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Abstract

We describe a system that detects independently moving
objects from a mobile platform in real time using a cali-
brated stereo camera. Interest points are first detected and
tracked through the images. These tracks are used to ob-
tain the motion of the platform by using an efficient three-
point algorithm in a RANSAC framework for outlier detec-
tion. We use a formulation based on disparity space for our
inlier computation. In the disparity space, two disparity im-
ages of a rigid object are related by a homography that de-
pends on the object’s euclidean rigid motion. We use the
homography obtained from the camera motion to detect the
independently moving objects from the disparity maps ob-
tained by an efficient stereo algorithm. Our system is able
to reliably detect the independently moving objects at 16 Hz
for a 320 x 240 stereo image sequence using a standard lap-
top computer.

1. Introduction

Recent advances in computing hardware have led to a
rapid decline in computing costs for computing dense depth
maps from stereo cameras [9, 15, 1]. As a result, it is now
feasible to use real-time stereo systems in a variety of com-
puter vision problems [6, 2, 8, 11]. Augmenting the in-
put space of images with these depth maps results in better
performance, robustness, and stability. In this paper, we de-
scribe a system that uses dense depth data to determine in-
dependently moving objects in real-time from a mobile plat-
form. Visual estimation and detection of motion is a chal-
lenging problem in computer vision. The ability to detect,
track, and localize moving objects from a mobile platform
has applications in automated surveillance and is the first
step towards automated video understanding from moving
platforms.

Stereo has been used previously to detect and track peo-
ple from a stationary rig e.g. [2, 6, 3]. For a mobile plat-

form, the first step toward detecting independently mov-
ing objects is to estimate the ego motion of the camera.
When compared to monocular video, motion estimation
from stereo images is relatively easy and tends to be more
stable and well behaved [12]. Approaches for binocular
motion estimation [13] typically involve establishing fea-
ture correspondences. The key steps are to

1. Extract salient feature points in the images.

2. Match feature points between the left and right images
of the stereo pair and subsequently triangulate them to
obtain3D points.

3. Track these3D points in time and obtain the rigid mo-
tion based on these tracked3D points.

In practice, feature correspondences contain few mis-
matches. Robust estimation methods such as RANSAC
[5] are used to take into account the effect of outliers. The
use of3D point correspondences to obtain the motion suf-
fers from a major drawback – triangulations are much
more uncertain in the depth direction. Therefore, these3D
points have non isotropic noise, and a3D alignment be-
tween small sets of such3D points gives poor motion es-
timates. To take into account this anisotropic noise in the
3D coordinates, Matei and Meer [10] presented an ap-
proach based on a technique from statistics calledbootstrap
to estimate the covariance for the3D points and solve ahet-
eroscedastic, multivariate errors in variablesregression
problem.

An alternative approach is to work directly in the dispar-
ity space [4], a projective space with isotropic noise that can
be used for efficiently estimating the motion of a calibrated
stereo rig. In this paper, we will use a novel combination of
triangulation for generating motion estimates and the dis-
parity space homography to evaluate the inliers for the mo-
tion as well as to detect the independently moving objects.

We begin by describing the disparity space formulation
in Section 2. An overview of our system is given in Sec-
tion 3. Section 4 describes the feature detection and track-
ing step which is then use to estimate the egomotion of the



camera (Section 5). Section 6 describes the use of dispar-
ity space in detection of independently moving objects. Sec-
tion 7 describes our algorithm for extracting blobs of inde-
pendently moving objects and tracking these blobs. Imple-
mentation details and experimental results on real video se-
quences are presented in Section 8. Finally, Section 9 con-
cludes this paper with a discussion on ongoing work.

2. Motion in Disparity Space

As in [4], consider a calibrated parallel stereo rig with
baselineB. Let f be the focal length andu0, v0 be the prin-
cipal point of each camera. Consider this fixed stereo rig ob-
serving a moving rigid3D scene. A pointM ≡ (X,Y, Z)T

undergoes a rigid motion with rotationR and translationt
so that its new location isM ′ ≡ (X ′, Y ′, Z ′)T . In homoge-
neous coordinates,
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The pointM projects in the left image to the point(x, y)
and its disparity isd. Let ω ≡ (x, y, d)T be a point in
the disparity space. It is important to note thatω involves
image-based quantities only. The errors in these quanti-
ties can be considered independent, isotropic, and approxi-
mately equal. The noise typically can be assumed to corre-
spond toσ = 1 pixel. We have
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HereΓ is the4×4 matrix on the right side of equation 2 and
' indicates that the equality is true up to an overall scale
factor. Similary for the pointM ′, we have
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Substituting the inverse of equations 3 and 4 into equation 1,
we obtain
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Thus, in the disparity space, a3D point undergoing a rigid
euclidean transformation transforms according to the ho-
mographyH(R, t). Given the euclidean motion and the
camera parameters, it is straightforward to deduce this ho-
mographyH and vice-versa.

3. System Overview

Our system performs real-time detection of indepen-
dently moving objects based on tracked feature points in
stereo images. It first estimates the rigid motion and the as-
sociated disparity space homography of the scene. An ef-
ficient real-time stereo algorithm is used to obtain a dense
disparity map at each frame. The computed homography is
then applied to this dense depth map to synthesize the im-
age at the next frame. This synthesized image is then com-
pared with the actual image at the next frame using sums
of absolute differences (SAD) of local windows. Regions
with high SAD scores are precisely the independently mov-
ing objects since these do not conform to the computed ho-
mography. A blob extraction routine groups these regions
with high SAD score into blobs and tracks them in time us-
ing a Kalman Filter. The key processing steps of our algo-
rithm are

1. Feature detection and tracking

2. Dense depth map extraction

3. Motion estimation

4. Independent motion detection

5. Blob extraction and tracking

4. Feature Detection and Tracking

Harris corners [7] are detected in the left image of each
frame in the video sequence. Briefly, the gradients of the in-
put imagegx, gy are first computed at each pixel. The prod-
ucts of these gradientsgxx = gx × gx, gyy = gy × gy,
andgxy = gx × gy are also computed and averaged over a
3× 3 window. The corner strength is then computed asσ =
gxx+gyy−

√
(gxx − gyy)× (gxx − gyy) + 4× gxy × gxy.

This is followed by a non maximal suppression of these
corner strengths over a5 × 5 window. Finally a thresh-
old on the corner strength is used to filter out corners that
are not strong enough. We then interpolate the feature loca-
tions to subpixel accuracy. Many of the above steps are effi-
ciently coded using single instruction multiple data (SIMD)
instructions.

The features extracted in each frame are matched with
the features from the subsequent frame to give feature
tracks. Since we have continuous video, a feature point can
move only a fixed maximum distance between consecutive
frames. For each feature point in the current frame, its SAD
is evaluated for every feature point in the next frame that
lies within a specified distance of its location in the cur-
rent frame. Those pixels with SAD scores below a thresh-
old and that achieve mutual minimum SAD are retained and
defined as “matched”. This makes the scheme more robust
as only features that achieve the lowest SAD scores in each



other are reliable. The SAD is implemented efficiently us-
ing optimized SIMD instructions.

A dense stereo algorithm [9] is used to obtain the dispar-
ity map of each frame. This dense disparity map is needed
to detect independently moving objects at a later step. and to
compute the 3D information of the extracted feature points
in each frame.

This processing step results in the extraction of the tra-
jectories of feature points being tracked. The match
for a feature point(xt

i, y
t
i , d

t
i) in frame t is given by

(xt+1
i , yt+1

i , dt+1
i ) in frame t + 1. These matches in dis-

parity space will be used to estimate the motion of the
camera.

5. Motion Estimation

We need only three points to estimate the3D motion
of the camera. The feature detection and tracking step re-
sults in several hundred matches. However, these will have
several outliers, arising from two sources. First, the feature
tracking itself may result in several mis matches. Second,
these may be points on the independently moving object
and hence outliers to the rigid camera motion. Therefore,
our motion estimation scheme must be robust enough to es-
timate the correct motion in spite of these outliers. We use
a RANSAC-based scheme to take the outliers into account.

Starting with these potential matches, the RANSAC-
based motion estimation involves

1. Hypothesis generation: Three of these matches are
selected randomly. The camera motion and the cor-
responding disparity space homography are obtained
from these three matches.

2. Hypothesis scoring: The disparity space homography
is applied to all the matches, and the number of inliers
to this homography is the score of the hypothesis.

3. Nonlinear minimization: The above two steps are re-
peated for a fixed number of samples, and the hypoth-
esis with the highest score and the corresponding in-
liers are taken as input to a nonlinear optimization rou-
tine that minimizes pixel reprojection errors of these
inlier matches.

5.1. Hypothesis generation

Three points are required to generate a motion hypothe-
sis. To get reliable motion, we must ensure that these three
points are spaced out well in disparity space as well as in
the image. Points that are too close in the image are un-
likely to give good estimates of the motion. Therefore, for
any selection of three points, we check to see if they are suf-
ficiently spread out in the image.

Next, we triangulate these three points to obtain their3D
locationsMi ≡ (Xi, Yi, Zi)

T and M ′
i ≡ (X ′

i, Y
′
i , Z ′i)

T .
We then seek the rotation matrixR and the translationt
such thatM ′

i = RMi + t. This is a standard absolute ori-
entation problem and can be solved efficiently using singu-
lar value decomposition [14]. For the sake of completeness,
the steps of the algorithm are

1. Compute the centroid̄M andM̄ ′ of the3D point sets
M1,2,3 andM ′

1,2,3.

2. Subtract the centroid from each point giving usM̂1,2,3

andM̂ ′
1,2,3.

3. ComputeQ = P ′PT whereP =
[
M̂1M̂2M̂3

]
and

P ′ =
[
M̂ ′

1M̂
′
2M̂

′
3

]
.

4. Compute the SVD ofQ, given byUSV T .

5. ThenR = V UT andt = M̄ ′ −RM̄ .

Most of the computations above involve operations on3×3
matrices and require few flops. The most time-consuming
operation here is the computation of SVD of a3 matrix. We
obtain a closed form expression for the SVD of this matrix
to save computational time, resulting in very fast implemen-
tation.

5.2. Hypothesis scoring

Corresponding to each rotation and translation pair hy-
pothesis(R, t), the disparity space homographyH(R, t)
can be calculated using equation 6. For a hypothesized cor-
respondence in the disparity spaceωi ↔ ω′i, the homogra-
phy is applied toωi, resulting in the pointωi”. The repro-
jection error(εi) is then given by the difference betweenω′i
andωi”

(
ωi”
1

)
' H(R, t)

(
ωi

1

)
(7)

εi = |ω′i − ωi”| (8)

A match is taken as an inlier to this homography if the in-
ifinity norm of the error vector|εi|∞ is less than a prede-
fined maximum threshold value. In our implementation, we
have taken this threshold value to be1.5 pixels. The number
of inlier matches to a motion is taken as its score. Since each
of the hypotheses generated during the RANSAC needs to
be scored with all the matches, it is extremely important to
code this efficiently. We have coded the routines for equa-
tions 7 and 8 using SIMD instructions.

5.3. Nonlinear minimization

The hypothesis with the best score (maximum number
of inliers) is used as the starting point for a nonlinear min-



(a) Reference image (b) Transformed image (c) Independent motion

Figure 1. Detection of independent moving pixels

imization algorithm. We use the Levenberg-Marquardt al-
gorithm for nonlinear least squares minimization. The Ja-
cobian required for this minimization is approximated by
forward differencing. Since the3 × 3 rotation matrix has
only three degrees of freedom, we work with the euler an-
gles instead. The variables for this minimization are there-
fore the three euler angles for rotationΩ ≡ (Ωx, Ωy,Ωz)
and the three translation parameters(t). The disparity space
homography is thereforeH(Ω, t).

For N matches,ωi ↔ ω′i, i = 1, . . . , N , the error func-
tion to be minimized is given by

min
N∑

i=1

‖ωi”− ω′i‖2 (9)

whereωi” is given by equation 7. The starting point for this
nonlinear minimization routine is very good and hence the
procedure converges within only 5 to 10 iterations. We have
observed that this nonlinear minimization step makes a sub-
stantial difference to the computed homography. Motion es-
timation from just three points is unreliable. The nonlinear
minimization step takes into account all the inlier matches
and computes more reliable and stable motion estimates.

6. Detecting Independent Motion

The result of the motion estimation step is a homogra-
phy that specifies the transformation of a point(x, y, d) in
the base image to a point(x′, y′, d′) in a subsequent im-
age (the reference image). Conceptually, independent mo-
tion detection is simple: just check if the transformed pixel
is actually at its estimated location. In practice, motion esti-
mation errors and image noise demand a robust method for
this process. We use the following steps:

1. Construct the transformed image by applying the ho-
mography to every pixel in the base image for which a
stereo disparity exists.

2. Correlate a small region around every pixel in the
transformed image with the corresponding region in
the reference image, searching over a small area (3×3
window).

3. Accept the pixel as belonging to the rigid background
if the correlation value is below a threshold.

4. If not, check for a boundary condition, where the min-
imum correlation value is less than any correlation
around the3 × 3 search area. If so, accept the pixel
as part of the rigid background.

Consider the two images shown in Figure 1. Figure 1(a)
is the base image; from the motion homography and the
disparity image, the transformed image is constructed (Fig-
ure 1(b)). Notice the holes in the transformed image, where
there is no disparity value. There can also be holes at depth
boundaries (to the left of the walker), since under certain
motions the two sides of the depth boundary will “split”
in the next frame, as they move differentially in the im-
age. These areas do not contribute when correlating regions
around a pixel.

Given the transformed image and the reference image,
each pixel is checked for independent motion by correla-
tion, as described above. Correlation is done with a sat-
urated SAD function to minimize the effect of large dif-
ferences. If the pixel does not correlate well, according to
the checks (3) and (4), then it is declared to belong to an
object with independent motion. Note that we perform a
small search with the correlation, since it is possible that
the motion estimation could transform the pixel to a non in-
tegral position; also, there is uncertainty in the motion esti-
mation. As a consequence, a pixel undergoing independent
motion must move at least 2 pixels from its projected mo-
tion as a non moving object, in order to be detected. Fig-
ure 1(c) shows the detected independent motion pixels in
white. Note the very low false positive rate, a consequence
of the checks (3) and (4).



(a) Mask from independent motion detection (b) Disparity image (c) Bounding box of extracted blob

Figure 2. Blob extraction results

The independent motion algorithm can be implemented
very efficiently by using techniques similar to the stereo al-
gorithm [9]. Since we are searching a5× 5 window (3× 3,
plus all the surrounding pixels), it is roughly equivalent to a
search in stereo over 25 disparities. Note that because we
are doing detection, we do not have to run an expensive
motion search to find where the independent motion pix-
els have actually moved to.

7. Blob Extraction

The method described so far is able to detect a set of
pixels that belong to the independent mover. However, in
several applications it is useful to augment the information
about the moving objects detected and track them over time.
To this end, we have developed a blob extraction and track-
ing procedure that is able to determine a bounding box of
the independently moving object as well as compute its3D
position in the world and track it over time. The blob ex-
traction step is based on the assumption that moving objects
are surfaces in the world that can be distinguished from the
background of the scene; therefore the disparity data associ-
ated with the moving objects are somewhat continuous and
disjointed from the background (this is a typical case in out-
door scenes).

Given the pixel mask computed by the previous step
of independent motion detection, the first step of this pro-
cessing is to find connected components and compute a set
of blobs. At this stage, blobs whose size is below a given
threshold are discarded; this accounts for small background
blobs that are incorrectly labeled by the independent mo-
tion detection routine.

The second step is to group adjacent blobs intomacro-
blobs. The criteria for determining when two blobs should
be grouped take into account their distance both in the im-
age space and in the disparity space. Therefore, blobs that
are close in the image and in the disparity space are merged

into macro-blobs, and each macro-blob identifies a single
moving object in the scene.

In some cases, the independent motion detection step can
detect only a portion of a moving object (for example, only
the legs of a person). In these situations, a third step is nec-
essary for growing the macro-blob into anextended macro-
blob, which will cover the entire moving object that is be-
ing observed. This is achieved by a region-growing proce-
dure that extends the limits of each macro-blob as long as
the disparity of the new pixels is compatible with the dispar-
ity of the observed object. For example, when objects to be
tracked are walking persons, they usually have small dispar-
ity variations. Therefore, computing the average and stan-
dard deviation of the disparity associated with the motion-
detected pixels is sufficient for selecting pixels that are close
to the current blob. Figure 2 shows these steps on an exam-
ple. The result of the independent detection step is shown
in Figure 2(a), and the depth map of that frame is shown
in Figure 2(b). The final result of our blob extraction rou-
tine is shown in Figure 2(c), wherein the missing portions
of the person have been filled to get a final blob (shown as
a bounding box) that covers the entire person.

The blob extraction procedure is also used to extract the
3D location of the moving object. The centroid of the blob
and its average disparity are used to get the relative position
of that object. Since we already know the camera motion,
we can get the object’s absolute position with respect to the
initial camera pose. This3D location of the moving object
(actually only its projection in the ground plane) is then in-
put to a Kalman filter with a constant velocity model, which
retrieves a smooth and consistent trajectory of the moving
object. In addition, the filter is used to discard false posi-
tives that arise when the independent motion detection step
incorrectly labels a consistent blob of background pixels as
independent motion for a few frames.

Figure 3 shows the2D track of a tracked object with
and without a Kalman filter. The upper plot shows the



smooth track of the tracked object as a result of applying
the Kalman filter, and the plot below it shows the raw posi-
tion estimates. Note that the upper plot has been shifted up
for better viewing.
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Figure 3. 2D trajectories of tracked person
and camera

8. Experimental Results

Our system has a few parameters that need to be ad-
justed based on the particular scenario. In the feature de-
tection step, there is a threshold on the corner strength. This
threshold for our experiments is taken as 10.0. We assume
that between consecutive frames, a feature can move up to
20 pixels from its previous location. Also, our threshold on
the SAD for matching features between frames is taken to
be 20.0. The dense stereo algorithm is computed with the
assumption of 32 disparities in the scene, and the window
size for correlation is taken to be17 × 17. We take 1000
random samples for the RANSAC-based motion estimation
step. Last, for the independent motion detection step, we
have used a threshold of 300 on the SAD score for a5 × 5
window.

With these parameters, our system runs at 16 Hz for
320× 240 images on a 2 GHz laptop computer with an In-
tel Pentium 4-M processor. Table 1 shows the detailed tim-
ing analysis in milliseconds per frame of the various steps
of processing.

From the timing analysis, it is apparent that a major por-
tion of the time is spent in detecting features. Cutting down
time in the feature detection step will result in further im-
provements in the speed.

Step Time (ms)

Feature Detection 22
Dense Stereo 7
Feature Matching 7
Motion Estimation 11
Independent Motion detection 12
Blob Extraction 3

Total Time Per Frame 62

Table 1. Timing breakdown

Figure 4 shows four frames from our first test video. The
first row shows the masks obtained as a result of our inde-
pendent motion detection routine (Section 6). The bounding
box of the extracted blobs for these frames are are shown in
the second row. Figure 3 shows the trajectory of the cam-
era as well as the trajectory of the moving person. The en-
tire video showing the extracted independently moving ob-
jects is included in the supplemental material (video1.avi).

Figure 5 shows snapshots of the detected objects for an-
other video. This sequence is also included in the supple-
mental material(video2.avi). Notice that towards the end,
our system locks on the shadow of the person instead of
the person.

9. Conclusion

We have described a system that is able to detect, track,
and localize independently moving objects in real time from
a moving platform. The first step is to compute the ego mo-
tion of the camera. This is accomplished in a robust and
efficient manner through a RANSAC-based procedure that
generates the motion using three randomly selected points.
The disparity space homography is then used to find the in-
liers to this motion. Eventually, the motion with the largest
number of inliers is used as a starting point for a nonlinear
minimization that minimizes the reprojection errors of these
points in the stereo images. This homography is also used
to find the independently moving objects from a dense dis-
parity map of the scene. Because we do not have to compute
dense optical flow but only verify whether the projected im-
age and the actual image match, our independent motion de-
tection routine is extremely fast. Results from real video se-
quences are very promising.

Since we do not have ground truth information about the
motion of the camera and the independently moving ob-
ject, we have not performed a detailed quantitative analy-
sis of our results. We hope to accomplish that by compar-
ing against ground truth position estimates from differential
GPS. We are also looking into enhancements to make inde-
pendent motion detection more stable. For example, instead
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Figure 4. Results for independent motion detection in video 1

(a) Frame 25 (b) Frame 75 (c) Frame 125 (d) Frame 175

Figure 5. Results for independent motion detection in video 2

of just comparing adjacent frames for independent motion
detection we can skip frames so that the independently mov-
ing objects are detected through several frames. This can
make the approach more robust to false positives in a few
frames in between. This will also be possibly helpful in de-
tecting slow-moving objects with little motion between con-
secutive frames. In addition, augmenting the tracking with
the intensity information of the blob is also likely to result
in better tracking.

Acknowledgements

The research was sponsored by the Defense Advance
Research Projects Agency (DARPA) under the Department
of Interior Award Number NBCH1020014. Any opinions,
findings, conclusions or recommendations expressed herein

are those of the authors and do not reflect the views of the
Department of the Interior/DARPA or Carnegie Mellon.

References

[1] Point grey research inc. http://www.ptgrey.com.
[2] D. Beymer and K. Konolige. Real-time tracking of multiple

people using continuous detection. InProc. ICCV Frame-
rate Workshop, 1999.

[3] T. Darrell, G. Gordon, M. Harville, and J. Woodfill. Inte-
grated person tracking using stereo, color, and pattern detec-
tion. International Journal of Computer Vision, 37(2):175–
185, June 2000.

[4] D. Demirdjian and T. Darrell. Motion estimation from dis-
parity images. InProc. International Conference on Com-
puter Vision, volume 1, pages 213–218, July 2001.

[5] M. Fischler and R. Bolles. Random sample consensus: a
paradigm for model fitting with application to image anal-



ysis and automated cartography.Commun. ACM., 24:381–
395, 1981.

[6] I. Haritaoglu, D. Harwood, and L. Davis. W4s: A real time
system for detecting and tracking people in 2.5d. InProc.
European Conference in Computer Vision, pages 877–892,
1998.

[7] C. Harris and M. Stephens. A combined corner and edge de-
tector. InAlvey Vision Conference, pages 147–151, 1988.

[8] M. Harville. Stereo person tracking with adaptive plan-view
statistical templates. InProc. ECCV Workshop on Statistical
Methods in Video Processing, pages 67–72, June 2002.

[9] K. Konolige. Small vision systems: hardware and implemen-
tation. InEighth International Symposium on Robotics Re-
search, pages 111–116, 1997.

[10] B. Matei and P. Meer. Optimal rigid motion estimation and
performance evaluation with bootstrap. InProc. Computer
Vision and Pattern Recognition Conference, pages 339–345,
1999.

[11] L.-P. Morency and R. Gupta. Robust real-time egomotion
from stereo images. InProc. International Conference on
Image Processing, 2003.

[12] D. Nister, O. Naroditsky, and J. Bergen. Visual odometry.
In Proc. IEEE Conference on Computer Vision and Pattern
Recognition, June 2004.

[13] C. F. Olson, L. H. Matthies, M. Schoppers, and M. W. Mai-
mone. Robust stereo ego-motion for long distance naviga-
tion. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition, volume 2, pages 453–458, 2000.

[14] S. Umeyama. Least-squares estimation of transformation pa-
rameters between two point patterns.IEEE Trans. Pattern
Analysis and Machine Intelligence, 13(4), April 1991.

[15] R. Yang and M. Pollefeys. Multi-resolution real-time stereo
on commodity graphics hardware. InProc. Computer Vision
and Pattern Recognition Conference, pages 211–217, 2003.


