing Generalisability

This test evaluates how the model generalises to unseen 

dictionary DGAs. For this, three trials are created from the 

data sorted by dictionary DGA family. Each trial takes two 

of the families for training and splits the third over testing 

and holdout. For example, one variant uses matsnu and 

suppobox domains to train the model while evaluating the 

model’s performance using gozi domains. This paper is the 

first to test DGA detection models in this way.

Testing Time-Based Resiliency

DGAs have been found to evolve over time, varying their 

generation algorithms slightly or using entirely new diction-

aries [50]. While our tests for generalisability highlight some 

of the deep learning models’ ability to classify alterations 

in the dictionary DGA, they are limited by our scope of 

sampling in 2016-17.

To test detection system’s resiliency on future versions of 

dictionary DGA domains, we evaluate our models trained 

on data from 2016-17 with DGA samples from November 

2019. Models trained on all three dictionary DGA families 

are applied to this dataset.

Implementation of Deep Learning Models

Deep learning models take numerical sequences as input. 

Thus, every domain string is encoded as an array of inte-

gers and then padded with zeros to ensure that all inputs are 

of the same size. Each Unicode character is mapped to an 

integer through a constructed list of 40 valid domain-name 

characters. For example, “google” would be converted to 

[7, 15, 15, 7, 12, 5] and padded with zeros at 

the beginning to get all inputs up to our maximum length 

of a domain string: 63 characters. Our final input is [0, 

0, ..., 0, 7, 15, 15, 7, 12, 5]. During 

initial iterations, we confirmed that padding the end of the 

sequence made no difference when compared with pad-

ding the beginning of the sequence. Rather than a common 

embedding for all deep learning models, the embedding is 

learned by the model during training. The outputs from each 

deep learning model is a score, a single float between zero 

and one. This value indicates the model’s confidence that the 

domain was generated by a dictionary DGA.

We compare our main model, Bilbo, against four models 

adapted from state-of-the-art architectures: a single layer 

ANN, a CNN, an LSTM, and MIT’s Hybrid [20, 52]. The 

code for each model is in listed at the end. As mentioned in 

“Related Work”, deep learning models have frequently been 

shown to outperform feature-based approaches for DGA 

detection and are capable of millisecond scoring speeds. 

Because of these ideal characteristics for a dictionary DGA 

detection system, Bilbo is only compared to other deep 

learning architectures.

All models were built in Keras [55] using the Tensor-

Flow [56] backend on a MacBook Pro to convey the ease 

for model retraining and that models can be deployed on 
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smaller cloud servers. Each model is trained three times for 

ten epochs with a batch size of 512.

Artificial Neural Network (ANN)

This fundamental model architecture underlies both the 

CNN and LSTM. As a baseline for this study, similar to Yu 

et al. [20], we include a single-layer ANN with 100 neurons 

in its hidden layer during our testing and consideration. This 

architecture is also included within Bilbo as the conjoin-

ing layer for the parallel CNN and the LSTM component 

architectures.

Long Short-Term Memory (LSTM) Network

This architecture is a slight adaptation on the LSTM used by 

Woodbridge et al. [11]. Because it was tuned for a slightly 

different task, we re-evaluated some of its hyperparameters. 

From our automated grid search of hyperparameters, as 

shown in Fig. 4, it was clear that increasing LSTM layer 

size improved our accuracy on the testing set for generic 

binary classification. We found that an LSTM layer of 256 

nodes provided us with the highest accuracy on the testing 

dataset without loss to its performance in real-time deploy-

ments. The only alterations to the original model were the 

input parameters to match our standard across models and 

doubling the size of the LSTM layer. This is the same archi-

tecture implemented as a component within Bilbo.

Convolutional Neural Network (CNN)

We followed Saxe et al.’s parallel convolution structure [18] 

to compare with state-of-the-art with a CNN. After testing a 

variety of filter sizes individually, combinations of various 

filters were also analysed to find the best architecture for 

our task. Based LCS analysis for each family, the major-

ity of substrings within dictionary DGAs appeared to be 

within the range of two to six characters. This model’s final 

architecture includes five different sizes (2–6 characters) of 

convolutions, 60 filters of each length with a stride of one 

character, and pooling later concatenated to provide a vast 

amount of information towards the final score. This archi-

tecture balances the model complexity against the prediction 

accuracy on our training set.

Bilbo

Our initial results with the individual LSTM and CNN, as 

seen in Table 2, indicated each model was learning relevant 

but distinct characteristics for accurate identification of dic-

tionary DGAs. Bilbo’s architecture “bags” the extracted fea-

tures from the LSTM and CNN with a hidden layer of 100 

nodes, from which a final prediction is rendered. This hybrid 

model learns to balance the features extracted by both the 

LSTM and CNN. The same architectures described previ-

ously for the individual ANN, LSTM, and CNN are com-

bined to form Bilbo. This model is the first parallel usage of 

a CNN and LSTM hybrid for DGA detection.

MIT Hybrid Model

Based on the original encoder–decoder model presented 

by MIT [52], several recent publications have adapted this 

CNN-LSTM hybrid model to DGA classification [20, 44, 

47]. Unlike our model, this uses the CNN convolutions to 

feed inputs into an LSTM. The MIT hybrid architecture 

adapted by Yu et al. [20] is another benchmark during test-

ing. Comparing Bilbo’s parallel usage of a CNN and an 

Table 2  Samples of identified dictionary DGA domains with the top 

50 scores from our holdout set from each component model (LSTM 

and CNN) and our hybrid, Bilbo. Blue are domains seen initially in 

the LSTM’s top 50 samples and then in Bilbo’s top 50 samples. Same 

for the yellow domains, but seen in the CNN samples and then in 

Bilbo’s samples. Orange is a domain that appeared in different ranks 

within all three models
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LSTM to this model demonstrates the significance of our 

parallel architecture in binary classification of dictionary 

DGAs.

Their single convolutional layer consists of 128 one-

dimensional filters, each three characters long with a stride 

of one. This is fed into a Max Pooling layer before a 64-node 

LSTM. This model contains no drop out and relies on a sin-

gle sigmoid to flatten the results to a single score.

Metrics for Comparison

Considering real-world applications for DGA detection, a 

balance between incorrect domains and lack of confidence 

for true dictionary DGA domains must be found. To help 

measure each model’s performance for this, three core met-

rics are calculated to summarise common metrics used in 

machine learning research. The first is the area under the 

receiver operating characteristic (ROC) curve (AUC), which 

measures the model’s ability to detect true positives as a 

function of the false positive rate. Maximising AUC means 

improving labelling of both positive and negative samples. 

The second is accuracy; how well the model scored positive 

and negative labels our of all samples in the holdout set. 

Finally, the F
1
 score is the harmonic mean of precision and 

recall, giving insight to the context of true positive labels 

within the holdout set.

Using abbreviations for true positive (TP), true negative 

(TN), false positive (FP), false negative (FN), true-positive 

rate (TPR), and false-positive rate (FPR), these are com-

puted in the following ways:

(1)Precision =

∑

TP
∑

TP +
∑

FP

(2)Recall =

∑

TP
∑

TP +
∑

FN

(3)F
1
= 2 ∗

Precision ∗ Recall

Precision + Recall

(4)Accuracy =

∑

TP +
∑

TN
∑

TP +
∑

FP +
∑

TN +
∑

FN

(5)TPR =

∑

TP
∑

TP +
∑

FN

Fig. 4  Graph of hyperparameter 

grid search used to inform deci-

sions on the LSTM architec-

ture. The LSTM layer size and 

optimiser are compared for 

accuracy on the test set, demon-

strating improved performance 

using larger networks and 

either the adam or rmsprop 

optimiser
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Consistency of the core metrics in every setting is key to 

finding the best performer while evaluating models on 

labelled data. To quantify this, the core metrics are treated 

as assessment questions: one point of consistency is awarded 

to each of the top three models within every core metric. The 

model with the most points across testing classification and 

generalisability is deemed the most consistent performing 

model.

Results

In this section, we elaborate on the values of metrics from 

each model resulting from each test. The threshold for a 

label for every test was 0.5. Overall, the priority is to accu-

rately apply both positive and negative labels to the dataset. 

From these tests, the model with the best consistency score 

is viewed as the best for deploying into real world settings.

Results of Testing Classification

The values for the metrics from this test are provided in 

Table 3. In this test, the ANN is significantly worse than the 

specialised deep learning models in every metric, according 

to a student t-test with 95% confidence on the all collected 

results. The ANN’s FPR of 0.1953 is almost a whole mag-

nitude worse than MIT’s FPR, which was the best.

The CNN and LSTM are statistically similar in all metrics 

with the LSTM outperforming the CNN in most precision, 

TPR, and FPR. This is due to the imbalance between the 

dictionary DGA families, with suppobox comprising of 

about 78% of the malicious samples. During our substring 

analysis, we found that suppobox contained the long-

est substrings, revealing that models which learn the long 

sequence of suppobox’s dictionary words would have an 

advantage when classifying the majority of dictionary DGA 

domains. The LSTM is designed to learn sequential relation-

ships between characters rather than subsets of characters 

(6)FPR =

∑

FP
∑

FP +
∑

TN
.

like the CNN. This is why the LSTM beats the CNN and, as 

shown in Table 6, is a consistent leader in the core metrics.

Both MIT’s hybrid model and Bilbo perform the best 

across all metrics. The difference between the two is insig-

nificant in all metrics, differing less than 0.01 for the F
1
 

score, Accuracy, and AUC. This near identical performance 

is similar to the LSTM and CNN comparison earlier. There 

is also a pattern in most of the metrics that when the CNN 

is better than the LSTM, Bilbo is better than the MIT model 

and vice versa. MIT’s parameters are mostly dedicated to the 

LSTM layer, explaining the similar performance between 

the two models.

Bilbo consistently performs between or better than its 

component models in all metrics by regularising the perfor-

mance of the LSTM and CNN with an ANN, displaying the 

expected results of our parallel architecture. In the empirical 

analysis of the results, the top scoring domains from both the 

CNN and LSTM were present in the final scoring of Bilbo 

as expected.

The difference between the deep learning models, exclud-

ing the ANN, in this test is very small. Given a domain 

name, they are all successful at labelling dictionary DGA 

domains from benign domains after learning from three 

diverse dictionary DGA families. The consistency scores 

for this test place the LSTM model, the MIT model, and 

Bilbo as the best performers.

Results of Testing Generalisability

As presented in Table 4, the metrics have been limited to 

three core metrics to maximise for best overall performance. 

A model’s AUC indicates the model’s likelihood of correctly 

classifying a sample as a positive or negative. The F
1
 score 

conveys how well the model correctly labels dictionary DGA 

domains with regard to those that should be or were labelled. 

Accuracy states how well the model labelled the data within 

this particular holdout set.

The values for the core metrics were not expected to sur-

pass 0.9 due to the differences between each dictionary DGA 

family. Analysis of each family’s LCS and the JW scores 

between families not depicted in this paper stated some 

families overlap more with one family than another. This 

Table 3  (Testing classification) 

Comparing the results of 

five different deep learning 

architectures for binary 

dictionary-DGA classification

The labelled training and testing set are composed of a random selection from all three dictionary DGA 

families. The best of each column is in bold

Model Recall Precision F
1
 Score TPR FPR AUC Accuracy

ANN 0.9077 0.8250 0.8644 0.8250 0.1953 0.9290 0.8566

CNN 0.9730 0.9473 0.9600 0.9473 0.0545 0.9919 0.9593

LSTM 0.9675 0.9627 0.9651 0.9627 0.0370 0.9932 0.9653

MIT 0.9583 0.9710 0.9646 0.9710 0.0282 0.9946 0.9651

Bilbo 0.9766 0.9557 0.9660 0.9557 0.0454 0.9944 0.9656
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dependence influences each model’s performance by limit-

ing its ability to generalise unless certain families have been 

seen before. Hence the values across this table are lower 

than in Table 3.

The ANN outperforms the other models in this task with 

higher core metrics in two of the trials. However, it also only 

surpasses the other models when matsnu or gozi are part 

of the training set. Figure 2 depicts a large overlap in their 

LCS. This could explain what the ANN is able to learn for 

better performance on new DGAs when either matsnu or 

gozi is in the training set and the other is in the testing set.

The next most consistent performer in this test is the 

CNN. Its training on smaller character windows allows it 

to excel when applied to new dictionary DGAs. Based on 

earlier data analysis, the most frequent LCS in every family 

were three to four characters and typically overlapped. The 

large overlap in LCS between matsnu and gozi reinforce 

these short substrings, explaining why the CNN outperforms 

others when both matsnu and gozi are in the training set.

Results of Testing Time-Based Resiliency

The final test is on a single day’s worth of recent domain 

samples from each of the dictionary DGA families already 

considered. Listed are the ratios of true positives out of the 

total number of samples for that dictionary DGA family. 

Total samples for each family are as follows: 1325 from 

gozi, 686 from matsnu, and 4257 from suppobox.

Using all of the trained models from the classification 

test, the average scores are listed. The results are close 

between all model architectures and, when averaged, are 

close to the accuracy seen during testing. As for the relative 

decrease in accuracy for matsnu and gozi, this is due to 

the class imbalance between the dictionary DGA families in 

the dataset. Regardless of which model selected for deploy-

ment, it will need to be updated frequently with new labelled 

data whenever trusted and available to increase this accuracy 

on future dictionary DGA domains (Table 5).

Throughout all of these tests, each state-of-the-art deep 

learning model achieves top metrics. To determine which is Ta
b
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Table 5  (Testing time-based resiliency) Ratio correct at scoring dic-

tionary DGAs from each family within the sample from November 

2019

The best of each column is in bold

Fully-trained 

model

matsnu suppobox gozi

ANN 0.8746 0.9204 0.9517

CNN 0.8732 0.9962 0.9585

LSTM 0.8936 0.9522 0.9426

MIT 0.8790 0.9976 0.9386

Bilbo 0.9023 0.9962 0.9472
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the best, we consider the application environment the model 

is to be deployed in and its need for a consistent well-per-

forming model. After aggregating the consistency points for 

the top performers from every core metric in each test and 

trial, presented in Table 6, Bilbo is found to be the most con-

sistent and capable model for deploying within real-world 

dictionary DGA detection systems.

Real‑World Deployment

Once Bilbo was trained, tested, and validated using 

open source data from the Alexa Top 1 Million [53] and 

DGArchive [6], we evaluated performance in a live system. 

We deployed the model on a cluster of servers to be queried 

by a data pipeline and applied the model to live network 

traffic from a large enterprise.

Implementation at the Corporate Level

Within corporate environments, a large security information 

and event management (SIEM) system is typically used to 

centralise and process relevant data sources. Security ana-

lysts use the SIEM for their daily work to investigate suspi-

cious activity within their environment. The data they view 

is limited by a series of filters and joins they apply on vari-

ous datasets.

To productionise Bilbo in a high-throughput environment 

generating hundreds of domains per second, we developed 

a model as a service framework. This framework promotes 

scalability, modularity, and ease of maintenance. Client sys-

tems processing domain names, such as the SIEM, make 

requests of the model servers to receive scores on new 

domains. This communication is performed using gRPC, 

Google’s library for remote procedure calls [57], which was 

selected for its speed over methods like REST (Represen-

tational State Transfer). The communication from client to 

server is language-agnostic, allowing a client written in Java 

or Scala to interface seamlessly with our Python model.

A load balancer manages traffic to the model servers and 

only the load balancer endpoint is exposed to the client. This 

allows multiple clients to reach out to a single location to 

receive scores from the model. Any number of model serv-

ers can run behind the load balancer, but these details are 

abstracted away from the clients, who only interface with 

the load balancer endpoint. This allows us to increase and 

decrease the size of the model server cluster in response to 

changing without interrupting service; such scaling can be 

configured to take place automatically in response to metrics 

like CPU utilisation.

While our model does not learn inline, its predictions, 

combined with a ground truth label provided by an analyst, 

can be used to retrain the model, allowing it to learn from 

mistakes and improve its predictive power. Thus, we need 

to be able to deploy a retrained model frequently and with 

low overhead. Since the model server cluster is behind a 

load balancer, we can make this change without shutting 

down the service. We simply put additional model servers 

(running the newest model) behind the load balancer, and, 

once they have been confirmed to run successfully, remove 

the model servers running an outdated version. The model 

update process can be seen in Fig. 5. Along with their scores, 

the model servers return the version of the model that they 

are running; this is helpful in evaluating our models over 

time and in distinguishing between models during the brief 

overlap period when two versions of the model are running 

behind the load balancer.

Several key design decisions allow us to handle requests 

to the service at very large scale. While gRPC minimises 

network latency by allowing bi-directional streaming 

between the client and server, the calls to our service are still 

time-intensive, so we built in a bloom filter caching mecha-

nism on the client side to avoid this bottleneck. This more 

intelligent client only reaches out to the server if it receives 

a domain that it has not recently seen before. Our analysis of 

domain traffic revealed that only 15% of domains are unique 

in an hour of traffic; this optimisation dramatically reduces 

the workload of our model server cluster.

We evaluated Bilbo based on its processing capacity and 

its findings, as seen below. Our initial prototype consisted 

of a single client reaching out to a load balancer with a sin-

gle server in the cloud. With an unoptimized compilation 

of Tensorflow for our back end, the fastest scoring aver-

aged to approximately 10 ms per record, increasing linearly 

Table 6  Consistency scores 

from each of the tests 

(1 = classification, 2 = 

generalisability, 3 = time-based 

resiliency) and the overall result

Calculated by counting the number of times each model was top three for a core metric. The best of each 

column is in bold

Model Test 1 + Test 2 + Test 3 = Overall

ANN 0 6 0 6

CNN 0 8 1 9

LSTM 3 3 0 6

MIT 3 4 1 8

Bilbo 3 6 1 10
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with an increasing number of requests. If we anticipate 1000 

domains per second, our model only needs to be hosted on 

10 servers. On a Cloud service such as Amazon Web Ser-

vices, we can keep a ten-node cluster running for less than 

fifty cents (USD) per hour.

Results in Enterprise Traffic

For further model performance testing, Bilbo is evaluated on 

real-world network traffic. Randomly selecting one window 

of traffic from August 14th, 2017, and another window of 

traffic from November 15th, 20172. Each network sample 

set contains domain names over a 2-h period. After parsing 

the domain names from the URLs in the logs, the August 

and November data contained 20,000 and 45,000 unique 

domains, respectively.

Since we lack ground truth for the domains in our cap-

tured samples to validate our results, we pulled in additional 

information for each domain. First, we included the action 

decision of the proxy, which denies domains that are known 

to be malicious. Second, we added scores from VirusTotal 

[58], a site that aggregates blacklists to provide reputation 

scores for domains and is commonly used by security ana-

lysts for evaluation of domains (accessed November, 2017). 

Note that both the proxy and VirusTotal are imperfect since 

they are unaware of malicious content related to a domain 

until thorough analysis has been performed, which can take 

many weeks [7]. We cross-referenced the high scores from 

our model with the results from the proxy and VirusTotal to 

perform a basic investigation.

Feeding our model only the domain names, we discovered 

a series of domains with similar naming patterns:

– cot.attacksspaghetti[.]com/affs

– kqw.rediscussedcudgels[.]com/affs

– psl.substratumfilter[.]com/affs

– dot.masticationlamest[.]com/affs

At a glance, these domains follow an algorithmic pattern of 

three characters, two words, and the “/affs” ending, mak-

ing them strong candidate dictionary-based DGA domains. 

Upon further examination, all of these domains were queried 

by the same machine, which, prior to our discovery, had 

been deactivated due to complaints of incredibly sluggish 

performance. This is highly suggestive of malware activity 

using a dictionary DGA network.

Fig. 5  Three stages of the updating process for our Model as a Ser-

vice (MAAS) Architecture for model deployments to be accessible 

to SIEM and other client systems. The first stage shows clients inter-

acting through the load balancer with old model servers. To update 

the servers, we spin up new model servers with the latest version 

and confirm production readiness before attaching them to the load 

balancer. Finally, the old model servers are deleted, leaving the new 

model servers in their place. At no point during this process will the 

clients be unable to receive scores from our models

2 These were recent dates when the model was initially developed for 

dictionary DGA detection.
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Additionally, we found four domains, each representing 

distinct suspicious networks matching the expected pattern 

for dictionary-based DGA C&C hubs:

– boilingbeetle

– silkenthreadiness

– mountaintail

– nervoussummer

Each of these networks, when visualised by ThreatCrowd, 

a crowd-sourced network analysis “system for finding and 

researching artefacts relating to cyber threats” [59], are 

shown to be comprised of domains that are made up of 

two or more unrelated words, all resolving to the same 

IP address, in the pattern of a domain-fluxing dictionary 

DGA. The “boilingbeetle” network is shown in Fig. 6. 

These domains and their related networks were not flagged 

by the online blacklists used by VirusTotal; only some 

of the domains within each network were blocked by the 

proxy.

Further investigation noted that these networks are for 

advertisement traffic, indicating that dictionary DGA tech-

niques are being used to bypass ad-blocker mechanisms. 

Although not apparently malicious, these five discoveries 

of dictionary-based DGA from potential malware, found in 

only a few hours of proxy log data, demonstrates that our 

solution is able to flag relevant results in live traffic.

Conclusions and Future Work

In this paper, we present a parallel hybrid architecture 

named Bilbo, composed of an LSTM, a CNN, and an 

ANN, for dictionary DGA detection. Dictionary DGAs 

bypass most general, manually defined DGA defences 

and are harder to detect due to their natural language 

Fig. 6  (Created December 2017) ThreatCrowd network graph of 

the domain “boilingbeetle” discovered in enterprise proxy traffic 

by the ensemble model. This domain is connected through select IP 

addresses to other domains of similar structure, in the pattern of a 

command and control network
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characteristics. Bilbo is compared to state-of-the-art deep 

learning models adapted for dictionary DGA classification 

and evaluated on consistency over AUC, Accuracy, and F
1
 

score. Overall, Bilbo is the most consistent and capable 

model available.

Bilbo was then applied to a large financial corporation’s 

SIEM, providing inline predictions within a scalable frame-

work to handle high-throughput network traffic. During 

investigations, our model’s scores were used to filter data 

and flag suspicious activity for further analysis.

When applied to several hours of live network logs, Bilbo 

successfully classified traffic matching the expected network 

pattern: a single IP address hosting several domain names 

that make no semantic sense and follow a trend of English 

words put together. Although the identified domains from 

the network logs were not botnets or worms reaching out 

to a C&C, which are very rare, Bilbo was able to identify 

dictionary DGAs used by advertisement networks and other 

applications with potential malicious intent.

Later improvements include the continued reduction of 

false positives and applying natural language processing 

(NLP) techniques. One method to reduce false positives 

would be to consider layering a generative model to deter-

mine if the input domain is similar to any data Bilbo has 

seen before. This could increase or decrease the score, or 

add another filter to alter a user’s confidence in the score. 

Applicable NLP techniques detect anomalous word combi-

nations in domains by scoring the likelihood words would 

be collocated. This could prove fruitful for DGA detection 

but heavily depends on the corpus for parsing out words and 

gathering initial collocation information to understand for a 

baseline of what is normal.
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